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ORDER-THEORETIC PROPERTIES OF BASES IN

TOPOLOGICAL SPACES I

MENACHEM KOJMAN, DAVID MILOVICH, AND SANTI SPADARO

Abstract. We study some cardinal invariants of an order-theoretic fashion
on products and box products of topological spaces. In particular, we concen-
trate on the Noetherian type (Nt), defined by Peregudov in the 1990s. Some
highlights of our results include:
(1) There are spaces X and Y such that Nt(X ×Y ) < min{Nt(X), Nt(Y )}.
(2) In several classes of compact spaces, the Noetherian type is preserved by

their square and their dense subspaces.
(3) The Noetherian type of some countably supported box products cannot

be determined in ZFC. In particular, it is sensitive to square principles
and some Chang Conjecture variants.

(4) PCF theory can be used to provide ZFC upper bounds to Noetherian type
on countably supported box products. The underlying combinatorial
notion is a weakening of Shelah’s freeness.

1. Introduction

Van Douwen’s Problem (see [20]) asks about the existence of a compact homoge-
neous space whose cellularity exceeds the continuum. We say that a homogeneous
compactum is exceptional if it is not homeomorphic to a product of dyadic com-
pacta and first-countable compacta. By Arhangel′skĭı’s Theorem first-countable
compacta have size ≤ c. Moreover dyadic compacta are ccc. So all non-exceptional
homogeneous compacta have cellularity bounded by c. To the best of our knowl-
edge there are essentially two examples of exceptional homogeneous compacta (see
[26]).

We are interested in order-theoretic cardinal functions that, just like cellularity,
have bounds on the class of all known homogeneous compacta. Here we study
the behavior of these cardinal functions with regard to products and countably
supported box-products, motivated in part by the structure theory of homogeneous
compacta.

All the cardinal functions we are interested in are obtained from the classical
ones by means of the following definition.

Definition 1.1. [27] Given a cardinal κ, define a poset to be κop-like if no element
is below κ many elements.
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Definition 1.2. [29] The Noetherian type of X (Nt(X)) is defined as the least
infinite cardinal κ such that X has a base which is κop-like with respect to inclusion.
The π-Noetherian type of X (πNt(X)) is defined as the least infinite cardinal κ such
thatX has a κop-like π-base. The local Noetherian type at the point x (χNt(x,X)) is
defined as the least infinite cardinal κ such that x has a κop-like local base. The local
Noetherian type of X (χNt(X)) is defined as χNt(X) = sup{χNt(x,X) : x ∈ X}.

Spaces with Noetherian type ω (respectively, ω1) were called Noetherian (re-

spectively weakly Noetherian) by Peregudov and S̆hapirovskĭı [30]. Spaces with
countable Noetherian type were also studied under the name of spaces with an
Open in Finite (OIF) base by Balogh, Bennett, Burke, Gruenhage, Lutzer and
Mashburn in [6], by Bennett and Lutzer in [7] and by Bailey in [4], especially in the
context of generalized metric spaces, metrization theorems and generalized ordered
spaces.

Theorem 1.3. [29, 27] Let X =
∏

i∈I Xi. Then:

Nt(X) ≤ sup
i∈I

Nt(Xi)

πNt(X) ≤ sup
i∈I

πNt(Xi)

χNt(X) ≤ sup
i∈I

χNt(Xi)

All information about the Noetherian type of a space is lost in its large powers.
This is a direct consequence of the following theorem of Malykhin.

Theorem 1.4. Let X =
∏

i∈I Xi where each Xi has a minimal open cover of size
two (which is the case, for example, if X is T1 and has more than one point). If
supi∈I w(Xi) ≤ |I|, then Nt(X) = ω.

In particular, Nt(Xw(X)) = ω for every T1 space X .
Another easy, but nonetheless surprising consequence of the above theorem is

the following.

Example 1.5. There are compact spacesX and Y such that Nt(X×Y ) < Nt(X)·
Nt(Y ).

Proof. Let κ be a regular infinite cardinal. Let X = 2κ, with the usual topology
and Y = κ+ 1 with the order topology. By Theorem 1.4 we have Nt(X × Y ) = ω.
However, it is easy to see using the Pressing-down Lemma that Nt(Y ) = κ+. �

In view of the above example it is natural to ask:

Question 1.6. Is is true that for every (compact) space X then Nt(X2) = Nt(X)?

Balogh, Bennett, Burke, Gruenhage, Lutzer and Mashburn similarly asked whether
there exists X with Nt(X2) = ω < Nt(X) (see [6], Question 1). We will of-
fer some partial positive answers for the compact case, as well as an example of
Nt(X × Y ) < min{Nt(X), Nt(Y )}.

In the final section of our paper we will study Noetherian type in spaces where Gδ

sets are open. We will give a Noetherian analogue of a classical bound of Juhász on
the cellularity of the Gδ modification of a compact space. While Juhasz’s was a ZFC
theorem, we will need to assume (a weakening of) the GCH and another condition in
our result. However, modulo large cardinals, we will show that ours is the sharpest
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possible such result. Finally, we will apply tools from PCF theory to give a detailed
study of the Noetherian type of a certain product with the countably supported
box topology. It will turn out that although its exact value is independendent of
the axioms of set theory, still a lot can be said about it in ZFC.

2. Subsets of bases and the Noetherian type of compact squares and

dense subspaces

The only approach we know towards proving that Nt(X2) = Nt(X) for a space
X is based on the following lemma.

Lemma 2.1. ([28]) Let X be any space and n ∈ ω. Then Ntbox(X
n) = Nt(X).

Where Ntbox(X
n) is the minimum infinite cardinal κ such that Xn has a κop-like

base consisting of boxes.
If we were able to prove that every base of Xn consisting of boxes contains a

base which is Nt(Xn)op-like, then Nt(X) = Ntbox(X
n) ≤ Nt(Xn), so we would be

done because Nt(Xn) ≤ Nt(X) by Theorem 1.3. Unfortunately, this is not true.
A counterexample is offered by the irrationals. The following theorem partially
answers Question 2 from [28].

Theorem 2.2. The Baire space ωω (homeomorphic to the space P of irrationals)
has a base B that lacks an ωop-like subcover (and hence contains no ωop-like base).

Proof. For each s ∈ ω<ω and n ∈ ω, let Us,n be the clopen set of all f ∈ ωω for
which s⌢i ⊆ f for some i ≤ n. Let B consist of the sets of the form Us,n. This
makes B a base of ωω. Now suppose that A ⊆ B and A is ωop-like. For each
s ∈ ω<ω, there can be at most finitely many Us,n ∈ A. Set t0 = ∅ and, given
k < ω and tk ∈ ω<ω, choose ik ∈ ω such that ik > n for all Utk,n ∈ A. Set
tk+1 = t⌢k ik. Set f =

⋃

k<ω tk. If f ∈ Us,n for some Us,n ∈ A, then s = tk for
some k, which implies that ik ≤ n, in contradiction with how we constructed f .
Therefore,

⋃

A 6= ωω. �

Corollary 2.3. If X = ωω, then, for all α ∈ [1, ω1), X
α has a base B consisting

of boxes such that B lacks an Nt(Xα)op-like subcover.

