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MODULI OF VORTICES AND GRASSMANN MANIFOLDS

INDRANIL BISWAS AND NUNO M. ROMÃO

Abstract. We use the framework of Quot schemes to give a novel description
of the moduli spaces of stable n-pairs, also interpreted as gauged vortices on a
closed Riemann surface Σ with target Matr×n(C), where n ≥ r. We then show
that these moduli spaces embed canonically into certain Grassmann manifolds,
and thus obtain natural Kähler metrics of Fubini–Study type; these spaces are
smooth at least in the local case r = n. For abelian local vortices we prove that,
if a certain “quantization” condition is satisfied, the embedding can be chosen in
such a way that the induced Fubini–Study structure realizes the Kähler class of
the usual L2 metric of gauged vortices. We also give a detailed description of the
moduli spaces in the nonabelian local case.

1. Introduction

Gauged vortices are configurations of static, stable fields arising in various classical

field theories on a Riemann surface Σ. These objects were first studied as topological

solitons of the abelian Higgs model, for which vortex solutions have a distinctive

particle-like behavior — they are labelled by divisors on Σ, which specify the precise

locations of the cores of individual objects superposing nonlinearly to yield each

vortex configuration [JT]. In this setting, there is typically a moduli space of all

vortices with a given topology, modelled on the space of effective divisors with a fixed

degree. This is a smooth manifold endowed with a complex structure induced from

the one specified on Σ. More recently, models for vortices with nontrivial internal

structure have been considered, but in the various generalizations it has remained a

challenge to understand the corresponding moduli spaces in a satisfactory way.

We shall focus on vortices on a closed Riemann surface Σ with target (or internal)

space consisting of the vector space Matr×n(C) of complex r × n matrices, where

n ≥ r. These have been called nonabelian vortices in the literature, even though

the special situation r = 1 corresponds to an abelian gauge theory. If n > r, one

sometimes speaks of semilocal vortices, whereas n = r is known as the local case.

The geometric framework is as follows. Let e2 be any positive real number. Assume

that we fix a Kähler form ωΣ on Σ, as well as a Hermitian metric on a complex

vector bundle E −→ Σ of rank r. A vortex is a pair (A, φ) consisting of a unitary

connection A on the bundle, together with a section φ of the direct sum E⊕n −→ Σ,
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satisfying the vortex equations

∂̄Aφ = 0,(1.1)

∗FA + e2µ ◦ φ = 0.(1.2)

Here, ∂̄A denotes the holomorphic structure [DK] on E⊕n defined by the connection

A and the complex structure on Σ, ∗ is the Hodge star of the Kähler metric associated

to ωΣ, FA := dA + 1
2
[A,A] is the curvature of A and µ denotes a moment map

µ : Matr×n(C) −→ u(r)∗ ∼= u(r)

of the Hamiltonian action of the reduced structure group U(r) on the fibers of

E⊕n −→ Σ by multiplication on the left. We use the Killing form on u(r) to identify

the Lie algebra with its dual. Notice that µ is specified only up to addition of scalar

matrices, and following standard conventions we shall write

µ(w) = −
√
−1

2
(ww† − τIr),

where τ is a fixed real number and Ir is the r × r identity matrix.

The vortex equations (1.1)–(1.2) first appeared in the work [BDW2] of Bertram,

Daskalopoulos and Wentworth computing the Gromov–Witten invariants of Grass-

mannians: the moduli space of holomorphic maps from a compact Riemann surface

to a Grassmannian embeds into the moduli space of stable holomorphic n-pairs.

The latter can be identified with the space of gauge-equivalence classes of solutions

to the vortex equations above, under suitable stability criteria depending on the

parameter τ and the topology. This is an example of what is generically known

as the Hitchin–Kobayashi correspondence, which goes back to [UY]. Among other

things, the authors of [BDW2] described how the moduli space of vortices changes

birationally when the parameter τ crosses certain critical values, a phenomenon fa-

miliar from earlier work of Thaddeus on moduli of stable pairs [Th]. There is also

a useful description of the moduli spaces via infinite-dimensional symplectic reduc-

tion (in the spirit of [AB]), which naturally produces a Kähler structure from the

L2 inner product on the space of fields; for abelian vortices, this was described by

Garćıa-Prada in [Ga]. By now, a whole body of rather well-established technology

that reproduces results of this type has been developed for objects that are analo-

gous to vortices on the gauge-theory side of the Hitchin–Kobayashi correspondence,

and n-pairs on the other side. The objects on the algebraic-geometric side are often

referred to by the name of augmented bundles, of which Higgs bundles and coherent

systems are other important examples; we refer the reader to [BDGW] for a clear

overview.

Physicists have also been interested in the generalized vortex equations (1.1)–

(1.2). Their solutions realize certain configurations of branes in string theory on

the one hand, and also feature in models for confinement in QCD [EINOS, To].

Here, one focus of interest is to obtain descriptions of the moduli spaces as explicit

as possible, including concrete parametrizations, as well as to understand natural
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Hamiltonian systems on the moduli spaces or their cotangent bundles. Much of

the work done assumes Σ = C, for which there is nothing like a Hitchin–Kobayashi

correspondence, but alternative constructions have been proposed which rely on

certain mathematical conjectures. More recently, Baptista presented a rigorous

description of the moduli space of local vortices when Σ is compact, describing a

stratification of the moduli spaces in terms of spaces of internal structures [Ba1].

From Baptista’s description, holomorphic matrices representing vortex solutions up

to unitary gauge transformations can be readily constructed. From our perspective,

his work has the slight disadvantage of depending on auxiliary structure, namely

the choice of an inner product on Cn, and it is also difficult to see how the different

strata are patched together.

In this paper, we make use of the Hitchin–Kobayashi correspondence of [BDW2]

to describe moduli spaces of solutions to the vortex equations (1.1)–(1.2) modulo

gauge equivalence,

(1.3) MΣ = MΣ(n, r, d),

where d = deg(E) is the degree of E −→ Σ, in terms of certain Quot schemes

parametrizing holomorphic n-pairs. The idea of Quot (or quotient) schemes goes

back to Grothendieck [Gr] and has had numerous applications to moduli problems.

Given a coherent sheaf and a polynomial, the Quot scheme is a projective scheme of

finite type that parametrizes all quotients of the given sheaf for which the Hilbert

polynomial [EH] is the given polynomial.

Starting with an ample line bundle L −→ Σ, we shall produce a holomorphic

embedding of the moduli space MΣ into a Grassmann manifold; it follows that

MΣ is projective. A Hermitian structure on L then induces a Kähler metric of

Fubini–Study type on the moduli space. The perspective of Quot schemes has the

advantage of being global in nature, and also well-suited to address general questions

such as smoothness. We shall also see how it allows a straightforward calculation

of the dimension. These properties can also be recovered from more general results

scattered in the literature on Gromov–Witten invariants [OT, BDW2].

The simplest example of our class of embeddings into Grassmann manifolds occurs

when we set n = r = 1; more background on the geometry of the moduli space of

vortices in this well-studied case shall be given in Section 5.1 below. Then we have

MΣ
∼= Symd(Σ), where d = deg(E) is the vortex number [Br1]. In this setting, one

might hope that a suitable choice of hermitian metric on L will induce a Fubini–

Study metric which is related to the usual L2 metric on the moduli space of vortices.

We shall show that, if a certain quantization condition holds, then it turns out that

the two corresponding Kähler classes are cohomologous; this is the content of our

Theorem 5.1 below. The Kähler class of the moduli space of local abelian vortices

was calculated in [MN].
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In the last section, we will give a description of the moduli space of local vortices

(n = r), describing in detail the fibers of a natural map

Φ : MΣ −→ Symd(Σ)

to the space of effective divisors of degree d on Σ. The fibers over reduced divisors

are products of projective spaces. For nonreduced divisors, the fibers are more

complicated but can be constructed by performing Hecke modifications on vector

bundles over Σ, as we shall see. This description is more intrinsic than the one

provided by Baptista [Ba1] in terms of internal structures.

