# Decomposition of spinor groups by the involution $\sigma^{\prime}$ in exceptional Lie groups 

Toshikazu Miyashita

## Introduction

The compact exceptional Lie groups $F_{4}, E_{6}, E_{7}$ and $E_{8}$ have spinor groups as a subgroup as follows.

$$
\begin{aligned}
& F_{4} \supset \operatorname{Spin}(9) \supset \operatorname{Spin}(8) \supset \operatorname{Spin}(7) \supset \cdots \supset \operatorname{Spin}(1) \ni 1 \\
& \cap \\
& E_{6} \supset \operatorname{Spin}(10) \\
& \cap \\
& E_{7} \supset \operatorname{Spin}(12) \supset \operatorname{Spin}(11) \\
& \cap \\
& E_{8} \supset S s(16) \supset \operatorname{Spin}(15) \supset \operatorname{Spin}(14) \supset \operatorname{Spin}(13)
\end{aligned}
$$

On the other hand, we know the involution $\sigma^{\prime}$ induced an element $\sigma^{\prime} \in \operatorname{Spin}(8) \subset$ $F_{4} \subset E_{6} \subset E_{7} \subset E_{8}$. Now, in this paper, we determine the group structures of $(\operatorname{Spin}(n))^{\sigma^{\prime}}$ which are the fixed subgroups by the involution $\sigma^{\prime}$. Our results are as follows.

$$
\begin{array}{ll}
F_{4} & (\operatorname{Spin}(9))^{\sigma^{\prime}} \cong \operatorname{Spin}(8) \\
E_{6} & (\operatorname{Spin}(10))^{\sigma^{\prime}} \cong(\operatorname{Spin}(2) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2} \\
E_{7} & (\operatorname{Spin}(11))^{\sigma^{\prime}} \cong(\operatorname{Spin}(3) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2} \\
& (\operatorname{Spin}(12))^{\sigma^{\prime}} \cong(\operatorname{Spin}(4) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2} \\
E_{8} & (\operatorname{Spin}(13))^{\sigma^{\prime}} \cong(\operatorname{Spin}(5) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2} \\
& (\operatorname{Spin}(14))^{\sigma^{\prime}} \cong(\operatorname{Spin}(6) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2}
\end{array}
$$

Needless to say, the spinor groups appeared in the first term have relation

$$
\operatorname{Spin}(2) \subset \operatorname{Spin}(3) \subset \operatorname{Spin}(4) \subset \operatorname{Spin}(5) \subset \operatorname{Spin}(6)
$$

One of our aims is to find these groups explicitly in the exceptional groups. In the group $E_{8}$, we conjecture that
$(S \operatorname{Spin}(15))^{\sigma^{\prime}} \cong(\operatorname{Spin}(7) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2},(S s(16))^{\sigma^{\prime}} \cong(\operatorname{Spin}(8) \times \operatorname{Spin}(8)) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right)$,
however, we can not realize explicitly.
This paper is closely in connection with the preceding papers [2],[3],[4] and may be a continuation of [2],[3],[4] in some sense.

## 1. Group $F_{4}$

We use the same notation as in [5] (however, some will be rewritten). For example, the Cayley algebra $\mathfrak{C}=\boldsymbol{H} \oplus \boldsymbol{H} e_{4}$,
the exceptional Jordan algebra $\mathfrak{J}=\left\{X \in M(3, \mathfrak{C}) \mid X^{*}=X\right\}$, the Jordan multiplication $X \circ Y$, the inner product $(X, Y)$ and the elements $E_{1}, E_{2}, E_{3} \in \mathfrak{J}$,
the group $F_{4}=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}(\mathfrak{J}) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\}$, and the element $\sigma \in$ $F_{4}: \sigma X=D X D, D=\operatorname{diag}(1,-1,-1), X \in \mathfrak{J}$ and the element $\sigma^{\prime} \in F_{4}: \sigma^{\prime} X=$ $D^{\prime} X D^{\prime}, D^{\prime}=\operatorname{diag}(-1,-1,1), X \in \mathfrak{J}$,
the groups $S O(8)=S O(\mathfrak{C})$ and $\operatorname{Spin}(8)=\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in S O(8) \times S O(8) \times\right.$ $\left.S O(8) \mid\left(\alpha_{1} x\right)\left(\alpha_{2} y\right)=\overline{\alpha_{3} \overline{(x y)}}\right\}$.

Proposition 1.1. $\quad\left(F_{4}\right)_{E_{1}} \cong \operatorname{Spin}(9)$.
Proof. We define a 9 dimensional $\boldsymbol{R}$-vector space $V^{9}$ by

$$
V^{9}=\left\{X \in \mathfrak{J} \mid E_{1} \circ X=0, \operatorname{tr}(X)=0\right\}=\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & x \\
0 & \bar{x} & -\xi
\end{array}\right) \right\rvert\, \xi \in \boldsymbol{R}, x \in \mathfrak{C}\right\}
$$

with the norm $1 / 2(X, X)=\xi^{2}+\bar{x} x$. Let $S O(9)=S O\left(V^{9}\right)$. Then, we have $\left(F_{4}\right)_{E_{1}} / \boldsymbol{Z}_{2} \cong S O(9), \boldsymbol{Z}_{2}=\{1, \sigma\}$. Therefore, $\left(F_{4}\right)_{E_{1}}$ is isomorphic to $\operatorname{Spin}(9)$ as a double covering group of $S O(9)$. (In details, see [5],[8].)

Now, we shall determine the group structure of $(\operatorname{Spin}(9))^{\sigma^{\prime}}$.
Theorem 1.2. $(\operatorname{Spin}(9))^{\sigma^{\prime}} \cong \operatorname{Spin}(8)$.
Proof. Let $\operatorname{Spin}(9)=\left(F_{4}\right)_{E_{1}}$. Then, the map $\varphi_{1}: \operatorname{Spin}(8) \rightarrow(\operatorname{Spin}(9))^{\sigma^{\prime}}$,

$$
\varphi_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) X=\left(\begin{array}{ccc}
\xi_{1} & \alpha_{3} x_{3} & \overline{\alpha_{2} x_{2}} \\
\overline{\alpha_{3} x_{3}} & \xi_{2} & \alpha_{1} x_{1} \\
\alpha_{2} x_{2} & \overline{\alpha_{1} x_{1}} & \xi_{3}
\end{array}\right), \quad X \in \mathfrak{J}
$$

gives an isomorphism as groups. (In details, see [3].)

## 2. Group $E_{6}$

We use the same notation as in [5] (however, some will be rewritten). For example, the complex exceptional Jordan algebra $\mathfrak{J}^{C}=\left\{X \in M\left(3, \mathfrak{C}^{C}\right) \mid X^{*}=X\right\}$, the Freudenthal multiplication $X \times Y$ and the Hermitian inner product $\langle X, Y\rangle$,
the group $E_{6}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{J}^{C}\right) \mid \alpha X \times \alpha Y=\tau \alpha \tau(X \times Y),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}$, and the natural inclusion $F_{4} \subset E_{6}$,
any element $\phi$ of the Lie algebra $\mathfrak{e}_{6}$ of the group $E_{6}$ is uniquely expressed as $\phi=\delta+i \widetilde{T}, \delta \in \mathfrak{f}_{4}, T \in \mathfrak{J}_{0}$, where $\mathfrak{J}_{0}=\{T \in \mathfrak{J} \mid \operatorname{tr}(T)=0\}$.

Proposition 2.1. $\quad\left(E_{6}\right)_{E_{1}} \cong \operatorname{Spin}(10)$.
Proof. We define a 10 dimensional $\boldsymbol{R}$-vector space $V^{10}$ by

$$
V^{10}=\left\{X \in \mathfrak{J}^{C} \mid 2 E_{1} \times X=-\tau X\right\}=\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & x \\
0 & \bar{x} & -\tau \xi
\end{array}\right) \right\rvert\, \xi \in C, x \in \mathfrak{C}\right\}
$$

with the norm $1 / 2\langle X, X\rangle=(\tau \xi) \xi+\bar{x} x$. Let $S O(10)=S O\left(V^{10}\right)$. Then, we have $\left(E_{6}\right)_{E_{1}} / \boldsymbol{Z}_{2} \cong S O(10), \boldsymbol{Z}_{2}=\{1, \sigma\}$. Therefore, $\left(E_{6}\right)_{E_{1}}$ is isomorphic to $\operatorname{Spin}(10)$ as a double covering group of $S O(10)$. (In details, see [5], [8].)

Lemma 2.2. For $\nu \in \operatorname{Spin}(2)=U(1)=\{\nu \in C \mid(\tau \nu) \nu=1\}$, we define $a$ $C$-linear transformation $\phi_{1}(\nu)$ of $\mathfrak{J}^{C}$ by

$$
\phi_{1}(\nu) X=\left(\begin{array}{ccc}
\xi_{1} & \nu x_{3} & \nu^{-1} \bar{x}_{2} \\
\nu \bar{x}_{3} & \nu^{2} \xi_{2} & x_{1} \\
\nu^{-1} x_{2} & \bar{x}_{1} & \nu^{-2} \xi_{3}
\end{array}\right), \quad X \in \mathfrak{J}^{C} .
$$

Then, $\phi_{1}(\nu) \in\left(\left(E_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}}$.
Lemma 2.3. Any element $\phi$ of the Lie algebra $\left(\left(\mathfrak{e}_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}}$ of the group $\left(\left(E_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}}$ is expressed by

$$
\phi=\delta+i t\left(E_{2}-E_{3}\right)^{\sim}, \quad \delta \in\left(\left(\mathfrak{f}_{4}\right)_{E_{1}}\right)^{\sigma^{\prime}}=\mathfrak{s o}(8), t \in \boldsymbol{R} .
$$

In particular, we have

$$
\operatorname{dim}\left(\left(\left(\mathfrak{e}_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}}\right)=28+1=29
$$

Now, we shall determine the group structure of $(\operatorname{Spin}(10))^{\sigma^{\prime}}$.
Theorem 2.4. $(\operatorname{Spin}(10))^{\sigma^{\prime}} \cong(\operatorname{Spin}(2) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1,1),(-1, \sigma)\}$.

Proof. Let $\operatorname{Spin}(10)=\left(E_{6}\right)_{E_{1}}, \operatorname{Spin}(2)=U(1) \subset\left(\left(E_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}}($ Lemma 2.2 $)$ and $\operatorname{Spin}(8)=\left(\left(F_{4}\right)_{E_{1}}\right)^{\sigma^{\prime}} \subset\left(\left(E_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}} \quad$ (Theorem 1.2, Proposition 2.1). Now, we define a map $\varphi: \operatorname{Spin}(2) \times \operatorname{Spin}(8) \rightarrow(\operatorname{Spin}(10))^{\sigma^{\prime}}$ by

$$
\varphi(\nu, \beta)=\phi_{1}(\nu) \beta
$$

Then, $\varphi$ is well-defined : $\varphi(\nu, \beta) \in(\operatorname{Spin}(10))^{\sigma^{\prime}}$. Since $\phi_{1}(\nu)$ and $\beta$ are commutative, $\varphi$ is a homomorphism. $\operatorname{Ker} \varphi=\{(1,1),(-1, \sigma)\}$. Since $(\operatorname{Spin}(10))^{\sigma^{\prime}}$ is connected and $\operatorname{dim}(\mathfrak{s p i n}(2) \oplus \mathfrak{s p i n}(8))=1+28=29=\operatorname{dim}\left(\left(\mathfrak{s p i n}(10)^{\sigma^{\prime}}\right)\right)$ (Lemma 2.3), $\varphi$ is onto. Thus, we have the isomorphism $(\operatorname{Spin}(2) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2} \cong(\operatorname{Spin}(10))^{\sigma^{\prime}}$.

## 3. Group $E_{7}$

We use the same notation as in [6](however, some will be rewritten). For example, the Freudenthal $C$-vector space $\mathfrak{P}^{C}=\mathfrak{J}^{C} \oplus \mathfrak{J}^{C} \oplus C \oplus C$, the Hermitian inner product $\langle P, Q\rangle$,
for $P, Q \in \mathfrak{P}^{C}$, the $C$-linear map $P \times Q: \mathfrak{P}^{C} \rightarrow \mathfrak{P}^{C}$,
the group $E_{7}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{P}^{C}\right) \mid \alpha(X \times Y) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle=\langle P, Q\rangle\right\}$, the natural inclusion $E_{6} \subset E_{7}$ and elements $\sigma, \sigma^{\prime} \in F_{4} \subset E_{6} \subset E_{7}, \lambda \in E_{7}$,
any element $\Phi$ of the Lie algebra $\mathfrak{e}_{7}$ of the group $E_{7}$ is uniquely expressed as $\Phi=\Phi(\phi, A,-\tau A, \nu), \phi \in \mathfrak{e}_{6}, A \in \mathfrak{J}^{C}, \nu \in i \boldsymbol{R}$.