Proof. Let p : α×ω ↔ ω and let h : ωω ∼= (ωω)α be given by h(f)(i)(j) = f(p(i, j)).
Observe that the h-image of every Us,n from the proof of Theorem 2.2 is a box.
Therefore, Xα has a base of boxes not containing an ωop-like subcover. Finally,
observe that Nt(Xα) = Nt(ωω) = ω by Theorem 1.4. �

We actually rediscovered Theorem 2.2. The first reference we have to it is in [2],
where it is credited to Konstantinov. (See also page 26 of [3].) Whether every base of
a metric space contains an ωop-like base is closely related to total metacompactness
and total paracompactness.

Definition 2.4. A space X is totally metacompact (totally paracompact) if every
base B of X has a point-finite (locally finite) subcover A.

Compact implies totally paracompact implies totally metacompact; less obvi-
ously, totally metacompact does not imply totally paracompact: Balogh and Ben-
nett [5] noticed that Example 1 of [17] is a counterexample. (That counterexample
is a Moore space, but we do not know if there is a metrizable counterexample.)
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On the other hand, Lelek [22] has shown that total metacompactness, total para-
compactness, and the Menger property are equivalent in the context of separable
metric spaces. The next theorem connects these covering properties with ωop-like
bases.

Definition 2.5.

• A family F of subsets of a space X is open in finite, or OIF, if every
nonempty open set of X has at most finitely many supersets in F .

• A space is totally OIF if every base has an OIF subcover.
• Let bNt(X) denote the least κ ≥ ω such that every base of X includes a
κop-like base of X .

Theorem 2.6. If X is a metric space, then bNt(X) = ω if and only if X is totally
OIF.

Proof. If bNt(X) = ω, then every base contains an ωop-like base, which is also an
OIF subcover. Conversely, if A is a base of X and Bn is an OIF subcover of the
elements of A with diameter ≤ 2−n, for all n < ω, then

⋃

n<ω Bn is an ωop-like
base. �

Corollary 2.7. If X is a totally metacompact metric space, then bNt(X) = ω.

Question 2.8. Is there a metric space that has some but not all of the three prop-
erties totally OIF, totally metacompact, and totally paracompact?

Corollary 2.9 (Lemma 2.9, [27]). bNt(X) = Nt(X) = ω for all compact metrizable
X.

Question 2.10. Is there a compact space X having a base that does not contain an
Nt(X)op-like base? In other words, is bNt(X) < Nt(X) possible for a compact X?

Many non-compact metric spaces X satisfy bNt(X) = Nt(X) too. Every σ-
locally compact metric space X is totally paracompact [10], so it satisfies bNt(X) =
Nt(X) = ω. (To be σ-locally compact is to be a countable union of closed subspaces
that are each locally compact. It is not hard to show that a paracompact, locally σ-
locally compact space is already σ-locally compact.) Indeed, every scattered metric
space (even every C-scattered metric space) is totally paracompact (and σ-locally
compact) [34].

Remark. Nt(X) = ω for all metrizable X . Moreover, it was noted by Bennett
and Lutzer in [7] that, “it is easy to prove that any metric space, and indeed any
metacompact Moore space, has an OIF base.” Indeed, the proof would be an easy
modification of the proof of Theorem 2.6: if 〈Dn〉n<ω is a devolopment, then, after
choosing a point-finite refinement Rn of each Dn, we obtain an OIF (and therefore
ωop-like) base:

⋃

n<ω Rn.

Returning our focus from metric spaces back to compacta, we are going to prove
that for several classes of compact spaces X , Question 1.6 has a positive answer:
Nt(X2) = Nt(X). Theorem 2.12 below says the answer is yes for the wide class of
spaces X satisfying χ(p,X) = w(X) for all p ∈ X . We will present some further
partial answers to this question. In particular, it is consistent that the answer is
yes for all homogeneous compacta.

Proposition 2.11. If X is a space and A is a (w(X)+)op-like base of X, then
|A| ≤ w(X).
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Proof. Seeking a contradiction, suppose that |A| > w(X). Let B be a base of X of
size w(X). Every element of A then contains an element of B. Hence, some U ∈ B
is contained in w(X)+-many elements of A. Clearly U contains some V ∈ A, so A
is not (w(X)+)op-like. �

Theorem 2.12 (Lemma 3.20, [27]). Suppose that X is a space with no isolated
points and χ(p,X) = w(X) for all p ∈ X. Further suppose that κ = cf κ ≤
min{Nt(X), w(X)} and X has a network consisting of at most w(X)-many κ-compact
sets. Every base of X then contains a Nt(X)op-like base of X.

Remark. If X is T3 and locally compact, then it is easily seen that X has a network
consisting of at most w(X)-many compact sets.

The following two lemmas are easy modifications of Dow’s Propositions 2.3 and
2.4 from [11].

Lemma 2.13. Let X be a space with base A; let ω < cf κ = κ, {X,A, κ} ⊆ M ≺
H(θ), and κ ∩ M ∈ κ + 1. Set B = {p ∈ X : ord(p,A) < κ}. We then have
{U ∈ A : p ∈ U} ⊆ M for every p ∈ B ∩M .

Proof. Suppose that p ∈ B ∩M and p ∈ U ∈ A. Choose q ∈ U ∩ B ∩ M . Since
κ ∩M ∈ κ+ 1, we have

U ∈ {V ∈ A : q ∈ V } ∈ [H(θ)]<κ ∩M ⊆ [M ]<κ;

hence, U ∈ M . �

Remark. The conclusion of the above lemma immediately implies that B ∩M ⊆ B
if |M | < κ (but we do not use this fact).

Lemma 2.14. Let X be a compact T1 space with base A and let M be such that
X,A ∈ M ≺ H(θ) and A ∩M includes a local base at every p ∈ X ∩M . We then
have X ∩M = X; hence, A ∩M is a base of X.

Proof. Seeking a contradiction, suppose that q ∈ X \X ∩M . Choose B ⊆ A ∩M
such that q 6∈

⋃

B ⊇ X ∩M . Choose a finite F ⊆ B such that
⋃

F ⊇ X ∩M . Since
F ∈ M , we have X ⊆

⋃

F by elementarity, in contradiction with q 6∈
⋃

B. �

Theorem 2.15. Let X be a compact T1 space with base A and let κ be a regular
uncountable cardinal. Set B = {p ∈ X : ord(p,A) < κ}. We then have w(B) < κ.