2. Stability and the Hitchin–Kobayashi correspondence

Let Σ be a compact connected Riemann surface of genus g. Fix a Kähler form ωΣ

on Σ, so ωΣ is a positive (1, 1)-form; it is automatically closed. We will denote by

(2.1) Vol(Σ) :=

∫

Σ

ωΣ

the total area of the surface determined by ωΣ.

We briefly sketch the results in [BDW2] establishing the Hitchin–Kobayashi corre-

spondence between solutions of (1.1)–(1.2) up to gauge transformations, and stable

n-pairs (E, s) up to isomorphism. We begin by recalling the following

Definition 2.1. An n-pair on the Riemann surface Σ is a pair of the form (E, s),

where E −→ Σ is a holomorphic vector bundle and s ∈ H0(Σ, E⊕n). Two n-

pairs (E, s) and (E ′, s′) are said to be isomorphic if there is an isomorphism of

holomorphic vector bundles ψ : E⊕n −→ E ′⊕n over Σ such that ψ∗s′ = s.

In this paper, we will denote by r = rk(E) the rank of a fixed class of vector

bundles E over Σ, when no confusion will arise.

The basic mechanism of the correspondence is modeled on Donaldson’s famous

proof of the Narasimhan–Seshadri theorem [D]. Suppose that we are given an n–

pair (E, s). A holomorphic vector bundle E −→ Σ with a Hermitian structure has a

unique connection A preserving the Hermitian structure whose (0, 1)-part coincides

with the Dolbeault operator defining the holomorphic structure; this connection A

is known as the Chern connection [A, pp. 191–192, Proposition 5], [CCL, p. 273].

For a C∞ section φ of E⊕n −→ Σ, the pair (A, φ) is a solution of (1.1) if and

only if φ is holomorphic. So we start by taking φ = s ∈ H0(Σ, E⊕n). Complex

gauge transformations preserve equation (1.1), and one can ask whether the complex

gauge orbit through this initial pair (A, φ = s) contains a solution of equation (1.2),

which itself is invariant only under unitary gauge transformations. The answer is

that this occurs if and only if the n–pair (E, s) is τ–stable in a sense that we will

explain shortly, for the value of τ appearing in equation (1.2). This solution is

unique up to unitary gauge transformations, and therefore we obtain an injective

map from the moduli space of τ -stable n–pairs to the moduli space of vortices.



MODULI OF VORTICES AND GRASSMANN MANIFOLDS 5

Conversely, a vortex (A, φ) in this geometric setting determines an n–pair: E is

the bundle where each component of φ takes values, with holomorphic structure on

E determined by the connection A and the complex structure on Σ. Clearly, one

obtains isomorphic n-pairs (E, φ) when the original vortex (A, φ) undergoes unitary

gauge transformations, and one can check that they are still τ–stable.

The stability condition that is appropriate to relate n-pairs and vortices was

spelled out in [BDW2, BDGW], using the analysis for stable pairs in [Br2]. Fixing

τ , one says that an n-pair (E, φ) is τ -stable if the following two conditions hold:

(i) 4π deg(E ′)/rk(E ′) < τe2 Vol(Σ) for all holomorphic subbundles E ′ ⊆ E,

and

(ii) 4π deg(E/Es)/rk(E/Es) > τe2 Vol(Σ) for all holomorphic subbundles Es (

E containing all the component sections of s.

(Vol(Σ) is defined in (2.1); unlike [BDW2, BDGW], we do not require this area to

be normalized.) Notice that, when E ′ = E, condition (i) is necessary for vortex

solutions to exist for a given τ : this follows from integrating equation (1.2) over Σ.

Now suppose that n ≥ r = rk(E), and that φ ∈ H0(Σ, E⊕n) has maximal rank

generically on Σ. Then there is no proper subbundle of E containing all the compo-

nents of φ, and the second condition above is empty. Going through the argument

in the proof of Proposition 3.14 in [BDW2], one can show that, under the same

assumptions, the inequality

(2.2) τe2 Vol(Σ) > 4π deg(E)

is equivalent to the first condition for τ -stability. Throughout this paper, when the

topology of E −→ Σ has been fixed, as well as a Kähler structure on Σ, we shall only

deal with the vortex equations (1.1)–(1.2) with values of τ satisfying (2.2). Then

we can focus purely on n-pairs and their algebraic geometry to describe the moduli

spaces in (1.3).

3. Holomorphic sections of a direct sum

We shall from now on take the algebraic-geometric point of view on the moduli

space of vortices provided by the Hitchin-Kobayashi correspondence explained in

Section 2. In the present section, the only relevant geometric structures are the

complex structure on the closed surface Σ and the holomorphic structures on vector

bundles over it.

As before, let E −→ Σ be a holomorphic vector bundle of rank r. Choose an

integer n ≥ r. Let

(3.1) s ∈ H0(Σ, E⊕n) ∼= H0(Σ, E)⊕n
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be a holomorphic section. Let si ∈ H0(Σ, E) be the image of s for the projection

E⊕n −→ E to the i–th factor. So, s = (s1 , . . . , sn). Let

(3.2) fs : O⊕n
Σ −→ E

be the homomorphism defined by (x ; c1 , · · · , cn) 7−→ ∑n
i=1 ci · si(x), where x ∈ Σ

and ci ∈ C. The image im(fs) of fs is a coherent sheaf which is torsion-free

because it is contained in the torsion-free sheaf E. Therefore, im(fs) is locally free;

equivalently, it is a holomorphic vector bundle. However, im(fs) need not be a

subbundle of E.

Definition 3.1. Let

H0(Σ, E⊕n)0 ⊂ H0(Σ, E⊕n)

be the subset consisting of sections s as in (3.1) such that the rank of the vector

bundle im(fs) is r (the rank of E).

It is easy to see that H0(Σ, E⊕n)0 is a Zariski open subset of H0(Σ, E⊕n), and

that it is closed under multiplication with C∗ (but it can be empty). Note that it

corresponds to the subset of holomorphic sections defining stable n-pairs (E, s), as

described in Section 2: if s ∈ H0(Σ, E⊕n)0, then outside a finite subset of Σ, the

image of fs coincides with E. Therefore, the quotient E/im(fs) is either zero, or it

is a torsion sheaf supported at finitely many points.

Take any s ∈ H0(Σ, E⊕n)0. Let

K := ker(fs) ⊂ O⊕n
Σ

be the kernel of the homomorphism fs in (3.2); it is a subbundle of O⊕n
Σ because

O⊕n
Σ /K = im(fs) is torsion-free. Consider the dual homomorphism

(O⊕n
Σ )∗ ∼= O⊕n

Σ −→ K∗

to the inclusion map K →֒ O⊕n
Σ . So K∗ is a quotient bundle of O⊕n

Σ .

We have a short exact sequence of coherent sheaves on Σ

(3.3) 0 −→ E∗ f∗
s−→ O⊕n

Σ −→ K∗ ⊕ T =: Q −→ 0 ,

where T is either a torsion sheaf supported on finitely many points of Σ, or T = 0;

in fact, T is isomorphic to the quotient sheaf E/im(fs) (but there is no canonical

isomorphism).

Since E∗ is a subsheaf of a trivial vector bundle, it follows that the degree of E∗

is never positive; hence we will require throughout that

(3.4) d := deg(E) = −deg(E∗) ≥ 0 .