In the following, the group $\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(x)}$ is defined by

$$
\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(x)}=\left\{\alpha \in(\operatorname{Spin}(10))^{\sigma^{\prime}} \mid \alpha F_{1}(x)=F_{1}(x) \text { for all } x \in \mathfrak{C}\right\}
$$

where $F_{1}(x)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & x \\ 0 & \bar{x} & 0\end{array}\right) \in \mathfrak{J}$.
Proposition 3.1. $\quad\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(x)} \cong \operatorname{Spin}(2)$.
Proof. Let $\operatorname{Spin}(10)=\left(E_{6}\right)_{E_{1}}$ and $\operatorname{Spin}(2)=U(1)=\{\nu \in C \mid(\tau \nu) \nu=1\}$. We consider the map $\phi_{1}: \operatorname{Spin}(2) \rightarrow\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(x)}$ defined in Section 2. Then, $\phi_{1}$ is well-defined : $\phi_{1}(\nu) \in\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(x)}$. We shall show that $\phi_{1}$ is onto. From $\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(x)} \subset(\operatorname{Spin}(10))^{\sigma^{\prime}}$, we see that for $\alpha \in\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(x)}$, there exist $\nu \in \operatorname{Spin}(2)$ and $\beta \in \operatorname{Spin}(8)$ such that $\alpha=\varphi(\nu, \beta)$ (Theorem 2.4). Further, from $\alpha F_{1}(x)=F_{1}(x)$ and $\phi_{1}(\nu) F_{1}(x)=F_{1}(x)$, we have $\beta F_{1}(x)=F_{1}(x)$. Hence, $\beta=(1,1,1)$ or $(1,-1,-1)=\sigma$ by the principle of triality. Hence, $\alpha=\phi_{1}(\nu)$ or $\phi_{1}(\nu) \sigma$. However, in the latter case, from $\sigma=\phi_{1}(-1)$, we have $\alpha=\phi_{1}(\nu) \phi_{1}(-1)=$ $\phi_{1}(-\nu)$. Therefore, $\phi_{1}$ is onto. $\operatorname{Ker} \phi_{1}=\{1\}$. Thus, we have the isomorphism $\operatorname{Spin}(2) \cong\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(x)}$.

We define $C$-linear maps $\kappa, \mu: \mathfrak{P}^{C} \rightarrow \mathfrak{P}^{C}$ respectively by

$$
\begin{aligned}
& \kappa(X, Y, \xi, \eta)=\left(-\kappa_{1} X, \kappa_{1} Y,-\xi, \eta\right), \kappa_{1} X=\left(E_{1}, X\right) E_{1}-4 E_{1} \times\left(E_{1} \times X\right) \\
& \mu(X, Y, \xi, \eta)=\left(2 E_{1} \times Y+\eta E_{1}, 2 E_{1} \times X+\xi E_{1},\left(E_{1}, Y\right),\left(E_{1}, X\right)\right)
\end{aligned}
$$

Their explicit forms are

$$
\begin{aligned}
& \kappa(X, Y, \xi, \eta)=\left(\left(\begin{array}{ccc}
-\xi_{1} & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & \bar{x}_{1} & \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
\eta_{1} & 0 & 0 \\
0 & -\eta_{2} & -y_{1} \\
0 & -\bar{y}_{1} & -\eta_{3}
\end{array}\right),-\xi, \eta\right) \\
& \mu(X, Y, \xi, \eta)=\left(\left(\begin{array}{ccc}
\eta & 0 & 0 \\
0 & \eta_{3} & -y_{1} \\
0 & -\bar{y}_{1} & \eta_{2}
\end{array}\right),\left(\begin{array}{ccc}
\xi & 0 & 0 \\
0 & \xi_{3} & -x_{1} \\
0 & -\bar{x}_{1} & \xi_{2}
\end{array}\right), \eta_{1}, \xi_{1}\right) .
\end{aligned}
$$

We define subgroups $\left(E_{7}\right)^{\kappa, \mu},\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right)}$ and $\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right),\left(0,-E_{1}, 0,1\right)}$ of $E_{7}$ by

$$
\begin{gathered}
\left(E_{7}\right)^{\kappa, \mu}=\left\{\alpha \in E_{7} \mid \kappa \alpha=\alpha \kappa, \mu \alpha=\alpha \mu\right\} \\
\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right)}=\left\{\alpha \in\left(E_{7}\right)^{\kappa, \mu} \mid \alpha\left(0, E_{1}, 0,1\right)=\left(0, E_{1}, 0,1\right)\right\} \\
\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right),\left(0,-E_{1}, 0,1\right)}=\left\{\begin{array}{l|l}
\left.\alpha \in\left(E_{7}\right)^{\kappa, \mu} \left\lvert\, \begin{array}{l}
\alpha\left(0, E_{1}, 0,1\right)=\left(0, E_{1}, 0,1\right) \\
\alpha\left(0,-E_{1}, 0,1\right)=\left(0,-E_{1}, 0,1\right)
\end{array}\right.\right\},
\end{array}\right.
\end{gathered}
$$

and also define subgroups $\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right)}$ and $\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right),\left(E_{1}, 0,-1,0\right)}$ of $E_{7}$ by

$$
\begin{gathered}
\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right)}=\left\{\alpha \in\left(E_{7}\right)^{\kappa, \mu} \mid \alpha\left(E_{1}, 0,1,0\right)=\left(E_{1}, 0,1,0\right)\right\} \\
\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right),\left(E_{1}, 0,-1,0\right)}=\left\{\begin{array}{ll}
\alpha \in\left(E_{7}\right)^{\kappa, \mu} \left\lvert\, \begin{array}{l}
\alpha\left(E_{1}, 0,1,0\right)=\left(E_{1}, 0,1,0\right) \\
\alpha\left(E_{1}, 0,-1,0\right)=\left(E_{1}, 0,-1,0\right)
\end{array}\right.
\end{array}\right\} .
\end{gathered}
$$

Proposition 3.2. (1) $\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right)}=\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right)}$.
(2) $\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right),\left(E_{1}, 0,-1,0\right)}=\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right),\left(0,-E_{1}, 0,1\right)}$.

Proof. (1) For $\alpha \in\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right)}$, we have $\alpha\left(0, E_{1}, 0,1\right)=\alpha \mu\left(E_{1}, 0,1,0\right)=$ $\mu \alpha\left(E_{1}, 0,1,0\right)=\mu\left(E_{1}, 0,1,0\right)=\left(0, E_{1}, 0,1\right)$. Hence, $\alpha \in\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right)}$. The converse is also proved.
(2) It is proved in a way similar to (1).

Proposition 3.3. $\quad\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right),\left(0,-E_{1}, 0,1\right)} \cong \operatorname{Spin}(10)$.
Proof. If $\alpha \in E_{7}$ satisfies $\alpha\left(0, E_{1}, 0,1\right)=\left(0, E_{1}, 0,1\right)$ and $\alpha\left(0,-E_{1}, 0,1\right)=$ $\left(0,-E_{1}, 0,1\right)$, then we have $\alpha(0,0,0,1)=(0,0,0,1)$ and $\alpha\left(0, E_{1}, 0,0\right)=\left(0, E_{1}, 0,0\right)$. From the first condition, we see that $\alpha \in E_{6}$. Moreover, from the second condition, we have $\alpha \in\left(E_{6}\right)_{E_{1}}=\operatorname{Spin}(10)$. The proof of the converse is trivial because $\kappa, \mu$ are defined by using $E_{1}$.

Proposition 3.4. $\quad\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right)} \cong \operatorname{Spin}(11)$.
Proof. We define an 11 dimensional $\boldsymbol{R}$-vector space $V^{11}$ by

$$
\begin{aligned}
V^{11} & =\left\{P \in \mathfrak{P}^{C} \mid \kappa P=P, \mu \tau \lambda P=P, P \times\left(0, E_{1}, 0,1\right)=0\right\} \\
& =\left\{\left.\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & x \\
0 & \bar{x} & -\tau \xi
\end{array}\right),\left(\begin{array}{ccc}
\eta & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \eta\right) \right\rvert\, x \in \mathfrak{C}, \xi \in C, \eta \in i \boldsymbol{R}\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=\frac{1}{2}(\mu P, \lambda P)=(\tau \eta) \eta+\bar{x} x+(\tau \xi) \xi
$$

Let $S O(11)=S O\left(V^{11}\right)$. Then, we have $\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right)} / \boldsymbol{Z}_{2} \cong S O(11), \boldsymbol{Z}_{2}=$ $\{1, \sigma\}$. Therefore, $\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right)}$ is isomorphic to $\operatorname{Spin}(11)$ as a double covering group of $S O(11)$. (In details, see [6], [8].)

Now, we shall consider the following group

$$
\begin{aligned}
& \left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} \\
& \quad=\left\{\alpha \in(\operatorname{Spin}(11))^{\sigma^{\prime}} \left\lvert\, \begin{array}{l}
\alpha\left(0, F_{1}(y), 0,0\right) \\
=\left(0, F_{1}(y), 0,0\right)
\end{array}\right. \text { for all } y \in \mathfrak{C}\right\} .
\end{aligned}
$$

Lemma 3.5. The Lie algebra $\left((\mathfrak{s p i n}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ of the group $\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ is given by

$$
\begin{aligned}
& \left((\mathfrak{s p i n}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} \\
& \quad=\left\{\left.\Phi\left(i\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \epsilon & 0 \\
0 & 0 & -\epsilon
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho & 0 \\
0 & 0 & \tau \rho
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho & 0 \\
0 & 0 & \tau \rho
\end{array}\right), 0\right) \right\rvert\, \epsilon \in \boldsymbol{R}, \rho \in C\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left(\left((\mathfrak{s p i n}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}\right)=3
$$

Lemma 3.6. For $a \in \boldsymbol{R}$, the maps $\alpha_{k}(a): \mathfrak{P}^{C} \rightarrow \mathfrak{P}^{C}, k=1,2,3$ defined by

$$
\alpha_{k}(a)\left(\begin{array}{c}
X \\
Y \\
\xi \\
\eta
\end{array}\right)=\left(\begin{array}{c}
\left(1+(\cos a-1) p_{k}\right) X-2(\sin a) E_{k} \times Y+\eta(\sin a) E_{k} \\
2(\sin a) E_{k} \times X+\left(1+(\cos a-1) p_{k}\right) Y-\xi(\sin a) E_{k} \\
\left((\sin a) E_{k}, Y\right)+(\cos a) \xi \\
\left(-(\sin a) E_{k}, X\right)+(\cos a) \eta
\end{array}\right)
$$

belong to the group $E_{7}$, where $p_{k}: \mathfrak{J}^{C} \rightarrow \mathfrak{J}^{C}$ is defined by

$$
p_{k}(X)=\left(X, E_{k}\right) E_{k}+4 E_{k} \times\left(E_{k} \times X\right), \quad X \in \mathfrak{J}^{C}
$$

$\alpha_{1}(a), \alpha_{2}(b), \alpha_{3}(c)(a, b, c \in \boldsymbol{R})$ commute with each other.
Proof. For $\Phi_{k}(a)=\Phi\left(0, a E_{k},-a E_{k}, 0\right) \in \mathfrak{e}_{7}$, we have $\alpha_{k}(a)=\exp \Phi_{k}(a) \in E_{7}$. Since $\left[\Phi_{k}(a), \Phi_{l}(b)\right]=0, k \neq l, \alpha_{k}(a)$ and $\alpha_{l}(b)$ are commutative.