Proof. Choose M to be as in Lemma 2.13 and to have size less than κ. Applying
Lemma 2.14 to the space B and its base U = {U ∩B : U ∈ A}, we get a sufficiently
small base U ∩M of B. �

The following lemma improves upon Theorem 1 of Peregudov [29], which says
that if X is a compactum, then w(X) ≤ πχ(X)lNt(X), where lNt(X) is the
supremum of all cardinals strictly below Nt(X).

Lemma 2.16. Let X be a compact space such that w(X) ≥ κ where κ is some
regular uncountable cardinal. If X has a dense set of points of π-character < κ,
then Nt(X) > κ.

Proof. Let B be any base for X . By Theorem 2.15, there is an open set U ⊂ X such
that every point of U has order at least κ. Let p ∈ U be a point of π-character less
than κ, and C ⊂ B be a set such that |C| = κ and p ∈

⋂

C. Since p has π-character
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less than κ, there is a nonempty open set that is in κ-many members of C. So,
Nt(X) > κ. �

The above lemma fails if κ is allowed to be singular.

Example 2.17. For one example, if Y is the one-point compactification of
⊕

n<ω 2ωn ,
then πχ(p, Y ) < ℵω = w(Y ) for all p ∈ Y , yet Nt(Y ) = ω is witnessed by joining
the canonical bases of 2ωn for n < ω with {Y \

⋃

m<n 2
ωm : n < ω}.

Example 2.18. For another example, let X =
∏

n<ω Aℵn
where for all infinite

cardinals κ, Aκ denotes the one-point compactification Dκ ∪ {∞} of the discrete
space Dκ with underlying set κ. Notice that w(X) = w(Aℵω

) = ℵω and πχ(X) =
πχ(Aℵω

) = ω. Let us show that Nt(Aℵω
) = ℵω+1, but Nt(X) = ℵω.

First, let us show that actually Nt(Aκ) = κ+ for all uncountable κ. Let U be a
base of Aκ. Set F = {σ ⊆ κ : Aκ \ σ ∈ U} ∈ [[κ]<ω]κ. Set S = {λ+ : ω ≤ λ < κ}.
For each µ ∈ S, choose Iµ ∈ [F ]µ such that Iµ is a ∆-system with root rµ. Partition
each Iµ into disjoint subsets Jµ and Kµ each of size µ. Observe that if

J =
⋃

µ∈S

{

σ ∈ Jµ : ∅ = (σ \ rµ) ∩
⋃

ν∈µ∩S

Kν

}

,

then
⋃

J has size κ but does not equal κ. Thus,
⋂

σ∈J (Aκ \ σ) includes an isolated

point. Hence, U is not κop-like; hence, κ+ ≤ Nt(Aκ) ≤ w(Aκ)
+ = κ+.

Second, by Theorem 1.3, Nt(X) ≤ supn<ω Nt(Aℵn
) = ℵω. Finally, Nt(X) ≥ ℵω

by Lemma 2.16.

Example 2.19. Building on the previous example, let Z be the one-point com-
pactification of

⊕

α<ω1
Aℵα

. Observe that w(Z) = w(Aℵω1
) = ℵω1 and πχ(Z) =

πχ(Aℵω1
) = ω. As argued above, Nt(Aℵω1

) = ℵω1+1. However, we will show that

Nt(Z) = ℵω1 . First, by Lemma 2.16, Nt(Z) ≥ ℵω1 . Second, we can build an
ℵop
ω1
-like base C of Z as follows. For each α < ω1, let Aα be (a copy of) a base of

Aℵα
of size ℵα. Set B = {Z \

⋃

α∈σ Aℵα
: σ ∈ [ω1]

<ω}. Set C = B ∪
⋃

α<ω1
Aα.

Theorem 2.20. If X is a homogeneous compactum with regular weight, then every
base of X contains an Nt(X)op-like base.

Proof. If χ(X) = w(X), then just apply Theorem 2.12. If χ(X) < w(X), then
Nt(X) = w(X)+ by Lemma 2.16. So, if A is any base for X , then every base of
size w(X) contained in A would be Nt(X)op-like. �

We can exchange the above requirement that w(X) be regular for a weak form
of GCH.

Corollary 2.21. Suppose that every limit cardinal is strong limit. For every ho-
mogeneous compactum X, every base of X then contains an Nt(X)op-like base.

Proof. By Arhangel′skĭı’s Theorem, χ(X) ≤ w(X) ≤ 2χ(X). If χ(X) < w(X), then
w(X) is a successor cardinal; apply Theorem 2.20. If χ(X) = w(X), then apply
Theorem 2.12. �

Corollary 2.22. (GCH) Let X be a homogeneous compactum. Then Nt(Xn) =
Nt(X) for every n ∈ ω.
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Geschke and Shelah [14] have shown that for every infinite cardinal κ ≤ c,
there is a first countable homogeneous compactum with weight κ. Therefore, it
is consistent to have a homogeneous compactum X such that our above theorems
do not determine whether Nt(X2) = Nt(X).

If we don’t assume homogeneity, then we still have the following weak results.

Theorem 2.23 (Lemma 3.23, [27]). Suppose that κ = cf κ > ω and X is a space
such that πχ(p,X) = w(X) ≥ κ for all p ∈ X. Further suppose that X has a
network consisting of at most w(X)-many κ-compact sets. Every base of X then
contains a w(X)op-like base of X.

Remark. If X is T3 and locally compact, then it is easily seen that X has a network
consisting of at most w(X)-many compact sets.

Theorem 2.24. Suppose that κ is a regular cardinal and X is a locally κ-compact
T3 space such that Nt(X) ≤ w(X) = κ. Every base of X then contains a κop-like
base of X.

Proof. Let A be a base of X and let B be a κop-like base of X . We may assume that
|A| = |B| = κ. Suppose that κ = ω. The spaceX is then metrizable and σ-compact,
so, as noted earlier for the wider class of σ-locally compact metric spaces, every
base of X contains an ωop-like base.

Suppose that κ > ω. Let 〈Mα〉α≤κ be a continuous elementary chain such that
{Mβ : β < α} ∪ {A,B} ⊆ Mα ≺ H(θ) and |Mα| < κ and Mα ∩ κ ∈ κ for all
α < κ. The inclusion A ∪ B ⊆ Mκ follows immediately. For each α < κ, let Uα

denote the set of all U ∈ A ∩ Mα+1 for which U has a superset in B \ Mα. Set
U =

⋃

α<κ Uα ⊆ A. First, let us show that U is κop-like. Suppose that α < κ
and Uα ∋ U ⊆ V ∈ U . There then exist β < κ and B ∈ B \ Mβ such that
B ⊇ V ∈ Mβ+1. Hence, U ⊆ B; hence, B ∈ {W ∈ B : U ⊆ W} ∈ Mα+1 ∩ [B]<κ;
hence, B ∈ Mα+1; hence, β ≤ α; hence, V ∈ Mα+1. Thus, U is κop-like.