We now introduce an ample line bundle L −→ Σ over the surface where the

vortices live. (For the purposes of the present section, this line bundle plays an
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auxiliary role, and its choice does not affect any of the results.) Since ℓ := deg(L)
is necessarily positive, there is an integer

(3.5) δE ∈ N

such that, for all δ ≥ δE ,

(3.6) H1(Σ, E∗ ⊗L⊗δ) = 0 ,

and the natural evaluation homomorphism

(3.7) H0(Σ, E∗ ⊗ L⊗δ)⊗C OΣ −→ E∗ ⊗ L⊗δ

is surjective. The second condition means that the vector bundle E∗⊗L⊗δ is gener-

ated by its global holomorphic sections. We emphasize that at this stage δE depends

on the holomorphic vector bundle E. The Riemann–Roch theorem yields

(3.8) dimH0(Σ, E∗ ⊗ L⊗δ)− dimH1(Σ, E∗ ⊗L⊗δ) = rℓδ − d+ r(1− g)

and this determines the dimension of H0(Σ, E∗ ⊗ L⊗δ) whenever δ ≥ δE , by (3.6).

Suppose that an integer δ is fixed, satisfying δ ≥ δE . Tensoring (3.3) with L⊗δ,

we obtain the short exact sequence of coherent sheaves

(3.9) 0 −→ E∗ ⊗ L⊗δ −→ (L⊗δ)⊕n −→ Q⊗ L⊗δ −→ 0 .

This will give rise to a long exact sequence of cohomology groups

(3.10) 0 −→ H0(Σ, E∗⊗L⊗δ) −→ H0(Σ, (L⊗δ)⊕n)
q−→ H0(Σ, Q⊗L⊗δ) −→ 0 ,

where the right-exactness follows from (3.6).

Consider the quotient map Q : H0(Σ, (L⊗δ)⊕n) −→ H0(Σ, Q ⊗ L⊗δ) in (3.10).

The subsheaf

E∗ ⊗ L⊗δ ⊂ (L⊗δ)⊕n

in (3.9) can be reconstructed from Q, and from it the morphism fs in (3.2), by a

procedure that we will now describe.

Let

K̂ := kerQ

be the kernel of the quotient map, and let

(3.11) S ⊂ (L⊗δ)⊕n

be the subsheaf generated by the sections lying in the subspace K̂. From the exact-

ness of the sequence (3.10) we know that K̂ coincides with the subspace

H0(Σ, E∗ ⊗L⊗δ) →֒ H0(Σ, (L⊗δ)⊕n)

determined by the section s ∈ H0(Σ, E⊕n)0. Also, the holomorphic vector bundle

E∗ ⊗L⊗δ is generated by its global sections (recall that the homomorphism in (3.7)

is surjective). Consequently, the subsheaf S in (3.11) coincides with the subsheaf

E∗ ⊗ L⊗δ ⊂ (L⊗δ)⊕n
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in (3.9). In other words, we have reconstructed the subsheaf E∗ ⊗ L⊗δ of (L⊗δ)⊕n

from the quotient vector space H0(Σ, (L⊗δ)⊕n)/H0(Σ, E∗ ⊗ L⊗δ), or equivalently

from the linear map Q in (3.10).

Let E ′ −→ Σ be a holomorphic vector bundle, and let s ∈ H0(Σ, (E ′)⊕n)0 (see

Definition 3.1) be such that

H1(Σ, (E ′)∗ ⊗ L⊗δ) = 0 ,

and also assume that (E ′)∗ ⊗L⊗δ is generated by its global sections. Let Q′ be the

quotient of O⊕n
Σ constructed from E ′ just as Q is constructed from E (see (3.3)).

Therefore, Q′⊗L⊗δ is a quotient of (L⊗δ)⊕n. If the two quotientsH0(Σ, Q⊗L⊗δ) and

H0(Σ, Q′⊗L⊗δ) of H0(Σ, (L⊗δ)⊕n) coincide, then the subsheaf E∗⊗L⊗δ of (L⊗δ)⊕n

(see (3.9)) coincides with the subsheaf (E ′)∗ ⊗L⊗δ constructed as in (3.9) using E ′.

Indeed, this follows from the above observation that we can reconstruct the subsheaf

E∗⊗L⊗δ of (L⊗δ)⊕n from the quotient mapQ : H0(Σ, (L⊗δ)⊕n) −→ H0(Σ, Q⊗L⊗δ)

in (3.10).

We put down the observations above in the form of what we will call a “recon-

struction” lemma:

Lemma 3.2. The quotient H0(Σ, (L⊗δ)⊕n) −→ H0(Σ, Q⊗L⊗δ) in (3.10) uniquely

determines the subsheaf

E∗ ⊗ L⊗δ ⊂ (L⊗δ)⊕n

in (3.9).

Remark 3.3. Consider the subsheaf E∗ ⊗ L⊗δ ⊂ (L⊗δ)⊕n in Lemma 3.2. Its

dual E ⊗ (L∗)⊗δ is a quotient of ((L⊗δ)⊕n)∗ = ((L∗)⊗δ)⊕n. Tensoring this quotient

homomorphism

((L∗)⊗δ)⊕n −→ E ⊗ (L∗)⊗δ

with the identity homomorphism of L⊗δ, we get back the homomorphism

fs : (OΣ)
⊕n −→ E

used to construct the quotient in (3.10). So the quotient effectively determines the

n-pair.

We will now show that, for fixed n ≥ r, a suitably large integer δ > δE in (3.5)

can be uniformly found that depends only on the rank and the degree of the vector

bundles E arising in stable n-pairs, such that (3.7) is surjective and (3.6) holds; so

we can replace all the relevant δE by an integer δn,r,d depending only on topological

quantities, and not on the holomorphic structure. This fact implies that, once

integers n, r, d have been fixed, with n ≥ r, the moduli space of stable n-pairs can

be described as a Quot scheme of finite type MΣ(n, r, d) parametrizing quotients q

as in (3.10), and from which the pair (E, s) (and hence a vortex solution to (1.1)

and (1.2)) can be reconstructed.
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Proposition 3.4. Fix a positive integer r, a nonnegative integer d and an integer

n ≥ r. Given an ample line bundle L −→ Σ, there is an integer δn,r,d such that for

any n-pair (E , s) with rk(E) = r, deg(E) = d and

s ∈ H0(Σ, E⊕n)0

(see Definition 3.1), and any integer δ ≥ δn,r,d,

• the homomorphism in (3.7) is surjective, and

• (3.6) holds.

Proof. The strategy of the proof is to first show, using the idea of Quot scheme, that

all such pairs of the given numerical type form a bounded family; then the proof is

completed using upper semicontinuity for dimension of cohomology.

Take a pair (E , s), where E −→ Σ is a holomorphic vector bundle of rank r and

degree d, and

s ∈ H0(Σ, E⊕n)0 .

The vector bundle E∗ is a subsheaf of O⊕n
Σ of rank r and degree −d (see (3.3)).

Therefore, all possible pairs (E∗ , f ∗
s ) (see (3.3)) are parametrized by a projective

scheme T over C of finite type [HL, p. 40, Theorem 2.2.4] (set S in [HL, Theorem

2.2.4] to be a point). Now from upper semicontinuity of dimension ofH1 we conclude

that there is an integer k0, that depends only on n, r and d, such that for all (E , s)

of the above type and all δ ≥ k0,

H1(Σ, E∗ ⊗L⊗δ) = 0 .

Take any point x ∈ Σ. Consider the short exact sequence of sheaves

0 −→ E∗ ⊗L⊗δ ⊗OΣ(−x) −→ E∗ ⊗L⊗δ −→ (E∗ ⊗ L⊗δ)x −→ 0 .

Let

(3.12) H0(Σ, E∗ ⊗ L⊗δ) −→ (E∗ ⊗ L⊗δ)x −→ H1(Σ, E∗ ⊗ L⊗δ ⊗OΣ(−x))
be the corresponding long exact sequence in cohomology. From (3.12) we conclude

that if

(3.13) H1(Σ, E∗ ⊗ L⊗δ ⊗OΣ(−x)) = 0 ,

then the homomorphism H0(Σ, E∗ ⊗L⊗δ) −→ (E∗ ⊗ L⊗δ)x in (3.12) is surjective.

Therefore, given (E∗ , f ∗
s ), if (3.13) holds for all x ∈ Σ, then the homomorphism in

(3.7) is surjective.