Lemma 3.7. $\quad\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} / \operatorname{Spin}(2) \simeq S^{2}$.
In particular, $\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ is connected.
Proof. We define a 3 dimensional $\boldsymbol{R}$-vector space $W^{3}$ by

$$
\begin{aligned}
W^{3} & =\left\{P \in \mathfrak{P}^{C} \mid \kappa P=-P, \mu \tau \lambda P=-P, \sigma^{\prime} P=P, P \times\left(E_{1}, 0,1,0\right)=0\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{ccc}
i \xi & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \eta & 0 \\
0 & 0 & -\tau \eta
\end{array}\right),-i \xi, 0\right) \right\rvert\, \xi \in \boldsymbol{R}, \eta \in C\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=-\frac{1}{2}(\mu P, \lambda P)=\xi^{2}+(\tau \eta) \eta
$$

Then, $S^{2}=\left\{P \in W^{3} \mid(P, P)_{\mu}=1\right\}$ is a 2 dimensional sphere. The group $\left((S \operatorname{pin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ acts on $S^{2}$. We shall show that this action is transitive. To
show this, it is sufficient to show that any element $P \in S^{2}$ can be transformed to $\left(-i E_{1}, 0, i, 0\right) \in S^{2}$ under the action of $\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$. Now, for a given

$$
P=\left(\left(\begin{array}{ccc}
i \xi & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \eta & 0 \\
0 & 0 & -\tau \eta
\end{array}\right),-i \xi, 0\right) \in S^{2},
$$

choose $a \in \boldsymbol{R}, 0 \leq a<\pi / 2$ such that $\tan 2 a=-\frac{2 i \xi}{\tau \eta-\eta}$ (if $\tau \eta-\eta=0$, then let $a=\pi / 4)$. Operate $\alpha_{23}(a):=\alpha_{2}(a) \alpha_{3}(a)=\exp \left(\Phi\left(0, a\left(E_{2}+E_{3}\right),-a\left(E_{2}+E_{3}\right), 0\right)\right)$ $\in\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}(\operatorname{Lemmas} 3.5,3.6)$ on $P$. Then, we have the $\xi$-term of $\alpha_{23}(a) P$ is $-((\cos 2 a)(i \xi)+1 / 2(\sin 2 a)(\tau \eta-\eta))=0$. Hence,

$$
\alpha_{23}(a) P=\left(0,\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta & 0 \\
0 & 0 & -\tau \zeta
\end{array}\right), 0,0\right)=P_{1}, \quad \zeta \in C,(\tau \zeta) \zeta=1
$$

From $(\tau \zeta) \zeta=1, \zeta \in C$, we can put $\zeta=e^{i \theta}, 0 \leq \theta<2 \pi$. Let $\nu=e^{-i \theta / 2}$, and operate $\phi_{1}(\nu) \in\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(x)}\left(\right.$ Lemma 2.2) $\left(\subset\left(\left(\operatorname{Spin}(11)^{\sigma^{\prime}}\right)_{\left(0, F_{1}(x), 0,0\right)}\right)\right.$ on $P_{1}$. Then,

$$
\phi_{1}(\nu) P_{1}=\left(0, E_{2}-E_{3}, 0,0\right)=P_{2}
$$

Moreover, operate $\phi_{1}\left(e^{i \pi / 4}\right)$ on $P_{2}$,

$$
\phi_{1}\left(e^{i \pi / 4}\right) P_{2}=\left(0, i\left(E_{2}+E_{3}\right), 0,0\right)=P_{3} .
$$

Operate again $\alpha_{23}(\pi / 4)$ on $P_{3}$. Then, we have

$$
\alpha_{23}(\pi / 4) P_{3}=\left(-i E_{1}, 0, i, 0\right)
$$

This shows the transitivity. The isotropy subgroup of $\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ at $\left(-i E_{1}, 0, i, 0\right)$ is $\left((\operatorname{Spin}(10))^{\sigma^{\prime}}\right)_{F_{1}(y)}$ (Propositions 3.2(2), 3.3, 3.4) $=\operatorname{Spin}(2)$. Thus, we have the homeomorphism $\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} / \operatorname{Spin}(2) \simeq S^{2}$.

Proposition 3.8. $\quad\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} \cong \operatorname{Spin}(3)$.
Proof. Since $\left((S \operatorname{Pin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ is connected (Lemma 3.7), we can define a homomorphism $\pi:\left((S \operatorname{pin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} \rightarrow S O(3)=S O\left(W^{3}\right)$ by

$$
\pi(\alpha)=\alpha \mid W^{3}
$$

$\operatorname{Ker} \pi=\{1, \sigma\}=\boldsymbol{Z}_{2} . \quad$ Since $\operatorname{dim}\left(\left((\mathfrak{s p i n}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}\right)=3($ Lemma 3.5 $)=$ $\operatorname{dim}(\mathfrak{s o}(3)), \pi$ is onto. Hence, $\left((S \operatorname{pin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} / \boldsymbol{Z}_{2} \cong S O(3)$. Therefore, $\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ is isomorphic to $\operatorname{Spin}(3)$ as a double covering group of $S O(3)$.

Lemma 3.9. The Lie algebra $(\mathfrak{s p i n}(11))^{\sigma^{\prime}}$ of the group $(S p i n(11))^{\sigma^{\prime}}$ is given by

$$
\begin{aligned}
& (\mathfrak{s p i n}(11))^{\sigma^{\prime}} \\
& \quad=\left\{\Phi\left(D+i\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \epsilon & 0 \\
0 & 0 & -\epsilon
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho & 0 \\
0 & 0 & \tau \rho
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho & 0 \\
0 & 0 & \tau \rho
\end{array}\right), 0\right)\right. \\
& \quad \mid D \in \mathfrak{s o}(8), \epsilon \in \boldsymbol{R}, \rho \in C\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left((\mathfrak{s p i n}(11))^{\sigma^{\prime}}\right)=28+3=31
$$

Now, we shall determine the group structure of $(\operatorname{Spin}(11))^{\sigma^{\prime}}$.
Theorem 3.10. $(\operatorname{Spin}(11))^{\sigma^{\prime}} \cong(\operatorname{Spin}(3) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1,1),(-1, \sigma)\}$.
Proof. Let $\operatorname{Spin}(11)=\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(0, E_{1}, 0,1\right)}, \operatorname{Spin}(3)=\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ and $\operatorname{Spin}(8)=\left(\left(F_{4}\right)_{E_{1}}\right)^{\sigma^{\prime}} \subset\left(\left(E_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}}=\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right),\left(E_{1}, 0,-1,0\right)}\right)^{\sigma^{\prime}} \subset$ $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right)}\right)^{\sigma^{\prime}}$ (Theorem 1.2, Propositions 3.2, 3.3,3.4). Now, we define a map $\varphi: \operatorname{Spin}(3) \times \operatorname{Spin}(8) \rightarrow(\operatorname{Spin}(11))^{\sigma^{\prime}}$ by

$$
\varphi(\alpha, \beta)=\alpha \beta
$$

Then, $\varphi$ is well-defined : $\varphi(\alpha, \beta) \in(\operatorname{Spin}(11))^{\sigma^{\prime}}$. Since $\left[\Phi_{D}, \Phi_{3}\right]=0$ for $\Phi_{D}=$ $\Phi(D, 0,0,0) \in \mathfrak{s p i n}(8), \Phi_{3} \in \mathfrak{s p i n}(3)=\left((\mathfrak{s p i n}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ (Proposition 3.8), we have $\alpha \beta=\beta \alpha$. Hence, $\varphi$ is a homomorphism. $\operatorname{Ker} \varphi=\{(1,1),(-1, \sigma)\}=\boldsymbol{Z}_{2}$. Since $(\operatorname{Spin}(11))^{\sigma^{\prime}}$ is connected and $\operatorname{dim}(\mathfrak{s p i n}(3) \oplus \mathfrak{s p i n}(8))=3($ Lemma 3.5 $)+28=$ $31=\operatorname{dim}\left((\mathfrak{s p i n}(11))^{\sigma^{\prime}}\right)$ (Lemma 3.9), $\varphi$ is onto. Thus, we have the isomorphism $(S \operatorname{pin}(3) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2} \cong(\operatorname{Spin}(11))^{\sigma^{\prime}}$.

Proposition 3.11. $\left(E_{7}\right)^{\kappa, \mu} \cong \operatorname{Spin}(12)$.
Proof. We define a 12 dimensional $\boldsymbol{R}$-vector space $V^{12}$ by

$$
\begin{aligned}
V^{12} & =\left\{P \in \mathfrak{P}^{C} \mid \kappa P=P, \mu \tau \lambda P=P\right\} \\
& =\left\{\left.\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & x \\
0 & \bar{x} & -\tau \xi
\end{array}\right),\left(\begin{array}{ccc}
\eta & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \eta\right) \right\rvert\, x \in \mathfrak{C}, \xi, \eta \in C\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=\frac{1}{2}(\mu P, \lambda P)=(\tau \eta) \eta+\bar{x} x+(\tau \xi) \xi
$$

Let $S O(12)=S O\left(V^{12}\right)$. Then, we have $\left(E_{7}\right)^{\kappa, \mu} / \boldsymbol{Z}_{2} \cong S O(12), \boldsymbol{Z}_{2}=\{1, \sigma\}$. Therefore, $\left(E_{7}\right)^{\kappa, \mu}$ is isomorphic to $\operatorname{Spin}(12)$ as a double covering group of $S O$ (12). (In details, see [6],[8].)

Now, we shall consider the following group

$$
\begin{aligned}
& \left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} \\
& \quad=\left\{\alpha \in(\operatorname{Spin}(12))^{\sigma^{\prime}} \left\lvert\, \begin{array}{l}
\alpha\left(0, F_{1}(y), 0,0\right) \\
=\left(0, F_{1}(y), 0,0\right)
\end{array}\right. \text { for all } y \in \mathfrak{C}\right\} .
\end{aligned}
$$

Lemma 3.12. The Lie algebra $\left((\mathfrak{s p i n}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ of the group $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ is given by

$$
\begin{aligned}
& \left((\mathfrak{s p i n}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} \\
& \quad=\left\{\Phi\left(i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right),-\frac{3}{2} i \epsilon_{1}\right)\right. \\
& \left.\quad \mid \epsilon_{i} \in \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0, \rho_{i} \in C\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left(\left((\mathfrak{s p i n}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}\right)=6 .
$$

Lemma 3.13. For $t \in \boldsymbol{R}$, the map $\alpha(t): \mathfrak{P}^{C} \rightarrow \mathfrak{P}^{C}$ defined by

$$
\begin{aligned}
& \alpha(t)(X, Y, \xi, \eta) \\
& \quad=\left(\left(\begin{array}{ccc}
e^{2 i t} \xi_{1} & e^{i t} x_{3} & e^{i t} \bar{x}_{2} \\
e^{i t} \bar{x}_{3} & \xi_{2} & x_{1} \\
e^{i t} x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
e^{-2 i t} \eta_{1} & e^{-i t} y_{3} & e^{-i t} \bar{y}_{2} \\
e^{-i t} \bar{y}_{3} & \eta_{2} & y_{1} \\
e^{-i t} y_{2} & \bar{y}_{1} & \eta_{3}
\end{array}\right), e^{-2 i t} \xi, e^{2 i t} \eta\right)
\end{aligned}
$$

belongs to the group $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$.
Proof. For $\Phi=\Phi\left(2 i t E_{1} \vee E_{1}, 0,0,-2 i t\right) \in\left((\mathfrak{s p i n}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ (Lemma 3.12), we have $\alpha(t)=\exp \Phi \in\left(\left(\operatorname{Spin}(12)^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}\right.$.

Lemma 3.14. $\quad\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} / \operatorname{Spin}(3) \simeq S^{3}$.
In particular, $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ is connected.
Proof. We define a 4 dimensional $\boldsymbol{R}$-vector space $W^{4}$ by

$$
\begin{aligned}
W^{4} & =\left\{P \in \mathfrak{P}^{C} \mid \kappa P=-P, \mu \tau \lambda P=-P, \sigma^{\prime} P=P\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{lll}
\xi & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \eta & 0 \\
0 & 0 & -\tau \eta
\end{array}\right), \tau \xi, 0\right) \right\rvert\, \xi, \eta \in C\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=-\frac{1}{2}(\mu P, \lambda P)=(\tau \xi) \xi+(\tau \eta) \eta
$$

Then, $S^{3}=\left\{P \in W^{4} \mid(P, P)_{\mu}=1\right\}$ is a 3 dimensional sphere. The group $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ acts on $S^{3}$. We shall show that this action is transitive. To
show this, it is sufficient to show that any element $P \in S^{3}$ can be transformed to $\left(E_{1}, 0,1,0\right) \in S^{3}$ under the action of $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$. Now, for a given

$$
P=\left(\left(\begin{array}{ccc}
\xi & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \eta & 0 \\
0 & 0 & -\tau \eta
\end{array}\right), \tau \xi, 0\right) \in S^{3},
$$

choose $t \in \boldsymbol{R}$ such that $e^{2 i t} \xi \in i \boldsymbol{R}$. Operate $\alpha(t)$ (Lemma 3.13) on $P$. Then, we have

$$
\alpha(t) P=P_{1} \in S^{2} \subset S^{3}
$$

Now, since $\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}\left(\subset\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}\right)$ acts transitively on $S^{2}$ (Lemma 3.7), there exists $\beta \in\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ such that

$$
\beta P_{1}=\left(-i E_{1}, 0, i, 0\right)=P_{2} .
$$

Operate again $\alpha(\pi / 4)$ on $P_{2}$. Then, we have

$$
\alpha(\pi / 4) P_{2}=\left(E_{1}, 0,1,0\right) .
$$

This shows the transitivity. The isotropy subgroup of $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ at $\left(E_{1}, 0,1,0\right)$ is $\left((\operatorname{Spin}(11))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ (Propositions 3.2(1), 3.4, 3.11) $=\operatorname{Spin}(3)$. Thus, we have the homeomorphism $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} / \operatorname{Spin}(3) \simeq S^{3}$.