Finally, let us show that U is a base of X . Suppose that p ∈ B ∈ B and B is
κ-compact. It then suffices to find U ∈ U such that p ∈ U ⊆ B. Let β be the
least α < κ such that there exists A ∈ A ∩Mα+1 satisfying p ∈ A ⊆ A ⊆ B. Fix
such an A ∈ A ∩ Mβ+1. If B 6∈ Mβ , then A ∈ Uβ and p ∈ A ⊆ B. Hence, we

may assume that B ∈ Mβ. For each q ∈ A, choose 〈Aq, Bq〉 ∈ A × B such that

q ∈ Aq ⊆ Bq ⊆ Bq ⊆ B. There then exists σ ∈
[

A
]<κ

such that A ⊆
⋃

q∈σ Aq. By

elementarity, we may assume that 〈〈Aq , Bq〉〉q∈σ ∈ Mβ+1; hence, Aq, Bq ∈ Mβ+1

for all q ∈ σ. Choose q ∈ σ such that p ∈ Aq. If Bq 6∈ Mβ, then Aq ∈ Uβ and
p ∈ Aq ⊆ B. Hence, we may assume that Bq ∈ Mβ ; hence, we may choose α < β
such that Bq ∈ Mα+1. It follows that B ∈ {W ∈ B : Bq ⊆ W} ∈ Mα+1 ∩ [B]<κ;

hence, B ∈ Mα+1. For each r ∈ Bq, choose Wr ∈ A such that r ∈ Wr ⊆ W r ⊆ B.

There then exists τ ∈
[

Bq

]<κ
such that Bq ⊆

⋃

r∈τ Wr. By elementarity, we may
assume that 〈Wr〉r∈τ ∈ Mα+1. Choose r ∈ τ such that p ∈ Wr. We then have
Wr ∈ A∩Mα+1 and p ∈ Wr ⊆ Wr ⊆ B, in contradiction with the minimality of β.
Thus, U is a base of X . �

Theorem 2.25. Let X be a compact space such that w(X) is a regular cardinal
and X does not map onto Iw(X). Then Nt(Xn) = Nt(X) for every n ∈ ω.

Proof. By a well-known consequence of S̆hapirovskĭı’s Theorem on maps onto Ty-
chonoff cubes (see [18], 3.20) X has a dense set of points of π-character < w(X).
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But then also Xn has a dense set of points of π-character < w(X). Therefore, by
Lemma 2.16, we have w(X) = w(Xn) < Nt(Xn). Let B be a base for Xn of size
w(X) consisting of boxes. Then B is trivially Nt(Xn)op-like base and hence we are
done. �

Corollary 2.26. Nt(Xn) = Nt(X) for every compact space such that w(X) is a
regular cardinal and at least one of the following conditions holds:

(1) X is hereditarily normal.
(2) βω does not embed in X.
(3) |X | < 2w(X).

Proof. The case of the third item follows readily from Theorem 2.25. In case X
is like in the first or the second item then X cannot even map onto Iω1 by the
argument in the proof of 3.21 and 3.22 of [18]. �

We now proceed to show the strongest instance of the failure of productivity of
Noetherian type that we know of so far. Recall that a partial order is called directed
if any two elements have a common upper bound. A map between partial orders
is called Tukey if it sends unbounded sets into unbounded sets and convergent if it
maps cofinal sets into cofinal sets. Tukey and Schmidt proved (see [35], Proposition
1) that there is a Tukey map from P to Q if and only if there is a convergent map
from Q to P .

Let κ be a regular cardinal such that κω = κ; order [κ]<ω with respect to
containment. Let S0 and S1 be two stationary subsets of κ with non-stationary
intersection. Let Di be the set of all countable compact subsets of Si, ordered with
respect to containment. Todorcevic [35] has proved that there is no Tukey map
between [κ]<ω and Di but there is a Tukey map T : [κ]<ω → D0 × D1, where
the ordering on the codomain is the product ordering. Note that since D0 ×D1 is
directed and [κ]<ω has no infinite unbounded sets, any injection of D0 × D1 into
[κ]<ω is Tukey. Therefore, the map T can be chosen to be convergent.

Example 2.27. There are spacesX and Y such thatNt(X×Y ) < min{Nt(X), Nt(Y )}.

Proof. For i = 0, 1, let Xi be the set [κ]<ω topologized in such a way that a local
base at the point x ∈ Xi is {〈x,E〉 : E ∈ Di}, where 〈x,E〉 = {x∪z : z ∈ [κ\E]<ω}.
We claim that we even have χNt(Xi) ≥ ℵ1 for i = 0, 1. Indeed, let B be a local
base at the point x ∈ Xi. Since κ

ω = κ, we can assume that |B| = κ. Moreover, we
can assume that B is of the form {〈x,E〉 : E ∈ E} where E ⊂ Di is cofinal. Now
fix an injection F : [κ]<ω → E . By Todorcevic’s result, we can find an unbounded
set A such that {F (a) : a ∈ A} is bounded by some E. Therefore, we have
〈x,E〉 ⊂ 〈x, F (a)〉 for every a ∈ A, which shows that χNt(X) ≥ ℵ1.

Now we claim that Nt(X × Y ) = ω. Indeed, let T : [κ]<ω → D0 × D1 be
a convergent Tukey map, and consider {〈x, T (y)0〉 × 〈z, T (y)1〉 : x, y, z ∈ [κ]<ω}.
This set is a base because the range of T is cofinal. Suppose that 〈x, T (y)0〉 ×
〈x′, T (y)1〉 ⊂ 〈xj , T (yj)0〉 × 〈x′

j , T (yj)1〉 for every j ∈ ω. Then for every j ∈ ω

we have xj ⊂ x and x′
j ⊂ x′. So, we can assume that there exist z and z′ such

that 〈x, T (y)0〉 × 〈x′, T (y)1〉 ⊂ 〈z, T (yj)0〉 × 〈z′, T (yj)1〉 for every j ∈ ω. Then
T (yj)0 ⊂ T (y)0 ∪ x and T (yj)1 ⊂ T (y)1 ∪ x′, contradicting the fact that T is a
Tukey map. �

Question 2.28. Do there exist compact spaces X and Y such that Nt(X × Y ) <
min{Nt(X), Nt(Y )}?
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The methods of this section can be used to attack also Question 2 from [6], which
in our terminology reads does every dense subspace of a regular space of countable
Noetherian type have countable Noetherian type? This is because of the following
theorem.