Now all possible pairs (E∗ , f ∗
s ) (see (3.3)) are parametrized by a projective scheme

over C (see above). From upper semicontinuity of dimension of H1, we conclude

again that there is an integer k1 such that, for all (E , s) of the type in the statement

of the proposition, and all δ ≥ k1, the homomorphism in (3.7) is surjective.

Consequently, the integer

(3.14) δn,r,d := max{k0 , k1} ,
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which depends only on r, d and n, has the property that for all δ ≥ δn,r,d, and for any

pair (E , s) of the of the type in the statement of the proposition, the homomorphism

in (3.7) is surjective, and (3.6) holds. This completes the proof of the proposition.

�

Note that in Proposition 3.4 we assume the degree d to be nonnegative because

of the inequality in (3.4).

4. Embedding in a Grassmannian

As in Section 3, fix a positive integer r, a nonnegative integer d and an integer

n ≥ r, specifying the topology of E −→ Σ and the number of copies of E in a

direct sum. For a given ample line bundle L −→ Σ of degree ℓ, fix also an integer

δ ≥ δn,r,d, where δn,r,d is as in Proposition 3.4, cf. (3.14). Notice that we can always

set δ to be the minimal δn,r,d ensuring that both (3.6) is surjective and the vanishing

in (3.7) holds, and in fact we will be doing so by default. A consequence of our

previous discussion is that

(4.1) ℓδ ≥ d

r
+ g − 1 ;

this follows from equations (3.8) and (3.6).

At this point, we shall introduce metric structures on the basic objects that we

have been considering in the previous section. We equip Σ with a Kähler metric ωΣ,

and the ample line bundle L −→ Σ in Section 3 with a Hermitian structure hL. If

the Kähler class [ωΣ] ∈ H2(Σ,R) is integral, which amounts to
∫

Σ

ωΣ ∈ Z ,

it would be natural to require (L, hL), together with its Chern connection ∇L, to

be a prequantization of the Kähler structure on Σ, in the sense that its curvature is

proportional to the Kähler form as

(4.2) F∇L
= 2π

√
−1 · ωΣ ;

but for now we need not impose this condition. Consider the vector space

H0(Σ, (L⊗δ)⊕n) ∼= H0(Σ, L⊗δ)⊕n .

The Hermitian structure hL on L together with the Kähler form ωΣ on Σ define an

L2 inner product on H0(Σ, (L⊗δ)⊕n).

Let

(4.3) Gr := Gr(H0(Σ, (L⊗δ)⊕n) , r(ℓδ − g + 1)− d)

be the Grassmannian of subspaces of H0(Σ, (L⊗δ)⊕n) of dimension r(ℓδ− g+1)−d

(see (3.8) and (3.10)). The inner product on H0(Σ, (L⊗δ)⊕n) defines a Fubini–Study

Kähler form on Gr. Indeed, for any subspace

H0(Σ, (L⊗δ)⊕n) ⊃ V ∈ Gr ,
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we have

TVGr = V ∗ ⊗ (H0(Σ, (L⊗δ)⊕n)/V ) ,

where TVGr is the holomorphic tangent space at the point V of Gr. The L2 inner

product we have on H0(Σ, (L⊗δ)⊕n) defined above induces inner products on both

V and H0(Σ, (L⊗δ)⊕n)/V . Therefore, we get an inner product on TVGr. It is easy

to see that the Hermitian structure on Gr constructed in this way is actually Kähler.

Another way of describing this Kähler structure is to consider the Fubini–Study

metric on the projective space of lines in
∧r(ℓδ−g+1)−dH0(Σ, (L⊗δ)⊕n)

P(∧r(ℓδ−g+1)−dH0(Σ, (L⊗δ)⊕n))

induced by the inner product on H0(Σ,L⊗δ). The Plücker map [GH]

(4.4) P : Gr −→ P(
∧r(ℓδ−g+1)−d

H0(Σ, (L⊗δ)⊕n)),

defined by

Gr ∋ spanC{s1, . . . , sr(ℓδ−g+1)−d} 7−→ s1 ∧ · · · ∧ sr(ℓδ−g+1)−d,

embeds Gr as a complex submanifold of the target. The above Kähler structure on

Gr coincides with the restriction of the Fubini–Study metric on the projective space

to the image of P .

Let

(4.5) MΣ := MΣ(n, r, d)

be the moduli space of isomorphism classes of all n-pairs (E , s), on Σ where the

holomorphic bundle E −→ Σ has rank r and degree d, and

s ∈ H0(Σ, E⊕n)0 .

We now claim that we have an embedding

(4.6) ϕ : MΣ −→ Gr

that sends any (E , s) to the subspace H0(Σ, E∗ ⊗ L⊗δ) ⊂ H0(Σ, (L⊗δ)⊕n) in

(3.10), where Gr is defined in (4.3). Note that (3.6) and (3.8) together imply that

H0(Σ, E∗ ⊗ L⊗δ) has dimension r(ℓδ − g + 1) − d, and this means that ϕ is well

defined. The map ϕ is also injective from Lemma 3.2 and Remark 3.3. In this way,

the moduli space MΣ can be regarded as a closed subvariety of the Grassmannian

Gr in (4.3).

One advantage of our description of the moduli space MΣ is that one can address

its smoothness in a straightforward way. Take any point z := (E , s) ∈ MΣ of the

moduli space. Let

0 −→ E∗ f∗
s−→ O⊕n

Σ −→ K∗ ⊕ T =: Q −→ 0

be the short exact sequence constructed in (3.3) from the n-pair (E , s). The tangent

space to MΣ at the point z := (E , s) has the following description:

(4.7) TzMΣ = H0(Σ, Hom(E∗ ,Q)) = H0(Σ, E ⊗Q) .
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The obstruction to smoothness of MΣ at z is given by

Ext1OΣ
(E∗ ,Q) ,

where Ext1OΣ
is the global Ext. Since E∗ is a vector bundle,

(4.8) Ext1OΣ
(E∗ ,Q) = H1(Σ, E∗ ⊗Q∗) .

In the local case, where n = r := rank(E), the quotients Q in (3.3) are torsion

sheaves supported on finitely many points of Σ. In that case, E∗ ⊗Q∗ is a torsion

sheaf, and hence

H1(Σ, E ⊗Q) = 0 .

Therefore, from (4.8) we conclude Ext1OΣ
(E∗ ,Q) = 0 if n = r, implying that the

variety MΣ is smooth if n = r.

From the description in terms of local n-pairs, one can compute the dimen-

sion of the moduli spaces by standard Riemann–Roch arguments, recovering results

in [BDW2]. Assume that d > r(g − 1). Then we claim that

(4.9) dimMΣ = nd+ r(r − n)(g − 1) .

To see this, note that the dimension of the space of infinitesimal deformations of a

simple vector bundle E −→ Σ of rank r, which coincides with dimH1(Σ, End(E)),

is r2(g− 1)+ 1 by the Riemann–Roch theorem. Also, for a general vector bundle E

of rank r and degree d with d > r(g−1), the dimension of H0(X, E) is d− r(g−1)

again by Riemann–Roch and the fact thatH1(X, E) = 0. When d ≤ r(g−1), there

will not be such a simple formula because H1(Σ, E) 6= 0 for general E. However,

in the local case r = n, the formula (4.9) will remain valid, as we will see explicitly

in Section 6 below.

Since the map ϕ in (4.6) embeds MΣ in Gr as a complex submanifold, we can

obtain Kähler structures on the moduli space MΣ by restricting a Kähler forms

on the Grassmann manifold Gr to it. In the following, we shall denote by ωGr the

Kähler form on the moduli space MΣ obtained by pulling back the Fubini–Study

2-form on Gr described above, using the embedding ϕ. In the next section, we will

see when it will be possible to make ωGr cohomologous to the usual Kähler structure

ωL2 on the moduli space of vortices, in the abelian case where the Kähler class [ωL2]

is known.