Proposition 3.15. $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} \cong \operatorname{Spin}(4)$.
Proof. Since $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ is connected (Lemma 3.14), we can define a homomorphism $\pi:\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} \rightarrow S O(4)=S O\left(W^{4}\right)$ by

$$
\pi(\alpha)=\alpha \mid W^{4}
$$

$\operatorname{Ker} \pi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since $\left.\operatorname{dim}\left((\mathfrak{s p i n}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}\right)=6($ Lemma 3.12 $)=$ $\operatorname{dim}(\mathfrak{s o}(4)), \pi$ is onto. Hence, $\left((S \operatorname{Sin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)} / \boldsymbol{Z}_{2} \cong S O(4)$. Therefore, $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ is isomorphic to $\operatorname{Spin}(4)$ as a double covering group of $S O(4)$.

Lemma 3.16. The Lie algebra $(\mathfrak{s p i n}(12))^{\sigma^{\prime}}$ of the group $(\operatorname{Spin}(12))^{\sigma^{\prime}}$ is given by

$$
\begin{aligned}
& (\mathfrak{s p i n}(12))^{\sigma^{\prime}} \\
& \quad=\left\{\Phi\left(D+i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right),-i \frac{3}{2} \epsilon_{1}\right)\right. \\
& \left.\quad \mid D \in \mathfrak{s o}(8), \epsilon_{i} \in \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0, \rho_{i} \in C\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left((\mathfrak{s p i n}(12))^{\sigma^{\prime}}\right)=28+6=34
$$

Now, we shall determine the group structure of $(\operatorname{Spin}(12))^{\sigma^{\prime}}$.
Theorem 3.17. $(\operatorname{Spin}(12))^{\sigma^{\prime}} \cong(\operatorname{Spin}(4) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1,1),(-1, \sigma)\}$.
Proof. Let $\operatorname{Spin}(12)=\left(E_{7}\right)^{\kappa, \mu}, \operatorname{Spin}(4)=\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ and $\operatorname{Spin}(8)$ $=\left(\left(F_{4}\right)_{E_{1}}\right)^{\sigma^{\prime}} \subset\left(\left(E_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}}=\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)_{\left(E_{1}, 0,1,0\right),\left(E_{1}, 0,-1,0\right)}\right)^{\sigma^{\prime}} \subset\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\sigma^{\prime}}$ (Theorem 1.2, Propositions 3.2, 3.3, 3.11, 3.15). Now, we define a map $\varphi: \operatorname{Spin}(4) \times \operatorname{Spin}(8) \rightarrow$ $(\operatorname{Spin}(12))^{\sigma^{\prime}}$ by

$$
\varphi(\alpha, \beta)=\alpha \beta
$$

Then, $\varphi$ is well-defined : $\varphi(\alpha, \beta) \in(\operatorname{Spin}(12))^{\sigma^{\prime}}$. Since $\left[\Phi_{D}, \Phi_{4}\right]=0$ for $\Phi_{D}=$ $\Phi(D, 0,0,0) \in \mathfrak{s p i n}(8), \Phi_{4} \in \mathfrak{s p i n}(4)=\left((\mathfrak{s p i n}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ (Proposition 3.15), we have $\alpha \beta=\beta \alpha$. Hence, $\varphi$ is a homomorphism. $\operatorname{Ker} \varphi=\{(1,1),(-1, \sigma)\}=\boldsymbol{Z}_{2}$. Since $(\operatorname{Spin}(12))^{\sigma^{\prime}}$ is connected and $\operatorname{dim}(\mathfrak{s p i n}(4) \oplus \mathfrak{s p i n}(8))=6($ Lemma 3.12 $)+28=$ $34=\operatorname{dim}\left((\mathfrak{s p i n}(12))^{\sigma^{\prime}}\right)$ (Lemma 3.16), $\varphi$ is onto. Thus, we have the isomorphism $(S \operatorname{Spin}(4) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2} \cong(\operatorname{Spin}(12))^{\sigma^{\prime}}$.

## 4. Group $E_{8}$

We use the same notation as in [2],[4](however, some will rewritten). For example,
$C$-Lie algebra $\mathfrak{e}_{8}{ }^{C}=\mathfrak{e}_{7}{ }^{C} \oplus \mathfrak{P}^{C} \oplus \mathfrak{P}^{C} \oplus C \oplus C \oplus C$ and $C$-linear transformations $\lambda, \widetilde{\lambda}$ of $\mathfrak{e}_{8}{ }^{C}$,
the groups $E_{8}^{C}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{e}_{8}{ }^{C}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[\alpha R_{1}, \alpha R_{2}\right]\right\}$ and $E_{8}=\left(E_{8}^{C}\right)^{\tau \widetilde{\lambda}}=$ $\left\{\alpha \in E_{8}{ }^{C} \mid \tau \widetilde{\lambda} \alpha=\alpha \tau \widetilde{\lambda}\right\}$.

For $\alpha \in E_{7}$, the map $\widetilde{\alpha}: \mathfrak{e}_{8}{ }^{C} \rightarrow \mathfrak{e}_{8}{ }^{C}$ is defined by

$$
\widetilde{\alpha}(\Phi, P, Q, r, u, v)=\left(\alpha \Phi \alpha^{-1}, \alpha P, \alpha Q, r, u, v\right)
$$

Then, $\widetilde{\alpha} \in E_{8}$ and we identify $\alpha$ with $\widetilde{\alpha}$. The group $E_{8}$ contains $E_{7}$ as a subgroup by

$$
E_{7}=\left\{\widetilde{\alpha} \in E_{8} \mid \alpha \in E_{7}\right\}=\left(E_{8}\right)_{(0,0,0,0,1,0)}
$$

We define a $C$-linear map $\widetilde{\kappa}: \mathfrak{e}_{8}{ }^{C} \rightarrow \mathfrak{e}_{8}{ }^{C}$ by

$$
\widetilde{\kappa}=\operatorname{ad}(\kappa, 0,0,-1,0,0)=\operatorname{ad}\left(\Phi\left(-2 E_{1} \vee E_{1}, 0,0,-1\right), 0,0,-1,0,0\right)
$$

and 14 dimensional $C$-vector spaces $\mathfrak{g}_{-2}$ and $\mathfrak{g}_{2}$ by

$$
\begin{aligned}
\mathfrak{g}_{-2}= & \left\{R \in \mathfrak{e}_{8}{ }^{C} \mid \widetilde{\kappa} R=-2 R\right\}, \\
= & \left\{\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi_{1} E_{1}, \eta_{2} E_{2}+\eta_{3} E_{3}+F_{1}(y), \xi, 0\right), 0,0, u, 0\right)\right. \\
& \left.\mid \zeta, \xi_{1}, \eta_{i}, \xi, u \in C, y \in \mathfrak{C}^{C}\right\}, \\
\mathfrak{g}_{2}= & \left\{R \in \mathfrak{e}_{8}{ }^{C} \mid \widetilde{\kappa} R=2 R\right\} \\
= & \left\{\left(\Phi\left(0,0, \zeta E_{1}, 0\right), 0,\left(\xi_{2} E_{1}+\xi_{3} E_{3}+F_{1}(x), \eta_{1} E_{1}, 0, \eta\right), 0,0, v\right)\right. \\
& \left.\mid \zeta, \xi_{i}, \eta_{1}, \eta, v \in C, x \in \mathfrak{C}^{C}\right\} .
\end{aligned}
$$

Further, we define two $C$-linear maps $\widetilde{\mu}_{1}: \mathfrak{e}_{8}{ }^{C} \rightarrow \mathfrak{e}_{8}{ }^{C}$ and $\delta: \mathfrak{g}_{2} \rightarrow \mathfrak{g}_{2}$ by

$$
\widetilde{\mu}_{1}(\Phi, P, Q, r, u, v)=\left(\mu_{1} \Phi \mu_{1}^{-1}, i \mu_{1} Q, i \mu_{1} P,-r, v, u\right),
$$

where

$$
\mu_{1}(X, Y, \xi, \eta)=\left(\left(\begin{array}{ccc}
i \eta & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & i \eta_{3} & -i y_{1} \\
x_{2} & -i \bar{y}_{1} & i \eta_{2}
\end{array}\right),\left(\begin{array}{ccc}
i \xi & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & i \xi_{3} & -i x_{1} \\
y_{2} & -i \bar{x}_{1} & i \xi_{2}
\end{array}\right), i \eta_{1}, i \xi_{1}\right)
$$

and

$$
\begin{aligned}
& \delta\left(\Phi\left(0,0, \zeta E_{1}, 0\right), 0,\left(\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}(x), \eta_{1} E_{1}, 0, \eta\right), 0,0, v\right) \\
& \quad=\left(\Phi\left(0,0,-v E_{1}, 0\right), 0,\left(\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}(x), \eta_{1} E_{1}, 0, \eta\right), 0,0,-\zeta\right)
\end{aligned}
$$

In particular, the explicit form of the map $\widetilde{\mu}_{1}: \mathfrak{g}_{-2} \rightarrow \mathfrak{g}_{2}$ is given by

$$
\begin{aligned}
& \widetilde{\mu}_{1}\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi_{1} E_{1}, \eta_{2} E_{2}+\eta_{3} E_{3}+F_{1}(y), \xi, 0\right), 0,0, u, 0\right) \\
& \quad=\left(\Phi\left(0,0, \zeta E_{1}, 0\right), 0,\left(-\eta_{3} E_{2}-\eta_{2} E_{3}+F_{1}(y),-\xi E_{1}, 0,-\xi_{1}\right), 0,0, u\right)
\end{aligned}
$$

The composition map $\delta \widetilde{\mu}_{1}: \mathfrak{g}_{-2} \rightarrow \mathfrak{g}_{2}$ of $\widetilde{\mu}_{1}$ and $\delta \widetilde{\mu}_{1}$ is denoted by $\widetilde{\mu}_{\delta}$ :

$$
\begin{aligned}
& \widetilde{\mu}_{\delta}\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi_{1} E_{1}, \eta_{2} E_{2}+\eta_{3} E_{3}+F_{1}(y), \xi, 0\right), 0,0, u, 0\right) \\
& \quad=\left(\Phi\left(0,0,-u E_{1}, 0\right), 0,\left(-\eta_{3} E_{2}-\eta_{2} E_{3}+F_{1}(y),-\xi E_{1}, 0,-\xi_{1}\right), 0,0,-\zeta\right)
\end{aligned}
$$

Now, we define the inner product $\left(R_{1}, R_{2}\right)_{\mu}$ in $\mathfrak{g}_{-2}$ by

$$
\left(R_{1}, R_{2}\right)_{\mu}=\frac{1}{30} B_{8}\left(\widetilde{\mu}_{\delta} R_{1}, R_{2}\right)
$$

where $B_{8}$ is the Killing form of $\mathfrak{e}_{8}{ }^{C}$. The explicit form of $(R, R)_{\mu}$ is given by

$$
(R, R)_{\mu}=-4 \zeta u-\eta_{2} \eta_{3}+\bar{y} y+\xi_{1} \xi
$$

for $R=\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi_{1} E_{1}, \eta_{2} E_{2}+\eta_{3} E_{3}+F_{1}(y), \xi, 0\right), 0,0, u, 0\right) \in \mathfrak{g}_{-2}$. Hereafter, we use the notation $\left(V^{C}\right)^{14}$ instead of $\mathfrak{g}_{-2}$.