Theorem 2.29. Let X be a regular space such that every base of X contains a
Nt(X)op like base of X. Then Nt(D) ≤ Nt(X) for every D ⊂ X.

Proof. Let B be a base consisting of regular open sets (that is, Int(B) = B for
every B ∈ B. Let U ⊂ B be a Nt(X)op-like. Let V = {D ∩ U : B ∈ U}. Then U is
a base for B. To see that U is Nt(X)op-like just note that U ∩D ⊂ V ∩D implies
that U ⊂ V whenever U and V are regular open. �

Define δNt(X) = sup{Nt(D) : D is a dense subset of X}. Note that we always
have δNt(X) ≥ Nt(X). It is well-known that doing the same procedure for cellu-
larity doesn’t give rise to a new cardinal function. In other words, the cellularity
of a dense subspace is always equal to the cellularity of the whole space. However,
the authors of [6] showed that this is not the case for Noetherian type, at least if
one is willing to forego regularity.

Theorem 2.30. [6] There is a Hausdorff space X such that δNt(X) > Nt(X).

Corollary 2.31. δNt(X) = Nt(X) whenever X is a compact space such that w(X)
has regular weight and one of the following conditions holds:

(1) X is homogeneous.
(2) X is hereditarily normal.
(3) βω does not embed in X.
(4) |X | < 2w(X).

So Corollary 2.31 provides partial answers to Question 2 from [6], which we now
pose in a more general form.

Question 2.32. Is δNt(X) = Nt(X) for every regular space X?

Bailey [4] introduced a natural strengthening of countable Noetherian type which
implies countable Noetherian type of every dense subspace.

3. Noetherian type, sparse families and square principles

The second author proved that if X is a compact dyadic homogeneous space,
then Nt(X) = ω [27]. In his proof a generalization of a continuous elementary
chain of countable elementary submodels is used to approximate X by compact
metric spaces and then coherence and arguments similar to the proof of Theorem
2.24 are used to cook up an ωop-like base for the whole space from ωop-like bases for
each of the approximations. In particular, the Noetherian type of compact groups
is countable. A simple operation that destroys compactness on every infinite space
is the Gδ modification. Let Xδ denote the space obtained from X by declaring all
the Gδ sets to be open. It turns out that even the Noetherian type of such a simple
space as (2ℵω)δ depends on cardinal arithmetic. We were originally motivated to
look at the Noetherian type of the countably supported topology on 2ℵω by the
following theorem.

Theorem 3.1. [(∀κ)(λ < κ ⇒ λω ≤ κ)] Let X be a (countably) compact space
such that Nt(X) has uncountable cofinality. Then Nt(Xδ) ≤ 2Nt(X).
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Proof. Suppose that Nt(X) = κ and let B be a κop-like base for X . Moreover, let
Bδ be the set of all countable intersections from B. Clearly Bδ is a base for Xδ.
Now, suppose it’s not (2κ)op-like. Then some B ∈ Bδ is contained in every element
of some family F = {Bα : α < 2κ} ⊂ Bδ of distinct Gδ sets. Let U ⊂ B be the set
of all open sets that make up elements in F . Then |U| ≥ κ, because if |U| < κ then
|F| ≤ |U|ω ≤ κ < 2κ. So take some enumeration U = {Uα : α < κ}. Observe that
every Gδ set in a regular space contains a closed Gδ, then let G =

⋂

i∈ω Gi ⊂ B be
some closed Gδ set. Observe that G ⊂ Uα for every α < κ, so use compactness to
find for every α < κ an n ∈ ω such that

⋂n
i=1 Gi ⊂ Uα. Since κ has uncountable

cofinality there has to be some R ⊂ κ and n ∈ ω such that |R| = κ and
⋂n

i=1 Gi ⊂
Uα for every α ∈ R. Let now V ∈ B be such that V ⊂

⋂n
i=1 Gi. Then κop-ness of

B is contradicted. �

The set-theoretic assumption in Theorem 3.1 is essential, as the following exam-
ple shows.

Example 3.2. A compact spaceX such that cf(Nt(X)) > ω, butNt(Xδ) > 2Nt(X)

in a model where (ℵω)
ω = ℵω+2.

Proof. Start from a model of ZFC+GCH+κ is a measurable cardinal of Mitchell
order κ++. Force with Gitik-Magidor forcing ([16], see also [15]). In a generic
extension GCH will fail only at ℵω where we have 2ℵω = ℵω

ω = ℵω+2. Note
that in a generic extension we must have cov(ℵω , ω) = ℵω+2 = 2ℵω+1 . (See
Definition 3.17.) Let now X be the one-point compactification of ℵω with the
discrete topology. Then Nt(X) = ℵω+1. (See Example 2.18.) We are now go-
ing to show that Nt(Xδ) = cov(ℵω , ω)

+ so that X will satisfy the statement of
the example in a generic extension. Indeed, note that Nt(Xδ) ≤ cov(ℵω, ω)

+

since w(Xδ) = cov(ℵω, ω) and Nt(Xδ) ≤ w(Xδ)
+. For the reverse inequality,

let λ = cov(ℵω, ω) and B be any base for X , and suppose by contradiction that
Nt(X) ≤ λ. Let C = {C ∈ [ℵω]

ω : X \ C ∈ B}. Enumerate C = {Cα : α < λ}. Let
γ be any ordinal less than ℵω. If we could find λ-many elements of C which miss γ,
then the isolated point γ would have λ-many supersets in B. Hence, we can assume
that for every α < ℵ1 we can find βα < λ such that α ∈ Cγ for every γ ≥ βα. Let
β = supα<ℵ1

βα. We have that β < λ since λ is regular and λ ≥ ℵω+1. But this
implies {α : α < ℵ1} ⊂ Cβ+1, which contradicts the fact that Cβ+1 is countable.
Therefore, Nt(X) ≥ λ+ and we are done. �

The proof of Theorem 3.1 easily generalizes to show that if λℵ0 < κ for all λ < κ
and cf(κ) > ω, then Nt(X) ≤ κ implies Nt(Xδ) ≤ κ, without any assumption on

cf(Nt(X)). In particular, Nt(Xδ) ≤
(

2Nt(X)
)+

and Nt((2ℵω )δ) ≤ c
+. However, as

we shall see in the next section, it is consistent (relative to large cardinals) that
the upper bound Nt((2ℵω )δ) ≤ c

+ cannot be improved, making the assumption
cf(Nt(X)) > ω essential to Theorem 3.1. In constrast, the cellularity of the Gδ

modification of a compact space X is always bounded above by 2c(X). (See [19].)

3.1. Sparse families. To see that the assumption about the cofinality of the Noe-
therian type is essential in Theorem 3.1 we need to introduce a new combinatorial
object.