Although the Kähler form ωL2 depends on both the metric on Σ and a Hermitian

metric on the vector bundle E −→ Σ, there is a natural splitting ωL2 = ω1 + ω2,

where ω1 is a closed (1, 1)-form depending only on ωΣ (see [MN] for the abelian

case). A natural question to ask is how ω1 is related to ωGr when the prequantization

condition (4.2) is imposed. This is one issue that we plan to address in future work.
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5. Abelian local vortices: n = r = 1

It is natural to ask whether the Kähler form ωGr on the vortex moduli space MΣ

induced from the embedding ϕ into the Grassmannian manifold, as described in

Section 4, is related to the L2 Kähler structure inherited naturally from the gauge

theory, which is of interest to physicists. We shall address this issue in the present

section, but our discussion will be restricted to the case of abelian local vortices,

where n = 1, r = 1. So throughout this section we will be assuming that

MΣ = MΣ(1, 1, d) .

5.1. Some background on the geometry of the abelian local case. Let us

briefly recall how the Kähler structures ωL2 on MΣ arise in the abelian local case.

There are many alternative descriptions of the L2 metrics of vortices, but here we

will concentrate on a particularly insightful one given by Garćıa-Prada in [Ga],

which uses infinite-dimensional symplectic geometry. The space of fields appearing

as variables in the vortex equations (1.1)–(1.2) is A × C, where A is the space of

unitary connections on the line bundle E −→ Σ and C = C∞(Σ, E) is the vector

space of smooth sections of this bundle. Any two connections differ by a global real

1-form on Σ with values on the Lie algebra u(1) ∼=
√
−1 ·R, so A is an affine space

modelled on the vector space Ω1(Σ,R). Thus in fact A× C is a complex manifold

with complex structure induced from the one on Σ:

(5.1) (Ȧ, φ̇) 7−→ (∗A ,
√
−1 φ̇) .

The component of this map in the first factor is the Hodge star operator on Σ acting

on 1-forms, which squares to −idΩ1(Σ), whereas the component in the second factor

is the complex structure on the fibers of the bundle E −→ Σ.

There is an action of the gauge group AutΣ(E) ∼= C∞(Σ,U(1)) on fields (A, φ) ∈
A× C, namely

(5.2) (A, φ) 7−→ (A− u−1du, uφ) ,

where u ∈ AutΣ(E). This action turns out to be Hamiltonian with respect to a

natural product symplectic form,

(5.3) ωA + ωC ,

defined on the space of fields. The factor denoted by ωA in (5.3) is the Atiyah–Bott

structure [AB] on the space of connections A, while ωC is the natural symplectic

structure (of constant coefficients, hence closed) on C produced out of the Kähler

structure on Σ and the Hermitian metric on E. The latter is usually simply called

the L2 structure (on C), since it is associated to the metric

||φ̇||2L2 =

∫

Σ

(φ̇, φ̇)hE
ωΣ
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defined for all sections φ̇ ∈ C∞(Σ, E) ∼= TφC, for any φ ∈ C. The complex structure

(5.1) on the space of fields A× C preserves (5.3), so one can regard this space as a

Kähler manifold.

The first vortex equation (1.1) is invariant under the complex structure (5.1), so

the infinite-dimensional submanifold N of solutions to this equation (pairs (A, φ)

where φ is a holomorphic section for the holomorphic structure on E −→ Σ as-

sociated to the connection A, cf. [DK]) has an induced Kähler structure, which is

again preserved by the AutΣ(E)-action (5.2). It turns out that the left-hand side of

the second vortex equation (1.2) is a moment map for this action. So the moduli

space of solutions of both (1.1) and (1.2), where the action of the group of gauge

transformations is quotiented out, can be understood as the infinite-dimensional

Meyer–Marsden–Weinstein quotient

(5.4) MΣ = N //AutΣ(E) .

This receives a symplectic structure, denoted as ωL2 , and which is usually referred

to as the L2 structure on the moduli space of vortices MΣ. In fact, this argument is

formal, since we are dealing with an infinite-dimensional quotient, but the intuitive

picture just given is confirmed by the analysis carried out in [Ga], which is itself

quite insightful. The Kähler form ωL2 satisfies the properties

p∗ωL2 = i∗(ωA + ωC), i : N →֒ A× C ,

where p denotes the projection from N to the space of AutΣ(E)-orbits.

Under the stability condition (2.2), Bradlow [Br1] and Garćıa-Prada [Ga] showed

that the quotient MΣ in (5.4) can be identified with the d-th symmetric power of

Σ,

(5.5) MΣ
∼= Symd(Σ) := Σd/Sd

as a complex manifold. This space parametrizes effective divisors of degree d, inter-

preted as portrayals of vortex locations on Σ. But the symplectic structure ωL2 on

MΣ turns out to be much more difficult to describe explicitly.

When comparing ω2
L with ωGr, the most basic question to ask is whether the two

are cohomologous (up to a scalar multiple, say) for any choice of the data. The

answer to this question is trivially affirmative if g = 0, since then Symd(Σ) ∼= Pd

and H2(Pd,Z) ∼= Z, so the interesting setting for this question is g ≥ 1. Then the

cohomology ring of Symd(Σ) is more complicated; the intersection

(5.6) H1,1(Symd(Σ),C) ∩H2(Symd(Σ),Z),

where the Kähler classes of the moduli space are contained, turns out to be a rank

two lattice. The Kähler class [ωL2 ] has been computed as [MN, Ba2]

(5.7) [ωL2 ] =

(
πτVol(Σ)− 4π2d

e2

)
η +

2π2

e2
σ ;
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a description of the generators η and σ of (5.6) will be given in Section 5.3. It

is remarkable that this formula involves so little detail on the geometrical data

needed to set up the vortex equations and to define the L2 metric. In the following,

we shall be interested in calculating the Kähler class [ωGr] and relating it with

[ωL2]. The result (5.7) has been used to compute the symplectic volume of the

moduli space [MN] and the total scalar curvature [Ba2] — such quantities carry

only cohomological information.

5.2. Description of the embedding. In the abelian local case, we can describe

the embedding (4.6) constructed in Section 4 more explicitly. More precisely, we

will be interested in characterizing the composition P ◦ ϕ, where P is the Plücker

embedding (4.4). Given the result (5.5), the map we are interested in is

(5.8) P ◦ ϕ : Symd(Σ) −→ P(∧ℓδ−g−d+1H0(Σ, L⊗δ))

where P and ϕ are constructed in (4.4) and (4.6), respectively. We shall give a

description the holomorphic line bundle on Symd(Σ) associated to this projective

embedding.

Let p1 (respectively, p2) be the projection of Symd(Σ)×Σ to Symd(Σ) (respectively,

Σ). Let also

∆0 ⊂ Symd(Σ)× Σ

be the tautological divisor consisting of all points (z , x) ∈ Symd(Σ)× Σ such that

x ∈ z.

Consider the line bundle p∗2L⊗δ on Symd(Σ)×Σ, and the torsion sheaf defined by

B := p∗2L⊗δ/(p∗2L⊗δ ⊗OSymd(Σ)×Σ(−∆0)) −→ Symd(Σ)× Σ.

The support of B is ∆0, which is finite over Symd(Σ) of degree d. Hence the direct

image

p1∗B −→ Symd(Σ)

is a vector bundle of rank d. So
∧d p1∗B is a line bundle over Symd(Σ).

We have a canonical isomorphism of line bundles over Symd(Σ)

(5.9)
∧d

p1∗B = (P ◦ ϕ)∗OP(∧ℓ−g−d+1H0(Σ,L⊗δ))(1) ,

where P ◦ ϕ is the map in (5.8), and

OP(∧ℓ−g−d+1H0(Σ,L⊗δ))(1) −→ P(∧ℓ−g−d+1H0(Σ, L⊗δ))

is the tautological line bundle. This means that the embedding (5.8) is associ-

ated to the complete linear system corresponding to the holomorphic line bundle∧d p1∗B −→ Symd(Σ).