We define $\boldsymbol{R}$-vector spaces $V^{14}, V^{13}$ and $\left(V^{\prime}\right)^{12}$ respectively by

$$
\begin{aligned}
V^{14}= & \left\{R \in\left(V^{C}\right)^{14} \mid \widetilde{\mu}_{\delta} \tau \widetilde{\lambda} R=-R\right\} \\
= & \left\{R=\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right), 0,0,-\tau \zeta, 0\right)\right. \\
& \mid \zeta, \xi, \eta \in C, y \in \mathfrak{C}\}
\end{aligned}
$$

with the norm

$$
(R, R)_{\mu}=\frac{1}{30} B_{8}\left(\widetilde{\mu}_{\delta} R, R\right)=4(\tau \zeta) \zeta+(\tau \eta) \eta+\bar{y} y+(\tau \xi) \xi
$$

$$
\begin{aligned}
V^{13}= & \left\{R \in V^{14} \mid\left(R,\left(\Phi_{1}, 0,0,0,1,0\right)\right)_{\mu}=0\right\} \\
= & \left\{R=\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right), 0,0,-\zeta, 0\right)\right. \\
& \mid \zeta \in \boldsymbol{R}, \xi, \eta \in C, y \in \mathfrak{C}\}
\end{aligned}
$$

with the norm

$$
\begin{gathered}
(R, R)_{\mu}=\frac{1}{30} B_{8}\left(\widetilde{\mu}_{\delta} R, R\right)=4 \zeta^{2}+(\tau \eta) \eta+\bar{y} y+(\tau \xi) \xi, \\
\left(V^{\prime}\right)^{12}=\left\{R \in V^{13} \mid\left(R,\left(\Phi_{1}, 0,0,0,-1,0\right)\right)_{\mu}=0\right\} \\
=\left\{R=\left(0,\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right), 0,0,0,0\right)\right. \\
\mid \xi, \eta \in C, y \in \mathfrak{C}\}
\end{gathered}
$$

with the norm

$$
(R, R)_{\mu}=\frac{1}{30} B_{8}\left(\widetilde{\mu}_{\delta} R, R\right)=(\tau \eta) \eta+\bar{y} y+(\tau \xi) \xi,
$$

where $\Phi_{1}=\Phi\left(0, E_{1}, 0,0\right)$. We use the notation $\left(V^{\prime}\right)^{12}$ to distinguish from the $\boldsymbol{R}$ vector space $V^{12}$ defined in Section 3. The space $\left(V^{\prime}\right)^{12}$ above can be identified with the $\boldsymbol{R}$-vector space

$$
\begin{aligned}
& \left\{P \in \mathfrak{P}^{C} \mid \kappa P=-P, \mu \tau \lambda P=-P\right\} \\
= & \left\{P=\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right) \in \mathfrak{P}^{C} \mid \xi, \eta \in C, y \in \mathfrak{C}\right\}
\end{aligned}
$$

with the norm $(P, P)_{\mu}=-\frac{1}{2}(\mu P, \lambda P)=(\tau \eta) \eta+\bar{y} y+(\tau \xi) \xi$.
Now, we define a subgroup $G_{14}$ of $E_{8}{ }^{C}$ by

$$
G_{14}=\left\{\alpha \in E_{8}^{C} \mid \widetilde{\kappa} \alpha=\alpha \widetilde{\kappa}, \widetilde{\mu}_{\delta} \alpha R=\alpha \widetilde{\mu}_{\delta} R, R \in\left(V^{C}\right)^{14}\right\} .
$$

Lemma 4.1. The Lie algebra $\mathfrak{g}_{14}$ of the group $G_{14}$ is given by

$$
\begin{aligned}
\mathfrak{g}_{14}= & \left\{R \in \mathfrak{e}_{8}{ }^{C} \mid \widetilde{\kappa}(\operatorname{ad} R)=(\operatorname{ad} R) \widetilde{\kappa},\left(\widetilde{\mu}_{\delta}(\operatorname{ad} R)\right) R^{\prime}=\left((\operatorname{ad} R) \widetilde{\mu}_{\delta}\right) R^{\prime}, R^{\prime} \in\left(V^{C}\right)^{14}\right\} \\
& =\left\{\left(\Phi \left(D+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & d_{1} \\
0 & -\bar{d}_{1} & 0
\end{array}\right)+\left(\begin{array}{ccc}
\tau_{1} & 0 & 0 \\
0 & \tau_{2} & t_{1} \\
0 & \bar{t}_{1} & \tau_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \alpha_{2} & a_{1} \\
0 & \bar{a}_{1} & \alpha_{3}
\end{array}\right),\right.\right.\right. \\
& \left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \beta_{2} & b_{1} \\
0 & \bar{b}_{1} & \beta_{3}
\end{array}\right), \nu\right),\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & p_{1} \\
0 & \bar{p}_{1} & \rho_{3}
\end{array}\right),\left(\begin{array}{ccc}
\rho_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \rho\right),\left(\left(\begin{array}{ccc}
\zeta_{1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\right. \\
& \left.\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & z_{1} \\
0 & \bar{z}_{1} & \zeta_{3}
\end{array}\right), \zeta, 0\right), r, 0,0\right) \mid D \in \mathfrak{s o ( 8 ) ^ { C } , \tau _ { i } , \alpha _ { i } , \beta _ { i } , \nu , \rho _ { i } , \rho , \zeta _ { i } , \zeta , r \in C ,} \\
& \left.\tau_{1}+\tau_{2}+\tau_{3}=0, d_{1}, t_{1}, a_{1}, b_{1}, p_{1}, z_{1} \in \mathfrak{C}^{C}, \tau_{1}+\frac{2}{3} \nu+2 r=0\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}_{C}\left(\mathfrak{g}_{14}\right)=28+63=91
$$

Proposition 4.2. $\quad G_{14} \cong \operatorname{Spin}(14, C)$.
Proof. Let $S O(14, C)=S O\left(\left(V^{14}\right)^{C}\right)$. Then, we have $G_{14} / \boldsymbol{Z}_{2} \cong S O(14, C), \boldsymbol{Z}_{2}=$ $\{1, \sigma\}$. Therefore, $G_{14}$ is isomorphic to $\operatorname{Spin}(14, C)$ as a double covering group of $S O(14, C)$. (In details, see [2].)

We define subgroups $G_{14}{ }^{c o m}, G_{13}{ }^{c o m}$ and $G_{12}{ }^{c o m}$ of the group $E_{8}$ by

$$
\begin{aligned}
& G_{14}{ }^{\mathrm{com}}=\left\{\alpha \in G_{14} \mid \tau \widetilde{\lambda} \alpha=\alpha \tau \widetilde{\lambda}\right\} \\
& G_{13}{ }^{\mathrm{com}}=\left\{\alpha \in G_{14}{ }^{\mathrm{com}} \mid \alpha\left(\Phi_{1}, 0,0,0,1,0\right)=\left(\Phi_{1}, 0,0,0,1,0\right)\right\} \\
& G_{12}{ }^{\mathrm{com}}=\left\{\alpha \in G_{13}{ }^{\mathrm{com}} \mid \alpha\left(\Phi_{1}, 0,0,0,-1,0\right)=\left(\Phi_{1}, 0,0,0,-1,0\right)\right\}
\end{aligned}
$$

respectively.
Lemma 4.3. $\alpha \in\left(E_{7}\right)^{\kappa, \mu}=\operatorname{Spin}(12)$ satisfies

$$
\alpha \Phi\left(0, E_{1}, 0,0\right) \alpha^{-1}=\Phi\left(0, E_{1}, 0,0\right), \quad \text { and } \quad \alpha \Phi\left(0,0, E_{1}, 0\right) \alpha^{-1}=\Phi\left(0,0, E_{1}, 0\right)
$$

Proof. We consider an 11 dimensional sphere $\left(S^{\prime}\right)^{11}$ by

$$
\begin{aligned}
\left(S^{\prime}\right)^{11}= & \left\{P^{\prime} \in\left(V^{\prime}\right)^{12} \mid(P, P)_{\mu}=1\right\} \\
= & \left\{P^{\prime}=\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right)\right. \\
& \mid \xi, \eta \in C, y \in \mathfrak{C},(\tau \eta) \eta+\bar{y} y+(\tau \xi) \xi=1\}
\end{aligned}
$$

Since the group $\operatorname{Spin}(12)$ acts on $\left(S^{\prime}\right)^{11}$, we can put

$$
\alpha\left(E_{1}, 0,1,0\right)=\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right) \in\left(S^{\prime}\right)^{11}
$$

Now, since $1 / 2 \Phi\left(0, E_{1}, 0,0\right)=\left(E_{1}, 0,1,0\right) \times\left(E_{1}, 0,1,0\right)$, we have

$$
\begin{aligned}
1 / 2 \alpha & \alpha\left(0, E_{1}, 0,0\right) \alpha^{-1}=\alpha\left(\left(E_{1}, 0,1,0\right) \times\left(E_{1}, 0,1,0\right)\right) \alpha^{-1} \\
& =\alpha\left(E_{1}, 0,1,0\right) \times \alpha\left(E_{1}, 0,1,0\right) \\
& =\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right) \times\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right) \\
& =1 / 2 \Phi\left(0,((\tau \eta) \eta+\bar{y} y+(\tau \xi) \xi) E_{1}, 0,0\right)
\end{aligned}
$$

Since $\alpha\left(E_{1}, 0,1,0\right) \in\left(S^{\prime}\right)^{11}$, we have $(\tau \eta) \eta+\bar{y} y+(\tau \xi) \xi=1$. Thus, we obtain $\alpha\left(E_{1}, 0\right.$, $1,0) \times \alpha\left(E_{1}, 0,1,0\right)=1 / 2 \Phi\left(0, E_{1}, 0,0\right)$, that is, $\alpha \Phi\left(0, E_{1}, 0,0\right) \alpha^{-1}=\Phi\left(0, E_{1}, 0,0\right)$. Since $\alpha \in \operatorname{Spin}(12) \subset E_{7}$ satisfies $\alpha \tau \lambda=\tau \lambda \alpha$, we have also $\alpha \Phi\left(0,0, E_{1}, 0\right) \alpha^{-1}=$ $\Phi\left(0,0, E_{1}, 0\right)$.

## Proposition 4.4. $\quad G_{12}{ }^{c o m}=\operatorname{Spin}(12)$.

Proof. Now, let $\alpha \in G_{12}{ }^{\text {com }}$. From $\alpha\left(\Phi_{1}, 0,0,0,1,0\right)=\left(\Phi_{1}, 0,0,0,1,0\right)$ and $\alpha\left(\Phi_{1}, 0,0,0,-1,0\right)=\left(\Phi_{1}, 0,0,0,-1,0\right)$, we have $\alpha(0,0,0,0,1,0)=(0,0,0,0,1,0)$.

Hence, since $\alpha \in G_{12}{ }^{\text {com }} \subset E_{8}$, we see that $\alpha \in E_{7}$. We first show that $\kappa \alpha=\alpha \kappa$. Since $G_{12}{ }^{\text {com }} \subset E_{7}$, it suffices to consider the actions on $\mathfrak{P}^{C}$. Since $\alpha \in G_{12}{ }^{\text {com }}$ satisfies $\widetilde{\kappa} \alpha=\alpha \widetilde{\kappa}$, from

$$
\widetilde{\kappa} \alpha P=\kappa \alpha P-\alpha P \quad \text { and } \quad \alpha \widetilde{\kappa} P=\alpha \kappa P-\alpha P, \quad P \in \mathfrak{P}^{C}
$$

we have $\kappa \alpha=\alpha \kappa$. Next, we show that $\mu \alpha=\alpha \mu$. Again, from $\alpha\left(\Phi_{1}, 0,0,0,1,0\right)=$ $\left(\Phi_{1}, 0,0,0,1,0\right)$ and $\alpha\left(\Phi_{1}, 0,0,0,-1,0\right)=\left(\Phi_{1}, 0,0,0,-1,0\right)$, we have $\alpha\left(\Phi_{1}, 0,0,0,0,0\right)$ $=\left(\Phi_{1}, 0,0,0,0,0\right)$. Hence, since $\alpha \in E_{7}$, we have $\alpha \Phi_{1} \alpha^{-1}=\Phi_{1}$, that is, $\alpha \Phi\left(0, E_{1}, 0,0\right) \alpha^{-1}$ $=\Phi\left(0, E_{1}, 0,0\right)$. Consequently

$$
\begin{aligned}
& \alpha\left(\Phi\left(0,0, E_{1}, 0\right), 0,0,0,0,1\right)=\alpha\left(-\widetilde{\mu}_{\delta}\left(\Phi\left(0, E_{1}, 0,0\right), 0,0,0,1,0\right)\right) \\
& \quad=-\widetilde{\mu}_{\delta} \alpha\left(\Phi\left(0, E_{1}, 0,0\right), 0,0,0,1,0\right)=-\widetilde{\mu}_{\delta}\left(\Phi\left(0, E_{1}, 0,0\right), 0,0,0,1,0\right) \\
& \quad=\left(\Phi\left(0,0, E_{1}, 0\right), 0,0,0,0,1\right)
\end{aligned}
$$