Definition 3.3.
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(1) Let κ be a cardinal. A family of sets F is κ-small if |
⋃

F | < κ. Equivalently,
there exists a set B with |B| < κsuch that F ⊆ P(B).

(2) A family of sets F is (µ, κ)-sparse if no G ⊂ F with |G| ≥ µ is κ-small. In
other words, |

⋃

G| ≥ κ for every G ∈ [F ]µ.
(3) A family F is called ν-uniform if each member of F is a set of cardinality

ν.

Let us list a few basic properties of (µ, κ)-sparse families of sets.

(1) A (µ, κ)-sparse family F is (µ′, κ′)-sparse whenever µ′ ≥ µ and κ′ ≤ κ.
(2) Every ν-uniform F is ((2ν)+, ν+)-sparse.
(3) If µ > |F| then F is (µ, κ)-sparse for every cardinal κ (vacuously) and if

κ > |
⋃

F| then F is not (µ, κ)-sparse for any µ.
(4) If κ is limit and F is (µ, θ)-sparse for every θ < κ then F is (µ, κ)-sparse.
(5) For every cardinal κ the class of cardinals µ for which F is not (µ, κ)-sparse

is closed under limits of cofinality < cf κ.
(6) If F is ν-uniform then the least µ for which F is (µ, ν+)-sparse satisfies

cf µ > ν.

The first 4 items are obvious and (6) follows from (5). To prove (5) suppose
〈µi : i < θ〉 is an increasing sequence of ordinals with limit µ for some θ < cf κ and
that F is not (µi, κ)-sparse for each i < θ. For each i < θ fix a κ-small Gi ⊆ F of
cardinality µi and let G =

⋃

i<θ Gi. Now G has cardinality µ and is κ-small because
θ < cf κ.

Recall that cov(θ, κ) is the least size of a collection A ⊆ [θ]<κ such that every
X ∈ [θ]<ν is contained in some member of the collection.

Claim. Suppose F is ν-uniform and (µ, ν+)-sparse. Then F is (µ, κ)-sparse for
every κ ≥ ν+ such that for all ν < ρ < κ it holds that cov(ρ, ν) < cf µ.

Proof. Suppose that, contrary to the claim, |B| = ρ < κ and that |P(B) ∩ F| ≥ µ.
Fix a covering collection B ⊆ [B]<ν of cardinality |B| < cf µ. It follows that some
Y ∈ B contains µ members of F which, as |Y | = ν, contradics (µ, ν)-sparseness. �

Claim. Suppose that F is ℵα-uniform for some infinite cardinal ℵα, and µ is the
least cardinal for which F is (µ,ℵα+1)-sparse. Then F is (µ′,ℵα+β)-sparse for
every 1 ≤ β ≤ ω and µ′ = max{µ,ℵα+β}.

Proof. The case β = ω follows from the case 1 ≤ β < ω, which we prove by
induction on n.

Recall that cf µ > ν. Given n + 1 ≥ 1 let µ′ = max{µ,ℵα+n+1} and now
also cf µ′ > ν. Assume, contrary to the claim, that there exists some set B or
cardinality ℵω+n+1 such that |P(B) ∩ F| ≥ µ′. As cov(ℵα+n+1,ℵα+n) = ℵα+n+1

we are done. �

Corollary 3.4. If F is an ℵ0-uniform family and there exists n such that F is
(ℵn,ℵ1)-sparse then F is (ℵα,ℵα)-sparse for all n ≤ α ≤ ω.

Claim. (1) if {Fα : α < λ} ⊆ [ℵω]
ℵ0 is a (µ, κ)-sparse family and {Gα : α < λ}

is any family which is cofinal in ([ℵω]
ω,⊂) then {Fα ∪Gα : α < λ} is both

(µ, κ)-sparse and cofinal.
(2) Let λ = cf([ℵω]

ℵ0 ],⊆). If a cofinal family F ⊆ [ℵω]
ℵ0 is (ℵn,ℵ1)-sparse for

some n ∈ ω then it is (ℵn,ℵn)-sparse for all m ≥ n in ω.
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Proof. Item (1) is obvious and (2) folllows from (1). To prove (3) suppose that
F is an (ℵn,ℵ1)-sparse cofinal family and let m ≥ n be given. So F is (ℵm,ℵ1)-
sparse for all m ≥ n. As cov(ℵm,ℵ0) = ℵm, it follows from Claim 3.1 that F is
(ℵm,ℵm)-sparse. �

Our sparse families generalize Shelah’s free families studied for example in [32]
and in Magidor and Shelah’s paper [24]. A family of sets which is κ-free satisfies
that each of its κ subfamilies has an injective choice function; this condition of
course implies (κ, κ)-sparseness.

Proof. Suppose F is ν-uniform and (ν+n, κ)-sparse. As cov(κ+m, κ, ν+, 2) = κ+m

for m ≥ n, it follows bt Claim 3.1 that F �

3.2. Sparse cofinal families and Noetherian type. The following theorem
links sparse cofinal families and the Noetherian type of the countably supported
product topology on the Cantor Cube of weight ℵω.

Theorem 3.5. Let Y ⊂ (2ℵω )δ be a dense subset. Then Nt(Y ) ≤ κ if and only if
there is a (κ,ℵ1)-sparse cofinal family in ([ℵω]

ℵ0 ,⊆).

Proof. Let F be a (κ,ℵ1)-sparse cofinal family. Let B = {[σ] ∩ Y : domσ ∈ F}.
It is easy to see that B is a base for Y . To see that it is κop-like suppose by
contradiction that there is a countable partial function [σ] and a family of countable
partial functions {σα : α < κ} such that [σ] ∩ Y ⊂ [σα] ∩ Y for every α < κ and
[σα] 6= [σβ ] whenever α 6= β. By taking closures we see that [σ] ⊂ [σα] for every
α < κ. Note that when α 6= β, domσα and domσβ are distinct or otherwise the
corresponding basic open sets would be disjoint. Now domσα ⊂ domσ for every
α < κ, which contradicts (κ,ℵ1)-sparseness of the family F .

Viceversa, suppose that Nt(Y ) ≤ κ and let x ∈ Y . Let B be a κop-like local
base at x. We can assume that every element of B is the intersection of a box with
Y . Note also that the set B′ of all closures of elements of B is κop-like. Since B′

is a κop-like local base at x in (2ℵω )δ the set {domσ : [σ] ∈ B′} is a (κ,ℵ1)-sparse
cofinal family. �

Example 3.6. In Theorem 3.5, we cannot weaken density of Y to, for example,
somewhere density, because we can embed a space (2ℵω )δ ⊕ Xδ into (2ℵω)δ such
that Xδ is as in the proof of Example 3.2 and the embedded copy of (2ℵω)δ is open
in (2ℵω )δ. Indeed, that proof showed, in ZFC, that Nt(Xδ) = cov(ℵω , ω)

+, and we
shall show in Lemma 3.20 that there is a (cov(ℵω , ω),ℵ1)-sparse cofinal family.