16 I. BISWAS AND N. M. ROMÃO

5.3. Representability of the L2 Kähler structure. Our main goal in this section

is to prove the following representability result:

Theorem 5.1. Consider the embedding (5.8), constructed from an ample line bundle

L −→ Σ of degree ℓ and an integer δ > δ1,1,d, where δ1,1,d is as in Proposition 3.4

and d > 1. Then the Fubini–Study metric on Symd(Σ) (obtained by pulling back

the usual Fubini–Study metric using this map) is cohomologous to a multiple of the

L2-metric of vortices on the line bundle E −→ Σ exactly when

(5.10) q :=
τe2

4π
Vol(Σ) ∈ N

and the integers ℓ, δ are chosen such that

(5.11) ℓδ = q + g − 1 .

This result means that, at least in the abelian local case, the Kähler structure

ωGr on MΣ discussed in Section 4 provides a realization of the Kähler class of the

L2 geometry of vortices if (5.10) and (5.11) hold. Note that the condition (5.10) is

rather natural from the point of view of geometric quantization, as it implies that

the symplectic structure e2

2π2 ωL2 is (pre)quantizable in the sense of Weil:

(5.12)

[
e2

2π2
ωL2

]
∈ H2(MΣ,Z)

(From (5.7), it follows that the Weil quantization condition (5.12) is equivalent to

q ∈ 1
2
N.) It would be very striking if the full L2 geometry were to be described by

a Fubini–Study structure, but we will not attempt to address this question here.

Even in the case g = 0, for which the representability of [ωL2 ] in the sense we are

using is trivial, this question has not yet been settled rigorously.

To set the stage for the proof of Theorem 5.1, we introduce the following curves

on Symd(Σ), regarded as the space of degree d effective divisors on Σ:

Σ∅ := {dx | x ∈ Σ},
Σp := {p+ (d− 1)x | x ∈ Σ}, for p ∈ Σ.

We shall denote their cohomology classes by

Σ0 = [Σ∅] and Σ1 = [Σp],

respectively. (Clearly, the cohomology class of Σp is independent of p ∈ Σ because

we are assuming that Σ is connected.) Let us also set

d0 := deg(P ◦ ϕ(Σ∅)),(5.13)

d1 := deg(P ◦ ϕ(Σp))(5.14)

to be the degrees of the images of the curves above by the map (5.8), whose target

is a complex projective space of dimension

N =

(
ℓδ − g + 1

d

)
− 1 .
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We first claim that the integers d, g, d0 and d1 determine the cohomology class

[(P ◦ ϕ)∗ωFS] ∈ H1,1(Symd(Σ),C) ∩H2(Symd(Σ),Z).

To describe this, we start by recalling the basic result [M]

Hk(Symd(Σ),Z) ∼= Hk(Σd,Z)Sd, k ∈ N .

The intersection of cohomology groups in (5.6) is generated over Z by the two

cohomology classes of degree two [MN]

(5.15) η =

d∑

i=1

βi and σ =

g∑

j=1

σj .

Here, the cohomology classes βi come from the fundamental class β ∈ H2(Σ,Z);

more precisely, βi = π∗
i β, where πi : Σ

d −→ Σ denotes the projection to the i-th

factor. Moreover, we denote

(5.16) σj := ξjξj+g, where ξj =
d∑

k=1

αj,k, 1 ≤ j ≤ 2g,

and the αj,k are classes of degree one which come from the middle cohomology of

Σ, namely

αj,k = π∗
kαj .

In this expression, the αj denote elements in a standard basis of H1(Σ,Z), satisfy-

ing [F]

αiαj = 0 i 6= j ± g,

αiαi+g = −αi+gαi = β 1 ≤ i ≤ g.

So we may write

(5.17) (P ◦ ϕ)∗[ωFS] = Cηη + Cσσ ,

where η and σ are the generators in (5.15), so our task is to obtain the coefficients

Cη, Cσ ∈ Z as functions of d, g, d0 and d1.

Lemma 5.2. The duality pairing on Symd(Σ) satisfies:

〈η,Σj〉 = d− j and 〈σ,Σj〉 = (d− j)2g for j ∈ {0, 1}.

Proof. The pairings for j = 0 can be reduced to computations in the cohomology

ring of Symd(Σ), which has been given a presentation in [M, (6.3)]. In fact, the

statement in reference [M] is not totally accurate — we refer the reader to Section 2

of [BT] for the corrected result. For our purposes, it will suffice to state that

H∗(Symd(Σ),Z) is generated by the classes η in (5.15) and ξj in (5.16), j = 1, . . . , 2g,

which supercommute according to the parity of their degrees; in particular, one has

ησj = σjη, j = 1, . . . , g,
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where σj were defined in (5.16), since η and ξj commute. The extra relations among

the generators can be expressed as follows: given three disjoint subsets

I1, I2, J ⊂ {1, . . . , g}
and a nonnegative integer r satisfying [BT, (2.3)]

r ≥ d− |I1| − |I2| − 2|J |+ 1,

there is a nontrivial relation

(5.18) ηr
∏

i1∈I1

ξi1
∏

i2∈I2

ξi2+g

∏

j∈J

(η − σj) = 0.

For d ≥ 1, we have the relation

(5.19) ηd−1σ = gηd.

This follows from summing the relations

(5.20) ηd−1σj = ηd, j = 1, . . . , g

over j. Notice that (5.20) can be obtained from (5.18) by taking r = d− 1, J = {j}
and I1 = I2 = ∅.

Another relation contained in (5.18) is that, for i 6= j and d > 1,

(5.21) ηd−2σiσj = ηd−1(σi + σj)− ηd;

this one is obtained by setting r = d − 2, J = {i, j} and I1 = I2 = ∅. Since σ2
j = 0

from the anticommutativity of the ξj’s (for each j = 1, . . . , g), we also have that

ηd−2σ2 = 2
∑

1≤i<j≤g

ηd−2σiσj

= 2
∑

1≤i<j≤g

ηd−1(σi + σj)− g(g − 1)ηd(5.22)

= g(g − 1)ηd.(5.23)

Step (5.22) made use of (5.21), whereas (5.23) used (5.20).

Another useful result by Macdonald [M, (15.4)] is that the Poincaré dual of the

homology class Σ0, for d > 1, is given by

(5.24) PD(Σ0) = d(d+ (g − 1)(d− 1))ηd−1 − d(d− 1)ηd−2σ.

This can be applied to calculate

〈η,Σ0〉 = d

∫

SymdΣ

(d+ (d− 1)(g − 1))ηd − (d− 1)ηd−1σ

= d

∫

SymdΣ

(d+ (d− 1)(g − 1)− (d− 1)g)ηd(5.25)

= d

∫

SymdΣ

ηd

= d.(5.26)
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The second step (5.25) used (5.19), whereas the last step (5.26) follows from the

fact that ηd is the fundamental class of Symd(Σ).

Using (5.24) once again, we can write

〈σ,Σ0〉 = d

∫

SymdΣ

(d+ (d− 1)(g − 1))σηd−1 − (d− 1)σηd−2σ

= d

∫

SymdΣ

((d+ (d− 1)(g − 1))g − (d− 1)g(g − 1))ηd(5.27)

= d2g,

where (5.27) is a consequence of (5.20) and (5.23).

Now consider the map ι : Σ −→ Σp given by

x 7−→ p+ (d− 1)x ∈ Symd(Σ) ,

which is a biholomorphism. We have

(5.28) ι∗η = (d− 1)β

and

ι∗ξj = (d− 1)αj, j = 1, . . . , 2g,

which in turn implies

ι∗(ξjξj+g) = (d− 1)2αjαj+g = (d− 1)2β, j = 1, . . . , g.

It follows that

(5.29) ι∗σ = (d− 1)2gβ .

So we can finally compute

〈η,Σ1〉 =

∫

Σp

η

=

∫

Σ

ι∗η

= (d− 1)

∫

Σ

β

= d− 1

using (5.28), and likewise, from (5.29),

〈σ ,Σ1〉 = (d− 1)2g .