Similarly, we have $\alpha\left(\Phi\left(0,0, E_{1}, 0\right), 0,0,0,0,-1\right)=\left(\Phi\left(0,0, E_{1}, 0\right), 0,0,0,0,-1\right)$.
Hence we have $\alpha\left(\Phi\left(0,0, E_{1}, 0\right), 0,0,0,0,0\right)=\left(\Phi\left(0,0, E_{1}, 0\right), 0,0,0,0,0\right)$. Moreover, from $\alpha \in E_{7}$, we have $\alpha \Phi\left(0,0, E_{1}, 0\right) \alpha^{-1}=\Phi\left(0,0, E_{1}, 0\right)$. Hence put together with $\alpha \Phi\left(0, E_{1}, 0,0\right) \alpha^{-1}=\Phi\left(0, E_{1}, 0,0\right)$, we have $\alpha \Phi\left(0, E_{1}, E_{1}, 0\right) \alpha^{-1}=\Phi\left(0, E_{1}, E_{1}, 0\right)$, that is, $\alpha \mu \alpha^{-1}=\mu$. Thus, we have $\mu \alpha=\alpha \mu$. Therefore, $\alpha \in\left(E_{7}\right)^{\kappa, \mu}=\operatorname{Spin}(12)$.
Conversely, let $\alpha \in \operatorname{Spin}(12)$. For $R \in \mathfrak{e}_{8}{ }^{C}$,

$$
\begin{aligned}
\widetilde{\kappa} \alpha R & =\left[(\kappa, 0,0,-1,0,0),\left(\alpha \Phi \alpha^{-1}, \alpha P, \alpha Q, r, u, v\right)\right] \\
& =\left(\left[\kappa, \alpha \Phi \alpha^{-1}\right], \kappa \alpha P-\alpha P, \kappa \alpha Q+\alpha Q, 0,-2 u, 2 v\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha \widetilde{\kappa} R & =\alpha[((\kappa, 0,0,-1,0,0),(\Phi, P, Q, r, u, v)] \\
& =[\alpha(\kappa, 0,0,-1,0,0), \alpha(\Phi, P, Q, r, u, v)] \\
& =\left(\left[\alpha \kappa \alpha^{-1}, \alpha \Phi \alpha^{-1}\right], \alpha \kappa \alpha^{-1}(\alpha P)-\alpha P, \alpha \kappa \alpha^{-1}(\alpha Q)+\alpha Q, 0,-2 u, 2 v\right)
\end{aligned}
$$

From $\kappa \alpha=\alpha \kappa$, we have $\left[\alpha \kappa \alpha^{-1}, \alpha \Phi \alpha^{-1}\right]=\left[\kappa, \alpha \Phi \alpha^{-1}\right]$. Thus, we have $\widetilde{\kappa} \alpha R=\alpha \widetilde{\kappa} R$, that is, $\widetilde{\kappa} \alpha=\alpha \widetilde{\kappa}$. Next, from $\mu \alpha=\alpha \mu$ and Lemma 4.3, we have $\mu_{1}\left(\alpha \Phi_{1} \alpha^{-1}\right) \mu_{1}{ }^{-1}$ $=\alpha\left(\mu_{1} \Phi_{1} \mu_{1}^{-1}\right) \alpha^{-1}=\alpha \Phi\left(0,0, E_{1}, 0\right) \alpha^{-1}=\Phi\left(0,0, E_{1}, 0\right)$. Hence, for $R=\left(\zeta \Phi_{1}, P, 0\right.$, $0, u, 0) \in\left(V^{C}\right)^{14}$,

$$
\begin{aligned}
\tilde{\mu}_{\delta} \alpha R & =\widetilde{\mu}_{\delta}\left(\zeta \alpha \Phi_{1} \alpha^{-1}, \alpha P, 0,0, u, 0\right) \\
& =\left(\Phi\left(0,0,-u E_{1}, 0\right), 0, i \mu_{1} \alpha P, 0,0,-\zeta\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha \widetilde{\mu}_{\delta} R & =\alpha\left(\Phi\left(0,0,-u E_{1}, 0\right), 0, i \mu_{1} P, 0,0,-\zeta\right) \\
& =\left(\alpha \Phi\left(0,0,-u E_{1}, 0\right) \alpha^{-1}, 0, i \alpha \mu_{1} P, 0,0,-\zeta\right) \\
& =\left(\Phi\left(0,0,-u E_{1}, 0\right), 0, i \alpha \mu_{1} P, 0,0,-\zeta\right)
\end{aligned}
$$

Hence, from $\mu \alpha=\alpha \mu$, we have $\widetilde{\mu}_{\delta} \alpha R=\alpha \widetilde{\mu}_{\delta} R, R \in\left(V^{C}\right)^{14}$. From Lemma 4.3, we have $\alpha\left(\Phi_{1}, 0,0,0,0,0\right)=\left(\Phi_{1}, 0,0,0,0,0\right)$. Moreover, since $\alpha \in E_{7}$, we have $\alpha(0,0,0,0,1,0)=(0,0,0,0,1,0)$ and $\alpha(0,0,0,0,-1,0)=(0,0,0,0,-1,0)$. Hence, we have $\alpha\left(\Phi_{1}, 0,0,0,1,0\right)=\left(\Phi_{1}, 0,0,0,1,0\right)$ and $\alpha\left(\Phi_{1}, 0,0,0,-1,0\right)=\left(\Phi_{1}, 0,0,0,-1,0\right)$.

Therefore, $\alpha \in G_{12}{ }^{\text {com }}$. Thus, the proof of the proposition is completed.
Lemma 4.5. The Lie algebras $\mathfrak{g}_{14}{ }^{\text {com }}$ and $\mathfrak{g}_{13}{ }^{\text {com }}$ of the groups $G_{14}{ }^{\text {com }}$ and $G_{13}{ }^{\text {com }}$ are given respectively by

$$
\begin{aligned}
& \mathfrak{g}_{14}{ }^{c o m}=\left\{R \in \mathfrak{g}_{14} \mid \tau \widetilde{\lambda}(\operatorname{ad} R)=(\operatorname{ad} R) \tau \widetilde{\lambda}\right\} \\
& =\left\{\left(\Phi \left(D+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & d_{1} \\
0 & -\bar{d}_{1} & 0
\end{array}\right)^{\sim}+i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & t_{1} \\
0 & \bar{t}_{1} & \epsilon_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & a_{1} \\
0 & \bar{a}_{1} & \rho_{3}
\end{array}\right),\right.\right.\right. \\
& \left.-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & a_{1} \\
0 & \bar{a}_{1} & \rho_{3}
\end{array}\right), \nu\right),\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & z_{1} \\
0 & \bar{z}_{1} & \zeta_{3}
\end{array}\right),\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \zeta\right), \\
& \left.-\tau \lambda\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & z_{1} \\
0 & \bar{z}_{1} & \zeta_{3}
\end{array}\right),\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \zeta\right), r, 0,0\right) \\
& \mid D \in \mathfrak{s o}(8), \epsilon_{i} \in \boldsymbol{R}, \rho_{i}, \zeta_{i}, \zeta \in C, \nu, r \in i \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0, \\
& \left.i \epsilon_{1}+\frac{2}{3} \nu+2 r=0, d_{1}, t_{1} \in \mathfrak{C}, a_{1}, z_{1} \in \mathfrak{C}^{C}\right\} . \\
& \mathfrak{g}_{13}{ }^{c o m}=\left\{R \in \mathfrak{g}_{14}{ }^{c o m} \mid(\operatorname{ad} R)\left(\Phi_{1}, 0,0,0,1,0\right)=0\right\} \\
& =\left\{\left(\Phi \left(D+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & d_{1} \\
0 & -\bar{d}_{1} & 0
\end{array}\right)^{\sim}+i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & t_{1} \\
0 & \bar{t}_{1} & \epsilon_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & a_{1} \\
0 & \bar{a}_{1} & \rho_{3}
\end{array}\right),\right.\right.\right. \\
& \left.-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & a_{1} \\
0 & \bar{a}_{1} & \rho_{3}
\end{array}\right), \nu\right),\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & z_{1} \\
0 & \bar{z}_{1} & -\tau \zeta_{2}
\end{array}\right),\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \zeta_{1}\right), \\
& \left.-\tau \lambda\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & z_{1} \\
0 & \bar{z}_{1} & -\tau \zeta_{2}
\end{array}\right),\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \zeta_{1}\right), 0,0,0\right) \\
& \mid D \in \mathfrak{s o}(8), \epsilon_{i} \in \boldsymbol{R}, \rho_{i}, \zeta_{i} \in C, \nu \in i \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0, \\
& \left.i \epsilon_{1}+\frac{2}{3} \nu=0, d_{1}, t_{1}, z_{1} \in \mathfrak{C}, a_{1} \in \mathfrak{C}^{C}\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left(\mathfrak{g}_{14}{ }^{c o m}\right)=28+63=91, \quad \operatorname{dim}\left(\mathfrak{g}_{13}{ }^{c o m}\right)=28+50=78
$$

Lemma 4.6. (1) For $a \in \mathfrak{C}$, we define a $C$-linear transformation $\epsilon_{13}(a)$ of $\mathfrak{e}_{8}{ }^{C}$ by

$$
\epsilon_{13}(a)=\exp \left(\operatorname{ad}\left(0,\left(F_{1}(a), 0,0,0\right),\left(0, F_{1}(a), 0,0\right), 0,0,0\right)\right)
$$

Then, $\epsilon_{13}(a) \in G_{13}{ }^{\text {com }}\left(\right.$ Lemma 4.5). The action of $\epsilon_{13}(a)$ on $V^{13}$ is given by

$$
\begin{aligned}
& \epsilon_{13}(a)\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right), 0,0,-\zeta, 0\right) \\
& \quad=\left(\Phi\left(0, \zeta^{\prime} E_{1}, 0,0\right),\left(\xi^{\prime} E_{1}, \eta^{\prime} E_{2}-\tau \eta^{\prime} E_{3}+F_{1}\left(y^{\prime}\right), \tau \xi^{\prime}, 0\right), 0,0,-\zeta^{\prime}, 0\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\zeta^{\prime}=\zeta \cos |a|-\frac{(a, y)}{2|a|} \sin |a| \\
\xi^{\prime}=\xi \\
\eta^{\prime}=\eta \\
y^{\prime}=y+\frac{2 \zeta a}{|a|} \sin |a|-\frac{2(a, y) a}{|a|^{2}} \sin ^{2} \frac{|a|}{2}
\end{array}\right.
$$

(2) For $t \in \boldsymbol{R}$, we define a $C$-linear transformation $\theta_{13}(t)$ of $\mathfrak{e}_{8}{ }^{C}$ by

$$
\theta_{13}(t)=\exp \left(\operatorname{ad}\left(0,\left(0,-t E_{1}, 0,-t\right),\left(t E_{1}, 0, t, 0\right), 0,0,0\right)\right)
$$

Then, $\theta_{13}(t) \in G_{13}{ }^{\text {com }}\left(\right.$ Lemma 4.5). The action of $\theta_{13}(t)$ on $V^{13}$ is given by

$$
\begin{aligned}
& \theta_{13}(t)\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right), 0,0,-\zeta, 0\right) \\
& \quad=\left(\Phi\left(0, \zeta^{\prime} E_{1}, 0,0\right),\left(\xi^{\prime} E_{1}, \eta^{\prime} E_{2}-\tau \eta^{\prime} E_{3}+F_{1}\left(y^{\prime}\right), \tau \xi^{\prime}, 0\right), 0,0,-\zeta^{\prime}, 0\right) \\
& \qquad\left\{\begin{array}{l}
\zeta^{\prime}=\zeta \cos t-\frac{1}{4}(\tau \xi+\xi) \sin t \\
\xi^{\prime}=\frac{1}{2}(\xi-\tau \xi)+\frac{1}{2}(\xi+\tau \xi) \cos t+2 \zeta \sin t \\
\eta^{\prime}=\eta \\
y^{\prime}=y
\end{array}\right.
\end{aligned}
$$

## Lemma 4.7. $\quad G_{13}{ }^{c o m} / G_{12}{ }^{c o m} \simeq S^{12}$.

In partiular, $G_{13}{ }^{\text {com }}$ is connected.
Proof. Let $S^{12}=\left\{R \in V^{13} \mid(R, R)_{\mu}=1\right\}$. The group $G_{13}{ }^{\text {com }}$ acts on $\left(S^{C}\right)^{12}$. We shall show that this action is transitive. To prove this, it suffices to show that any $R \in S^{12}$ can be transformed to $1 / 2\left(\Phi_{1}, 0,0,0,-1,0\right) \in S^{12}$. Now for a given

$$
R=\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right), 0,0,-\zeta, 0\right) \in S^{12}
$$

choose $a \in \mathfrak{C}$ such that $|a|=\pi / 2,(a, y)=0$. Operate $\epsilon_{13}(a) \in G_{13}{ }^{\text {com }}$ (Lemma 4.6.(1)) on $R$. Then, we have

$$
\epsilon_{13}(a) R=\left(0,\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}\left(y^{\prime}\right), \tau \xi, 0\right), 0,0,0,0\right)=R_{1} \in\left(S^{\prime}\right)^{11} \subset S^{12}
$$

where $\left(S^{\prime}\right)^{11}=\left\{R \in\left(V^{\prime}\right)^{12} \mid(R, R)_{\mu}=1\right\}$. Here, since the group $\operatorname{Spin}(12)\left(\subset G_{13}{ }^{\text {com }}\right)$ acts transitively on $S^{11}=\left\{P \in V^{12} \mid(P, P)_{\mu}=1\right\}$, there exists $\beta \in \operatorname{Spin}(12)$ such that $\beta P=\left(0, E_{1}, 0,1\right)$ for any $P \in S^{11}$. Hence we have

$$
\begin{aligned}
\beta R_{1} & =\beta\left(0, P^{\prime}, 0,0,0,0\right)=\left(0, \beta P^{\prime}, 0,0,0,0\right) \\
& =(0, \beta \mu P, 0,0,0,0)=(0, \mu \beta P, 0,0,0,0) \\
& =\left(0, \mu\left(0, E_{1}, 0,1\right), 0,0,0,0\right)=\left(0,\left(E_{1}, 0,1,0\right), 0,0,0,0\right)=R_{2} \in\left(S^{\prime}\right)^{11}
\end{aligned}
$$

where $P \in S^{11}$.
Finally, operate $\theta_{13}(-\pi / 2) \in G_{13}{ }^{\text {com }}$ (Lemma 4.6.(2)) on $R_{2}$. Then, we have

$$
\theta_{13}(-\pi / 2) R_{2}=\frac{1}{2}\left(\Phi_{1}, 0,0,0,-1,0\right)
$$

This shows the transitivity. The isotropy subgroup at $1 / 2\left(\Phi_{1}, 0,0,0,-1,0\right)$ of $G_{13}{ }^{\text {com }}$ is obviously $G_{12}{ }^{c o m}$. Thus, we have the homeomorphism $G_{13}{ }^{c o m} / G_{12}{ }^{c o m} \simeq S^{12}$.