Recall that the notation (κ, λ) ։ (α, β) abbreviates the statement that for every
structure M = (A,B, . . . ) with countable signature, |A| = κ, and |B| = λ, there
is an elementary substructure N = (C,D, . . . ) ≺ M such that |C| = α and |D| =
β. The statement (ℵω+1,ℵω) ։ (ℵ1,ℵ0) is known as Chang’s Conjecture for ℵω.
Chang’s Conjecture for ℵω is consistent with the GCH by [23]. It is easy to see
that if Chang’s Conjecture for ℵω holds, then no family of countable subsets of ℵω

whose size is > ℵω can be (ℵ1,ℵ1)-sparse. Therefore we have the following theorem
due to Lajos Soukup.

Corollary 3.7. ([33]) Assume Chang’s Conjecture for ℵω. Then Nt((2ℵω)δ) ≥ ℵ2.
If CH is also assumed, then Nt((2ℵω )δ) = ℵ2.
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At the expense of breaking GCH, we prove the consistency of πNt((2ℵω )δ) ≥ ℵ2

in the next theorem. We do not know if this inequality is consistent with GCH.

Definition 3.8. log(κ) = min{λ : 2λ ≥ κ}.

Lemma 3.9. The space (2ℵω )δ has a dense subspace of size (log(ℵω))
ω.

Proof. Let κ = log(ℵω) and fix a subspace Z of (2κ)δ of size ℵω. Fix a base B for
Z of size at most κω. Let F be the set of all countable pairwise disjoint subsets
of B. Identify (2ℵω )δ with X = (2Z)δ and let D be the set of all functions f ∈ X
for which, for some F ∈ F , f is constant on each y ∈ F and f is 0 outside of

⋃

F .
Since countable subsets of (2κ)δ have disjoint open expansions, D is easily seen to
be dense in X . �

Lemma 3.10. If P is a forcing that preserves cardinals, then P cannot destroy
Chang’s Conjecture at ℵω (or anywhere else).

Proof. An equivalent formulation of Chang’s Conjecture at ℵω is that for all suffi-
ciently large regular θ and all A ∈ H(θ), there exists M ≺ H(θ) such that A ∈ M ,
|M ∩ ℵω+1| = ℵ1, and |M ∩ ℵω| = ℵ0.

Assume Chang’s Conjecture at ℵω and let G be a V -generic filter of P. Choose
θ large enough that P,ℵω+1 ∈ H(θ). In V [G], let A ∈ H(θ). Back in V , let Ȧ

be a P-name for A and let N ≺ H(θ) be such that P, Ȧ ∈ N , |N ∩ ℵω+1| = ℵ1,
and |N ∩ ℵω| = ℵ0. Set M = N [G](= {τG : τ ∈ V P ∩ N}). Since P ∈ N , we
have M ≺ H(θ)[G]. Moreover, M ∩ θ = N ∩ θ because forcings don’t add ordinals.
Hence, in V [G] we have M ≺ H(θ), A ∈ M , |M ∩ ℵω+1| = ℵ1, and |M ∩ ℵω| = ℵ0,
as desired. (Note that the above argument generalizes to any Chang conjecture
(κ, λ) ։ (µ,<ν).) �

Theorem 3.11. It is consistent, relative to a 2-huge cardinal, that πNt((2ℵω )δ) =
ℵ2.

Proof. Levinski, Magidor, and Shelah constructed a model of GCH and Chang’s
Conjecture at ℵω, assuming a 2-huge embedding. [23] (Actually, the embedding was
only assumed to be slightly more than huge.) Starting from such a model, force
with countably supported binary functions on ℵω+1. Passing to a generic extension,
we still have CH and ℵω

ω = ℵω+1, but 2ℵ1 = ℵω+1. By Lemma 3.10, we still have
Chang’s Conjecture at ℵω.

Let A be a π-base of X = (2ℵω)δ. By Fact 3.22, |A| ≥ ℵω+1. By Lemma 3.9,
there exists B ∈ [A]ℵω+1 such that

⋂

B 6= ∅. Choose f ∈
⋂

B and, for each U ∈ B,
choose σ(U) ∈ [ℵω]

ℵ0 such that every g ∈ X extending f ↾ σ(U) is in U . By
Chang’s Conjecture at ℵω, there exists M ≺ H(θ) such that σ ∈ M , |M ∩B| = ℵ1,
and |M ∩ ℵω| = ℵ0. Set a =

⋃

ran(σ ↾ M), which is a subset of M ∩ ℵω, and
therefore countable. Every g ∈ X extending f ↾ a also extends f ↾ σ(U) for all
U ∈ B ∩ M . Hence,

⋂

(B ∩M) has nonempty interior. Thus, πNt(X) ≥ ℵ2. By
CH, πNt(X) ≤ ℵ2. �

Question 3.12. Does GCH imply the following?

(⋆)
Every cofinal family of countable binary functions on ℵω

contains a pairwise compatible subfamily of size ℵω+1.
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If GCH implies (⋆), then GCH and Chang’s Conjecture at ℵω together imply
that πNt((2ℵω )δ) = ℵ2. However, we do not know if (⋆) is even consistent with ℵω

being a strong limit.
On a different note, let us remark that πNt(2ℵω

δ ) = ℵ1 is consistent with Chang’s
Conjecture for ℵω.

Theorem 3.13. There is a model of Chang’s Conjecture for ℵω where πNt((2ℵω )δ) =
ℵ1.

Proof. Assume GCH plus Chang’s Conjecture (at ℵω) in the ground model and
force with finite partial functions on ℵω+1. Then, in a generic extension, c =
ℵω+1 = 2ℵω and Chang’s Conjecture still holds by Lemma 3.10. Moreover, (2ℵω )δ
is homeomorphic to (((2ω)δ)

ℵω )δ, which in turn is homeomorphic to (D(ℵω+1)
ℵω )δ,

where D(ℵω+1) denotes the discrete space of size ℵω+1. We now prove that in
a generic extension πNt((D(ℵω+1)

ℵω )δ) = ℵ1. Indeed, let {σα : α < ℵω+1} be
a cofinal family of countable partial functions from ℵω to ℵω+1. For every α <
ℵω+1, choose βα /∈ dom(σα). Define F = {σα ∪ 〈βα, α〉 : α < ℵω+1}, which is a
cofinal family. Suppose by contradiction that 〈F ,⊇〉 is not ωop

1 -like. Then there
is an uncountable set A ⊂ ℵω+1 and a countable partial function τ such that
σα ∪〈βα, α〉 ⊂ τ for every α ∈ A. If the βαs are all distinct then τ has uncountable
domain, while if there are distinct α, γ ∈ A such that βα = βγ , then τ is not a
partial function. �

Remark. The above proof shows that 2ω = ℵω
ω implies πNt((2ℵω )δ) = ℵ1 in ZFC.