This completes the proof of the lemma. �

Since

〈(P ◦ ϕ)∗[ωFS],Σj〉 = dj for j = 0, 1,
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the constants Cη and Cσ in (5.17) can be determined by solving a linear system

whose coefficients are the four pairings in Lemma 5.2. The solution is

Cη =
d2d1 − (d− 1)2d0

d(d− 1)
,(5.30)

Cσ =
(d− 1)d0 − dd1
d(d− 1)g

,(5.31)

and this establishes our claim.

We want to compare the resulting Kähler class (5.17) with the Kähler class [ωL2]

in (5.7) associated to the L2 metric of vortices. The next task is to determine the

degrees d0 and d1 defined in (5.13)–(5.14), in terms of the basic topological data.

Lemma 5.3. dj = (d− j)(ℓδ + (d− j − 1)(g − 1)− j) for j ∈ {0, 1}.

Proof. Let

(5.32) ψ : Σ −→ Symd(Σ)

be the morphism defined by x 7−→ dx. Note that d0 in (5.13) is the degree of

(P ◦ ϕ ◦ ψ)∗OP(∧ℓδ−g−d+1H0(Σ,L⊗δ))(1) ,

where P ◦ ϕ is the morphism in (5.8).

Let KΣ be the holomorphic cotangent bundle of Σ.

Take any point x ∈ Σ. We have a natural filtration of coherent sheaves

Lδ ⊗OΣ(−dx) ⊂ Lδ ⊗OΣ((1− d)x) ⊂ · · · ⊂ Lδ ⊗OΣ(−ix)
⊂ Lδ ⊗OΣ((1− i)x) ⊂ · · · ⊂ Lδ ⊗OΣ(−x) ⊂ Lδ .

For any i ∈ [1 , d], the quotient Lδ⊗OΣ((1− i)x)/Lδ⊗OΣ(−ix) is the torsion sheaf

Lδ
x ⊗ (K

⊗(i−1)
Σ )x supported at x. Consequently, we have a canonical identification

(P ◦ ϕ ◦ ψ)∗OP(∧ℓδ−g−d+1H0(Σ,L⊗δ))(1)x = Ldδ
x ⊗ (K

⊗d(d−1)/2
Σ )x

(see (5.9)), where ψ is the map in (5.32). Moving x over Σ, this isomorphism

produces an isomorphism of line bundles

(P ◦ ϕ ◦ ψ)∗OP(∧ℓδ−g−d+1H0(Σ,L⊗δ))(1) = Ldδ
x ⊗ (K

⊗d(d−1)/2
Σ )

Since deg(KΣ) = 2(g−1), this immediately implies that d0 = d(ℓδ+(g−1)(d−1)).

Fix a point p ∈ Σ. Let

(5.33) ψ1 : Σ −→ Symd(Σ)

be the morphism defined by x 7−→ p + (d − 1)x. Note that d1 in (5.14) coincides

with

deg((P ◦ ϕ ◦ ψ1)
∗OP(∧ℓδ−g−d+1H0(Σ,L⊗δ))(1)) ,

where P ◦ ϕ is the morphism in (5.8).

For notational convenience, the line bundle Lδ ⊗OΣ(−p) will be denoted by ζ .
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As before, take any point x ∈ Σ. We have a natural filtration of coherent sheaves

ζ ⊗OΣ((1− d)x) ⊂ ζ ⊗OΣ((2− d)x) ⊂ · · · ⊂ ζ ⊗OΣ(−x) ⊂ ζ .

For any i ∈ [1 , d−1], the quotient ζ⊗OΣ((1−i)x)/Lδ⊗OΣ(−ix) is the torsion sheaf

ζx ⊗ (K
⊗(i−1)
Σ )x supported at x. Consequently, we have a canonical identification

(P ◦ ϕ ◦ ψ1)
∗OP(∧ℓδ−g−d+1H0(Σ,L⊗δ))(1)x = ζ⊗(d−1)

x ⊗ (K
⊗(d−1)(d−2)/2
Σ )x ⊗L⊗δ

p ,

(see (5.9)), where ψ1 is the map in (5.33). Fixing an isomorphism of the line L⊗δ
p

with C (recall that p is fixed), and moving x over Σ, the above isomorphism gives

an isomorphism of line bundles

(P ◦ ϕ ◦ ψ1)
∗OP(∧ℓδ−g−d+1H0(Σ,L⊗δ))(1) = ζ⊗(d−1)

x ⊗ (K
⊗(d−1)(d−2)/2
Σ ) .

Since deg(ζ) = ℓδ−1, this implies that d1 = (ℓδ−1)(d−1)+(g−1)(d−1)(d−2). �

Proof of Theorem 5.1. Using Lemma 5.3 in (5.30) and (5.31), we find

Cη = ℓδ − d− g + 1,

Cσ = 1,

which are integers as expected. Comparing with the coefficients of η and σ in

(5.7), the formula (5.11) for the quantity q in Theorem 5.1 immediately follows.

The quantization condition (5.10) results from all the other terms in (5.11) being

integers. �

Note that when the inequality (2.2) ensuring stability is saturated, in the situation

(5.34) τ → 4πd

e2Vol(Σ)

which is called the limit of “dissolved” vortices by Manton and Romão in [MR], the

quantization condition (5.10) is automatically satisfied with q = d. Then imposing

the condition (5.11) implies that (4.1) also becomes an equality, which unfortunately

makes the Grassmannian (4.3) collapse. The nontrivial situation closest to this

collapse would be to consider

τ =
4π(d+ 1)

e2Vol(Σ)
⇒ q = d+ 1,

for which the Grassmannian (4.3) is a projective space; if the area of Σ is taken

to be large, this value of τ will still be close to the critical value (5.34). In this

context (provided δ1,1,d does not turn out to be too large), the geometry of the

Kähler structure ωGr we introduced in Section 4, assuming ℓδ = d + g, should give

an approximation of the L2 geometry of the moduli spaces, as an extension of the

work by Baptista and Manton [BM] in the case g = 0.
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6. Nonabelian local vortices: n = r > 1

In this section we shall assume that r = n and will give a description of the non-

abelian situation n > 1 by means of Hecke modifications [FB, HL] on holomorphic

vector bundles over Σ. So from now on we shall let

MΣ = MΣ(n, n, d)

denote the moduli space of local vortices (see (4.5)). We know that these can also be

described as n–pairs if the condition (2.2) holds; these sections generically generate

the vector bundle.

Take any (E , s) ∈ MΣ. Consider the homomorphism fs in (3.2). Since the

sections of E in s generate E generically, the quotient E/fs(O⊕n
Σ ) is a torsion sheaf

supported on finitely many points, and we have

dimH0(Σ, E/fs(O⊕n
Σ )) = d .

Let

(6.1) Φ : MΣ −→ Symd(Σ)

be the map to the symmetric product that sends each pair (E , s) to the scheme-

theoretic support [EH] of the torsion sheaf E/fs(O⊕n
Σ ). To explain what this map Φ

does, let mx denote the dimension of the stalk of E/fs(O⊕n
Σ ) at each point x ∈ Σ.

Then Φ sends (E , s) to
∑

x∈Σmx · x.
The map Φ in (6.1) is clearly surjective. In what follows, we shall describe its

fibers step by step, and obtain a description of the moduli space as a stratification

by the type of the partitions of d associated to effective divisors of degree d.

6.1. The case of distinct points. Let Pr−1 be the projective space of hyperplanes

in Cr. Take d distinct points

x1 , . . . , xd ∈ Σ .

Let x ∈ Symd(Σ) be the point defined by {x1 , · · · , xd}. We will show that the fiber

of Φ over x is the Cartesian product (Pr−1)d. This is a description of the generic

fiber of the map Φ, and it coincides with the one in [Ba1].