Proposition 4.8. $\quad G_{13}{ }^{c o m} \cong \operatorname{Spin}(13)$.
Proof. Since the group $G_{13}{ }^{c o m}$ is connected (Lemma 4.7), we can define a homomorphism $\pi: G_{13}{ }^{\text {com }} \rightarrow S O(13)=S O\left(V^{13}\right)$ by

$$
\pi(\alpha)=\alpha \mid V^{13}
$$

$\operatorname{Ker} \pi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since $\operatorname{dim}\left(\mathfrak{g}_{13}{ }^{\text {com }}\right)=78($ Lemma 4.5) $=\operatorname{dim}(\mathfrak{s o}(13)), \pi$ is onto. Hence, $G_{13}{ }^{c o m} / \boldsymbol{Z}_{2} \cong S O(13)$. Therefore, $G_{13}{ }^{c o m}$ is isomorphic to $\operatorname{Spin}(13)$ as a double covering group of $S O(13)=S O\left(V^{13}\right)$.

Proposition 4.9. $G_{14}{ }^{c o m} \cong \operatorname{Spin}(14)$.
Proof. Since the group $G_{14}{ }^{\text {com }}$ acts on $V^{14}$ and $G_{14}{ }^{\text {com }}$ is connected(Proposition 4.2), we can define a homomorphism $\pi: G_{14}{ }^{c o m} \rightarrow S O(14)=S O\left(V^{14}\right)$ by

$$
\pi(\alpha)=\alpha \mid V^{14}
$$

Ker $\pi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since $\operatorname{dim}\left(\mathfrak{g}_{14}{ }^{c o m}\right)=91($ Lemma 4.5) $=\operatorname{dim}(\mathfrak{s o}(14)), \pi$ is onto. Hence, $G_{14}{ }^{c o m} / \boldsymbol{Z}_{2} \cong S O(14)$. Therefore, $G_{14}{ }^{c o m}$ is isomorphic to $\operatorname{Spin}(14)$ as a double covering group of $S O(14)=S O\left(V^{14}\right)$.

Now, we shall consider the following group

$$
\begin{aligned}
& \left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} \\
& \quad=\left\{\alpha \in(\operatorname{Spin}(13))^{\sigma^{\prime}} \left\lvert\, \begin{array}{l}
\alpha\left(0,\left(0, F_{1}(y), 0,0\right), 0,0,0,0\right) \\
=\left(0,\left(0, F_{1}(y), 0,0\right), 0,0,0,0\right)
\end{array}\right. \text { for all } y \in \mathfrak{C}\right\} .
\end{aligned}
$$

Lemma 4.10. The Lie algebra $\left((\mathfrak{s p i n}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)-}$ of the group $\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$is given by
$\left((\mathfrak{s p i n}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}=\left\{R \in(\mathfrak{s p i n}(13))^{\sigma^{\prime}} \mid(\operatorname{ad} R)\left(0,\left(0, F_{1}(y), 0,0\right), 0,0,0,0\right)=0\right\}$

$$
=\left\{\left(\Phi\left(i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right), \nu\right)\right.\right.
$$

$$
\begin{aligned}
& \left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & 0 \\
0 & 0 & -\tau \zeta_{2}
\end{array}\right),\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \zeta_{1}\right),-\tau \lambda\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & 0 \\
0 & 0 & -\tau \zeta_{2}
\end{array}\right)\right. \\
& \left.\left.\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \zeta_{1}\right), 0,0,0\right) \\
& \left.\mid \epsilon_{i} \in \boldsymbol{R}, \rho_{i}, \zeta_{i}, \in C, \nu \in i \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0, i \epsilon_{1}+\frac{2}{3} \nu=0\right\}
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left(\left((\mathfrak{s p i n}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}\right)=10
$$

Lemma 4.11. $\quad\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} / \operatorname{Spin}(4) \simeq S^{4}$.
In particular, $\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$is connected.
Proof. We define a 5 dimensional $\boldsymbol{R}$-vector spaces $W^{5}$ by

$$
\begin{aligned}
W^{5} & =\left\{R \in V^{13} \mid \sigma^{\prime} R=R\right\} \\
& =\left\{R=\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}, \tau \xi, 0\right), 0,0,-\zeta, 0\right) \mid \zeta \in \boldsymbol{R}, \xi, \eta \in C\right\}
\end{aligned}
$$

with the norm

$$
(R, R)_{\mu}=\frac{1}{30} B_{8}\left(\widetilde{\mu}_{\delta} R, R\right)=4 \zeta^{2}+(\tau \eta) \eta+(\tau \xi) \xi
$$

Then, $S^{4}=\left\{R \in W^{5} \mid(R, R)_{\mu}=1\right\}$ is a 4 dimensional sphere. The group $\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$acts on $S^{4}$. We shall show that this action is transitive. To prove this, it suffices to show that any $R \in S^{4}$ can be transformed to $1 / 2\left(\Phi_{1}, 0,0,0,-1,0\right) \in S^{4}$ under the action of $\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$. Now, for a given

$$
R=\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}, \tau \xi, 0\right), 0,0,-\zeta, 0\right) \in S^{4}
$$

choose $t \in \boldsymbol{R}, 0 \leq t<\pi$ such that $\tan t=\frac{4 \zeta}{\xi+\tau \xi}$ (if $\xi+\tau \xi=0$, let $t=\pi / 2$ ). Operate $\theta_{13}(t) \in\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$(Lemmas 4.6.(2), 4.10) on $R$. Then, we have

$$
\theta_{13}(t) R=\left(0,\left(\xi^{\prime} E_{1}, \eta E_{2}-\tau \eta E_{3}, \tau \xi^{\prime}, 0\right), 0,0,0,0\right)=R_{1} \in S^{3} \subset S^{4}
$$

Since the group $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}\left(\subset\left((\operatorname{Sin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}\right)$acts transitively on $S^{3}$ (Lemma 3.14), there exists $\beta \in\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}$ such that

$$
\beta R_{1}=\left(0,\left(E_{1}, 0,1,0\right), 0,0,0,0\right)=R_{2} \in S^{3}
$$

Finally, operate $\theta_{13}(-\pi / 2) \in\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)-}$ on $R_{2}$. Then, we have

$$
\theta_{13}(-\pi / 2) R_{2}=\frac{1}{2}\left(\Phi_{1}, 0,0,0,-1,0\right)
$$

This shows the transitivity. The isotropy subgroup at $1 / 2\left(\Phi_{1}, 0,0,0,-1,0\right)$ of $\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$is $\left((\operatorname{Spin}(12))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)}($ Lemma 4.7)$=\operatorname{Spin}(4)$. Thus, we have the homeomorphism $\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} / \operatorname{Spin}(4) \simeq S^{4}$.

Proposition 4.12. $\quad\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} \cong \operatorname{Spin}(5)$.
Proof. Since $\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$is connected (Lemma 4.11), we can define a homomorphism $\pi:\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} \rightarrow S O(5)=S O\left(W^{5}\right)$ by

$$
\pi(\alpha)=\alpha \mid W^{5}
$$

Ker $\pi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since $\operatorname{dim}\left(\left((\mathfrak{s p i n}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}\right)=10$ (Lemma 4.10) $=\operatorname{dim}(\mathfrak{s o}(5)), \pi$ is onto. Hence, $\left((S \operatorname{pin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} / \boldsymbol{Z}_{2} \cong S O(5)$. Therefore, $\left((\operatorname{Sin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$is isomorphic to $\operatorname{Spin}(5)$ as a double covering group of $S O(5)$.

Lemma 4.13. The Lie algebra $(\mathfrak{s p i n}(13))^{\sigma^{\prime}}$ of the group $(\operatorname{Spin}(13))^{\sigma^{\prime}}$ is given by

$$
\begin{aligned}
&(\mathfrak{s p i n}(13))^{\sigma^{\prime}} \\
&=\left\{\left(\Phi\left(D+i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right), \nu\right)\right.\right. \\
&\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & 0 \\
0 & 0 & -\tau \zeta_{2}
\end{array}\right),\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \zeta_{1}\right),-\tau \lambda\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & 0 \\
0 & 0 & -\tau \zeta_{2}
\end{array}\right)\right. \\
&\left.\left.\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \zeta_{1}\right), 0,0,0\right) \\
&\left.\mid D \in \mathfrak{s o}(8), \epsilon_{i} \in \boldsymbol{R}, \rho_{i}, \zeta_{i} \in C, \nu \in i \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0, i \epsilon_{1}+\frac{2}{3} \nu=0\right\}
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left((\mathfrak{s p i n}(13))^{\sigma^{\prime}}\right)=28+10=38
$$

Now, we shall determine the group structure of $(\operatorname{Spin}(13))^{\sigma^{\prime}}$.
Theorem 4.14. $(\operatorname{Spin}(13))^{\sigma^{\prime}} \cong(\operatorname{Spin}(5) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1,1),(-1, \sigma)\}$.

Proof. Let $\operatorname{Spin}(13)=G_{13}{ }^{\operatorname{com}}, \operatorname{Spin}(5)=\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)-}$ and $\operatorname{Spin}(8)=\left(\left(F_{4}\right)_{E_{1}}\right)^{\sigma^{\prime}} \subset\left(\left(E_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}} \subset\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\sigma^{\prime}} \subset\left(G_{13}{ }^{\text {com }}\right)^{\sigma^{\prime}}$ (Theorem 1.2, Propositions 4.4, 4.8). Now, we define a map $\varphi: \operatorname{Spin}(5) \times \operatorname{Spin}(8) \rightarrow(\operatorname{Spin}(13))^{\sigma^{\prime}}$ by

$$
\varphi(\alpha, \beta)=\alpha \beta
$$

Then, $\varphi$ is well-defined : $\varphi(\alpha, \beta) \in(\operatorname{Spin}(13))^{\sigma^{\prime}}$. Since $\left[R_{D}, R_{5}\right]=0$ for $R_{D}=$ $(\Phi(D, 0,0,0), 0,0,0,0,0) \in \mathfrak{s p i n}(8), R_{5} \in \mathfrak{s p i n}(5)=\left((\mathfrak{s p i n}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$(Proposition 4.12), we have $\alpha \beta=\beta \alpha$. Hence, $\varphi$ is a homomorphism. $\operatorname{Ker} \varphi=\{(1,1),(-1, \sigma)\}$
$=\boldsymbol{Z}_{2}$. Since $(\operatorname{Spin}(13))^{\sigma^{\prime}}$ is connected and $\operatorname{dim}(\mathfrak{s p i n}(5) \oplus \mathfrak{s p i n}(8))=10($ Lemma 4.10 $)+$ $28=38=\operatorname{dim}\left((\mathfrak{s p i n}(13))^{\sigma^{\prime}}\right)($ Lemma 4.13), $\varphi$ is onto. Thus, we have the isomorphism $(S \operatorname{pin}(5) \times S \operatorname{pin}(8)) / \boldsymbol{Z}_{2} \cong\left((S \operatorname{Pin}(13))^{\sigma^{\prime}}\right.$.