Take any (H1 , · · · , Hd) ∈ (Pr−1)d. So each Hi is a hyperplane in Cr. The fiber

of the trivial vector bundle (O⊕n
Σ )∗ = O⊕n

Σ over xi is identified with Cr. Thus the

hyperplane Hi ⊂ Cr defines a hyperplane H̃i in the fiber of (O⊕n
Σ )∗ over the point

xi. Let

(6.2) q̃ : (O⊕n
Σ )∗ −→

d⊕

i=1

((O⊕n
Σ )∗)xi

/H̃i
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be the quotient map. The kernel of q̃ will be denoted by K̃, and we have the following

short exact sequence of sheaves on Σ:

0 −→ K̃ h−→ (O⊕n
Σ )∗

q̃−→
d⊕

i=1

((O⊕n
Σ )∗)xi

/H̃i −→ 0 .

Now consider the dual of the homomorphism h above,

h∗ : O⊕n
Σ −→ K̃∗ .

It is easy to see that the pair (K̃∗ , h∗) defines a point in the fiber of Φ (see (6.1))

over the point x, and that all the points in the fiber can be obtained by choosing

the hyperplanes Hi suitably. This construction identifies the fiber of Φ over x with

the Cartesian product (Pr−1)d. Employing the usual terminology, we can say that

we have constructed the bundle E = K̃ of an n-pair by performing d elementary

Hecke modifications (one at each xi) on the trivial bundle of rank r = n over Σ,

and the inclusion h yields the morphism h∗ = fs in (3.2) which is equivalent to a

holomorphic section s ∈ H0(Σ, E⊕n).

6.2. Case of multiplicity two. Now take d− 1 distinct points

x1 , . . . , xd−1 ∈ Σ .

Let x ∈ Symd(Σ) be the point defined by 2x1+
∑d−1

j=2 xj . We will describe the fiber

of Φ over x.

Let H1 be a hyperplane in Cr. Let

q1 : (O⊕n
Σ )∗ −→ ((O⊕n

Σ )∗)x1
/H̃1

be the quotient map, where, just as in (6.2), H̃1 is the hyperplane in the fiber of

(O⊕n
Σ )∗ over x1 given by H1. Let K(H1) denote the kernel of q1. So we have a short

exact sequence of sheaves on Σ

(6.3) 0 −→ K(H1) −→ (O⊕n
Σ )∗ −→ ((O⊕n

Σ )∗)x1
/H̃1 −→ 0 .

Consider the space S2 of all objects of the form

(H1 , H2 , · · · , Hd−1 ;H
1) ,

where Hi, 1 ≤ i ≤ d − 1, is a hyperplane in Cr, and H1 is a hyperplane in the

fiber over x1 of the vector bundle K(H1). There is a natural surjective map from

this space S2 to the fiber of Φ over the point x of Symd(Σ). To construct this map,

first note that it follows from (6.3) that for any point x ∈ Σ different from x1, the

fibers of K(H1) and (O⊕n
Σ )∗ over x are identified. Hence for any 2 ≤ j ≤ d − 1,

the hyperplane Hj gives a hyperplane in the fiber of K(H1) over the point xj ; this

hyperplane in the fiber of K(H1) will be denoted by H̃j. Let K be the holomorphic

vector bundle over Σ that fits in the following short exact sequence of sheaves:

(6.4) 0 −→ K h−→ K(H1) −→ (K(H1)x1
/H1)⊕

d−1⊕

j=2

K(H1)xj
/H̃j −→ 0 .
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As before, let h∗ denote the dual map to h in (i3) and K∗ the dual sheaf to K = kerh.

The pair (K∗ , h∗) defines an element of the moduli space MΣ that lies over x for

the projection Φ. Moreover, all elements in the fiber over x arise in this way for

some element of S2.

Sending any (H1 , H2 , · · · , Hd−1 ;H
1) ∈ S2 to (H1 , H2 , · · · , Hd−1) we see that S2

is a projective bundle over (Pr−1)d−1 of relative dimension r−1. Therefore, we have

the following lemma:

Lemma 6.1. The fiber Φ−1(x) admits a natural surjective map from S2. The variety

S2 is a projective bundle over (Pr−1)d−1 of relative dimension r − 1.

6.3. Case of multiplicity m > 2. Let m be an integer satisfying 2 < m ≤ d, and

fix d−m+ 1 distinct points x1 , x2 , · · · , xd−m+1 of Σ. Let

x ∈ Symd(Σ)

be the point defined by m · x1 +
∑d−m+1

j=2 xj .

Let H1 be a hyperplane in Cr. Construct K(H1) as in (6.3). Let

H1 ⊂ K(H1)x1

be a hyperplane in the fiber of the vector bundle K(H1) over the point x1. Let K(H1)

be the holomorphic vector bundle over Σ that fits in the following exact sequence of

sheaves

0 −→ K(H1) −→ K(H1) −→ K(H1)x1
/H1 −→ 0 .

Now fix a hyperplane

H2 ⊂ K(H1)x1

in the fiber of K(H1) over x1. Let K(H2) be the holomorphic vector bundle over Σ

that fits in the following short exact sequence of sheaves

0 −→ K(H2) −→ K(H1) −→ K(H1)x1
/H2 −→ 0 .

Inductively, after j steps as above, fix a hyperplane

Hj+1 ⊂ K(Hj)x1

and construct the vector bundle K(Hj+1) that fits in the short exact sequence

(6.5) 0 −→ K(Hj+1) −→ K(Hj) −→ K(Hj)x1
/Hj+1 −→ 0 .

Consider the space Sm of all elements of the form

(H1 , H2 , · · · , Hd−m+1 ;H
1 , H2 , · · · , Hm−1) ,

where Hi is a hyperplane in Cr, while H1 is a hyperplane in K(H1)x1
, and each

Hj is a hyperplane in the fiber over x1 of the vector bundle K(Hj−1). There is a

natural map from Sm to the fiber of Φ over the point x. To construct this map,

first note that, from (6.5), it follows inductively that for any point x ∈ Σ \ {x1},
the fiber of K(Hj+1) over x is identified with the fiber of (O⊕n

Σ )∗ over x. Therefore,

for 2 ≤ i ≤ d−m+ 1, the hyperplane Hi in Cr defines a hyperplane in the fiber of
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K(Hm−1) over the point xi; this hyperplane in the fiber K(Hm−1)xi
will be denoted

by H̃i. Let K be the holomorphic vector bundle over Σ that fits in the following

short exact sequence of sheaves:

(6.6) 0 −→ K h−→ K(Hm−1) −→
d−m+1⊕

j=2

K(Hm−1)xj
/H̃j −→ 0 .

The pair (K∗ , h∗) in (6.6) defines a point of the moduli space MΣ that lies over

x. All points in the fiber over x arise in this way, for some element of Sm.

Consider the m− 1 maps

Sm −→ · · · −→ (Pr−1)d−m+1

defined by

(H1 , H2 , · · · , Hd−m+1 ;H
1 , H2 , · · · , Hm−1) 7−→

(H1 , H2 , · · · , Hd−m+1 ;H
1 , H2 , · · · , Hm−2) 7−→ · · · 7−→ (H1 , H2 , · · · , Hd−m+1) .

Each of these is a projective bundle of relative dimension r− 1. Therefore, we have

the following generalization of Lemma 6.1:

Lemma 6.2. The fiber Φ−1(x) admits a natural surjective map from Sm. There is

a chain of m− 1 maps starting from Sm ending in (Pr−1)d−m+1 such that each one

is a projective bundle of relative dimension r − 1.

6.4. The general case. The general case is not harder to understand than the

previous case.

Take any point x :=
∑a

i=1mi · xi of Symd(Σ), where mi are arbitrary positive

integers addind up to d and xi ∈ Σ, i = 1, . . . , a. For each point xi, fix data

(Hi , H
1
i , · · · , Hmi−1

i ), where Hi is a hyperplane in Cr, and the Hj
i are hyperplanes

in the fibers, over xi, of vector bundles constructed inductively as in the previous

case. From the set of such objects, there is a canonical surjective map to the fiber

of Φ over x by repeating the argument above.
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