Now, we shall consider the following group

$$
\begin{aligned}
& \left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} \\
& \quad=\left\{\alpha \in\left((\operatorname{Spin}(14))^{\sigma^{\prime}} \left\lvert\, \begin{array}{l}
\alpha\left(0,\left(0, F_{1}(y), 0,0\right), 0,0,0,0\right) \\
=\left(0,\left(0, F_{1}(y), 0,0\right), 0,0,0,0\right)
\end{array}\right. \text { for all } y \in \mathfrak{C}\right\} .\right.
\end{aligned}
$$

Lemma 4.15. The Lie algebra $\left((\mathfrak{s p i n}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)-}$ of the group $\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$is given by

$$
\begin{aligned}
&\left((\mathfrak{s p i n}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}=\left\{R \in(\mathfrak{s p i n}(14))^{\sigma^{\prime}} \mid(\operatorname{ad} R)\left(0,\left(0, F_{1}(y), 0,0\right), 0,0,0,0\right)=0\right\} \\
&=\left\{\left(\Phi\left(i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right), \nu\right),\right.\right. \\
&\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right),\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \zeta\right),-\tau \lambda\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right),\right. \\
&\left.\left.\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \zeta\right), r, 0,0\right) \\
&\left.\mid \epsilon_{i} \in \boldsymbol{R}, \rho_{i}, \zeta_{i}, \zeta \in C, \nu, r \in i \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0, i \epsilon_{1}+\frac{2}{3} \nu+2 r=0\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left(\left((\mathfrak{s p i n}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}\right)=15
$$

Lemma 4.16. For $t \in \boldsymbol{R}$, we define a $C$-linear transformation $\theta_{14}(t)$ of $\mathfrak{e}_{8}{ }^{C}$ by

$$
\theta_{14}(t)=\exp \left(\operatorname{ad}\left(0,\left(0, i t E_{1}, 0, i t\right),\left(i t E_{1}, 0, i t .0\right), 0,0,0\right)\right)
$$

Then, $\theta_{14}(t) \in\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}\left(\right.$Lemma 4.15). The action of $\theta_{14}(t)$ on $V^{14}$ is given by

$$
\begin{aligned}
& \theta_{14}(t)\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}+F_{1}(y), \tau \xi, 0\right), 0,0,-\tau \zeta, 0\right) \\
& \quad=\left(\Phi\left(0, \zeta^{\prime} E_{1}, 0,0\right),\left(\xi^{\prime} E_{1}, \eta^{\prime} E_{2}-\tau \eta^{\prime} E_{3}+F_{1}\left(y^{\prime}\right), \tau \xi^{\prime}, 0\right), 0,0,-\tau \zeta^{\prime}, 0\right) \\
& \qquad\left\{\begin{array}{l}
\zeta^{\prime}=\frac{1}{2}(\zeta+\tau \zeta)+\frac{1}{2}(\zeta-\tau \zeta) \cos t-\frac{i}{4}(\xi+\tau \xi) \sin t \\
\xi^{\prime}=\frac{1}{2}(\xi-\tau \xi)+\frac{1}{2}(\xi+\tau \xi) \cos t-i(\zeta-\tau \zeta) \sin t \\
\eta^{\prime}=\eta \\
y=y^{\prime}
\end{array}\right.
\end{aligned}
$$

## Lemma 4.17. $\quad\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)-} / \operatorname{Spin}(5) \simeq S^{5}$.

In particular, $\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)-}$ is connected.
Proof. We define a 6 dimensional $\boldsymbol{R}$-vector space $W^{6}$ by

$$
\begin{aligned}
W^{6} & =\left\{R \in V^{14} \mid \sigma^{\prime} R=R\right\} \\
& =\left\{R=\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}, \tau \xi, 0\right), 0,0,-\tau \zeta, 0\right) \mid \zeta, \xi, \eta \in C\right\}
\end{aligned}
$$

with the norm

$$
(R, R)_{\mu}=\frac{1}{30} B_{8}\left(\widetilde{\mu}_{\delta} R, R\right)=4(\tau \zeta) \zeta+(\tau \eta) \eta+(\tau \xi) \xi .
$$

Then, $S^{5}=\left\{R \in W^{6} \mid(R, R)_{\mu}=1\right\}$ is a 5 dimensional sphere. The group $\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$acts on $S^{5}$. We shall show that this action is transitive. To prove this, it suffices to show that any $R \in S^{5}$ can be transformed to $1 / 2\left(i \Phi_{1}, 0,0,0, i, 0\right) \in S^{5}$ under the action of $\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$. Now, for a given

$$
R=\left(\Phi\left(0, \zeta E_{1}, 0,0\right),\left(\xi E_{1}, \eta E_{2}-\tau \eta E_{3}, \tau \xi, 0\right), 0,0,-\tau \zeta, 0\right) \in S^{5},
$$

choose $t \in \boldsymbol{R}, 0 \leq t<\pi$ such that $\tan t=-\frac{2 i(\zeta-\tau \zeta)}{\xi+\tau \xi}$ (if $\xi+\tau \xi=0$, let $t=\pi / 2$ ). Operate $\theta_{14}(t) \in\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}($Lemmas $4.15,4.16)$ on $R$. Then, we have

$$
\theta_{14}(t) R=\left(\Phi\left(0,\left(\zeta^{\prime} E_{1}, 0,0\right),\left(\xi^{\prime} E_{1}, \eta E_{2}-\tau \eta E_{3}, \tau \xi^{\prime}, 0\right), 0,0,-\zeta^{\prime}, 0\right)=R_{1} \in S^{4} \subset S^{5} .\right.
$$

Since the group $\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}\left(C\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}\right)$acts transitively on $S^{4}$ (Lemma 4.11), there exists $\beta \in\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)-}$ such that

$$
\beta R_{1}=\frac{1}{2}\left(\Phi_{1}, 0,0,0,-1,0\right)=R_{2} \in S^{3} .
$$

Moreover, operate $\theta_{14}(\pi / 2)$ and $\alpha(\pi / 4)$ (Lemma 3.13) in order,

$$
\theta_{14}(\pi / 2) R_{2}=\left(0,\left(-i E_{1}, 0, i, 0\right), 0,0,0,0\right)=R_{3},
$$

and

$$
\alpha(\pi / 4) R_{3}=\left(0,\left(E_{1}, 0,1,0\right), 0,0,0,0\right)=R_{4} .
$$

Finally, operate $\theta_{14}(-\pi / 2) \in\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$on $R_{4}$. Then, we have

$$
\theta_{14}(-\pi / 2) R_{4}=\frac{1}{2}\left(i \Phi_{1}, 0,0,0, i, 0\right) .
$$

This shows the transitivity. The isotropy subgroup at $1 / 2\left(i \Phi_{1}, 0,0,0, i, 0\right)$ of $\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$is $\left((\operatorname{Spin}(13))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}($Proposition 4.8) $=\operatorname{Spin}(5)$. Thus, we have the homeomorphism $\left((S \operatorname{Sin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} / \operatorname{Spin}(5) \simeq S^{5}$.

Proposition 4.18. $\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} \cong \operatorname{Spin}(6)$.
Proof. Since $\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$is connected (Lemma 4.17), we can define a homomorphism $\pi:\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} \rightarrow S O(6)=S O\left(W^{6}\right)$ by

$$
\pi(\alpha)=\alpha \mid W^{6}
$$

$\operatorname{Ker} \pi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since $\operatorname{dim}\left(\left((\mathfrak{s p i n}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}\right)=15$ (Lemma 4.15) $=\operatorname{dim}(\mathfrak{s o}(6)), \pi$ is onto. Hence, $\left((S \operatorname{pin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}} / \boldsymbol{Z}_{2} \cong S O(6)$. Therefore, $\left((S \operatorname{Pin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$is isomorphic to $\operatorname{Spin}(5)$ as a double covering group of $S O(6)$.

Lemma 4.19. The Lie algebra $(\mathfrak{s p i n}(14))^{\sigma^{\prime}}$ of the group $\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right.$ is given by

$$
\begin{aligned}
& (\mathfrak{s p i n}(14))^{\sigma^{\prime}} \\
& \quad=\left\{\left(\Phi\left(D+i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right) \sim\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right), \nu\right)\right.\right. \\
& \left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right),\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \zeta\right),-\tau \lambda\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta_{2} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right)\right. \\
& \left.\left.\left(\begin{array}{ccc}
\zeta_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \zeta\right), r, 0,0\right) \\
& \left.\mid D \in \mathfrak{s o}(8), \epsilon_{i} \in \boldsymbol{R}, \rho_{i}, \zeta_{i}, \zeta \in C, \nu \in i \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0, i \epsilon_{1}+\frac{2}{3} \nu+2 r=0\right\}
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left((\mathfrak{s p i n}(14))^{\sigma^{\prime}}\right)=28+15=43
$$

Now, we shall determine the group structure of $(\operatorname{Spin}(14))^{\sigma^{\prime}}$.
Theorem 4.20. $(\operatorname{Spin}(14))^{\sigma^{\prime}} \cong(\operatorname{Spin}(6) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1,1),(-1, \sigma)\}$.

Proof. Let $\operatorname{Spin}(14)=G_{14}{ }^{\operatorname{com}}, \operatorname{Spin}(6)=\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)-}$ and $\operatorname{Spin}(8)=\left(\left(F_{4}\right)_{E_{1}}\right)^{\sigma^{\prime}} \subset\left(\left(E_{6}\right)_{E_{1}}\right)^{\sigma^{\prime}} \subset\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\sigma^{\prime}} \subset\left(G_{13}{ }^{c o m}\right)^{\sigma^{\prime}} \subset\left(G_{14}{ }^{c o m}\right)^{\sigma^{\prime}}$ (Theorem 1.2, Propositions 4.8, 4.9). Now, we define a map $\varphi: \operatorname{Spin}(6) \times \operatorname{Spin}(8) \rightarrow$ $(\operatorname{Spin}(14))^{\sigma^{\prime}}$ by

$$
\varphi(\alpha, \beta)=\alpha \beta
$$

Then, $\varphi$ is well-defined : $\varphi(\alpha, \beta) \in(\operatorname{Spin}(14))^{\sigma^{\prime}}$. Since $\left[R_{D}, R_{6}\right]=0$ for $R_{D}=$ $(\Phi(D, 0,0,0), 0,0,0,0,0) \in \mathfrak{s p i n}(8), R_{6} \in \mathfrak{s p i n}(6)=\left((\mathfrak{s p i n}(14))^{\sigma^{\prime}}\right)_{\left(0, F_{1}(y), 0,0\right)^{-}}$(Proposition 4.18), we have $\alpha \beta=\beta \alpha$. Hence, $\varphi$ is a homomorphism. $\operatorname{Ker} \varphi=\{(1,1),(-1, \sigma)\}$ $=\boldsymbol{Z}_{2}$. Since $(\operatorname{Spin}(14))^{\sigma^{\prime}}$ is connected and $\operatorname{dim}(\mathfrak{s p i n}(6) \oplus \mathfrak{s p i n}(8))=15($ Lemma 4.15) +
$28=43=\operatorname{dim}\left((\mathfrak{s p i n}(14))^{\sigma^{\prime}}\right)($ Lemma 4.19 $), \varphi$ is onto. Thus, we have the isomorphism $(S \operatorname{Sin}(6) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2} \cong\left((\operatorname{Spin}(14))^{\sigma^{\prime}}\right.$.

Acknowledgment. The author records here his warmest gratitude to Professor Ichiro Yokota, who recommended to write this paper and has constantly encouraged him.

## References

[1] T. Imai and I. Yokota, Simply connected compact simple Lie group $E_{8(-248)}$ of type $E_{8}$, J. Math. Kyoto Univ., 21 (1981), 741-762.
[2] T. Miyashita and I. Yokota, 2-graded decompositions of exceptional Lie algebra $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{\mathrm{ev}}, \mathfrak{g}_{0}$, Part III, $G=E_{8}$, Japanese J. Math., 26(2000), 31-51.
[3] T. Miyashita and I. Yokota, Fixed points subgroups $G^{\sigma, \sigma^{\prime}}$ by two involutive automorphisms $\sigma, \sigma^{\prime}$ of compact exceptional Lie group $G=F_{4}, E_{6}$ and $E_{7},(2001)$, preprint.
[4] T. Miyashita and I. Yokota, An explicit isomorphism between $\left(\mathfrak{e}_{8}\right)^{\sigma, \sigma^{\prime}}$ and $\mathfrak{s o}(8) \oplus$ $\mathfrak{s o}(8)$ as Lie algebras, (2001), preprint.
[5] I. Yokota, Realizations of involutive automorphisms $\sigma$ and $G^{\sigma}$ of exceptional linear Lie groups $G$, Part I, $G=G_{2}, F_{4}$ and $E_{6}$, Tsukuba J. Math., 4(1990), 185 - 223.
[6] I. Yokota, Realizations of involutive automorphisms $\sigma$ and $G^{\sigma}$ of exceptional linear Lie groups $G$, Part II, $G=E_{7}$, Tsukuba, J. Math., 14(1990), 379-404.
[7] I. Yokota, Realizations of involutive automorphisms $\sigma$ and $G^{\sigma}$ of exceptional linear Lie groups $G$, Part III, $G=E_{8}$, Tsukuba J. Math., 14 (1991), 301-314.
[8] I. Yokota, Exceptional simple Lie groups (in Japanese), Gendaisuugakusya, Kyoto, 1992.

Toshikazu Miyashita
Tohbu High School
Agata, Tohbu, 389-0517, Japan
E-mail: serano@janis.or.jp