Corollary 3.14. There is a model of ZFC where πNt((2ℵω )δ) = ℵ1 < ℵ2 =
Nt((2ℵω)δ)

Contrast this with πw((2ℵω )δ) = w((2ℵω )δ) in every model of ZFC.
We would still be interested in examples showing the sharpness of Theorem 3.1

using milder set-theoretic assumptions.

Question 3.15. Is the existence of a compact space X such that Nt(Xδ) > 2Nt(X)

equiconsistent with ZFC?

The space (2ℵω)δ does not answer Question 3.15 since its Noetherian type can
consistently be ℵ1. (See Theorem 3.21, (2).)

Question 3.16. Is there a characterization of the subspaces of (2ℵω)δ whose Noe-
therian type can be determined in ZFC?

At first we conjectured that under Chang’s Conjecture for ℵω plus the GCH
every ℵω+1-sized subset of (2ℵω)δ would either have large Noetherian type or be
discrete (note that the set of all characteristic functions of members of an ℵω+1-
sized almost disjoint family of countable subsets of ℵω is an ℵω+1-sized discrete
set). But this conjecture is easily disproved by embedding into (2ℵω)δ a copy of the
sum of ℵω+1-many copies of the one-point Lindelöfication of a discrete set of size
ℵ1.

3.3. Sparse Families and PCF theory. To gain more insight on the order theory
of bases in the countably supported box product topology, we need some concepts
from PCF theory, which we now review for the reader’s convenience. The proofs of
Shelah’s theorems quoted below can be found in [32] (see also [21] for an expository
treatment).
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Definition 3.17. Let cov(ℵω, ω) be the cofinality of the partial order ([ℵω]
ω ,⊆).

This number is the tame factor of a singular cardinal power.

In fact, it is easy to realize that ℵω
ω = Cov(ℵω, ω) · c, and while the continuum

has no bound in ZFC, the number cov(ℵω, ω) does have a bound.

Theorem 3.18. (Shelah) cov(ℵω, ω) < ℵω4 .

PCF theory studies the possible cofinalities of products of small sets of regular
cardinals modulo filters. Let A = {ℵn : n ∈ ω} and let U be a filter on A. We
define the set

∏

A/U as the set of all equivalence classes of functions in
∏

A modulo
the equivalence relation =U defined as f =U g if and only if {ℵn ∈ A : f(ℵn) =
g(ℵn)} ∈ U , for f, g ∈

∏

A.
We define a partial order on

∏

A/U as follows: f <U g if and only if {ℵn ∈ A :
f(ℵn) < g(ℵn)} ∈ U .

The bounding number b(
∏

A/U) is the least cardinality of an unbounded subset
of

∏

A/U and it always regular when U is a proper filter. If b(
∏

A/U) = cf(
∏

A/U)
then

∏

A/U is said to have true cofinality (denoted by tcf) and one can find a
linearly ordered cofinal subset of it. Such a subset is called a scale.

Let Pcf(A) = {tcf(
∏

A/U) : U is a filter on A}. An important theorem of PCF
theory states that this set has a maximum.

Theorem 3.19. (Shelah) If A = {ℵn : n ∈ ω}, then Pcf(A) is a set of regular
cardinals with a maximum and maxPcf(A) = Cov(ℵω , ω).

The notion of a PCF scale allows us to give ZFC upper bounds on the Noetherian
type of the countably supported topology. To prove that the upper bound can
consistently drop to ℵ1 we will need PCF scales with stronger properties whose
existence is independent of ZFC.

Recall that a function g ∈ Onω is said to be an exact upper bound for a <∗-
increasing sequence {fα : α < λ} ⊂ Onω if fα <∗ g for every α < λ and whenever
g′ <∗ g there is β < λ such that g′ <∗ fβ. A <∗-increasing sequence {fα : α < β}
where cf(β) = δ > ℵ0 is called flat if there exists a <-increasing sequence {hi : i <
δ} ⊂ Onω so that for all i < δ there is α < β with hi <

∗ fα and for every α < β
there is i < δ with fα <∗ hi.

A scale f = {fα : α < λ} ⊂ Onω is called good if for every β < λ such that
cf(β) > ℵ0 the sequence f ↾ β = {fα : α < β} is flat and the function fβ is an
exact upper bound for it. Chang’s Conjecture for ℵω negates the existence of good
ℵω+1-scales (see Claim 4.3 of [12]).

Lemma 3.20.

(1) There is in ZFC a (Cov(ℵω , ω),ℵω)-sparse family of size cov(ℵω, ω) which
is cofinal in [ℵω]

ω.
(2) (Shelah, [32]) If cov(ℵω, ω) = ℵω+1 and there exists a good scale of size ℵω+1

in (
∏

n∈ω ℵn,≤∗), then there is an (ℵ1,ℵ1)-sparse cofinal family which is
cofinal in [ℵω]

ω.

Proof. For the proof of Item 1 let λ = Cov(ℵω , ω). By Theorem 3.19 there is a
filter U and a scale f = {fα : α < λ} in

∏

A/U . Clearly, U contains no finite sets.
We claim that {ranfα : α < λ} is a (λ,ℵω)-sparse family in [ℵω]

ω. Indeed,
suppose that S ⊂ λ is of size λ such that F =

⋃

α∈S ran fα has cardinality < ℵω.
Let g be the function defined by letting g(n) = sup(

⋃

S∩ωn). As |
⋃

S| < ℵω there
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is some m0 such that for all n ≥ m0 it holds that g(n) < ωn. As f is a scale in
∏

A/U there is some α < λ such that for all α ≤ β < λ it holds that g <U fβ. Since
|S| = λ, there must be some β ∈ S such that g <U fβ. The set {n : g(n) < fβ(n)}
belongs to U and is therefore infinite. Fix, then, n > m0 such that g(n) < fβ(n).
This demonstrates that fβ(n) /∈

⋃

{ran fβ : β ∈ S} — a contradiction.

For the proof of Item 2 let f = {fα : α < ℵω+1} be a good scale in (
∏

n∈ω ℵn,≤∗

). We claim that {ran fα : α < ℵω+1} is an (ℵ1,ℵ1)-sparse family. Indeed, let
{fαi

: i < ω1} ⊂ f , where {αi : i < ω1} is an increasing sequence of ordinals. Then
γ = supi<ω1

αi has cofinality ℵ1 and hence the sequence f ↾ γ is flat. Suppose
that {hβ : β < ω1} is a <-increasing sequence witnessing flatness. For every
β < ω1 find i(β) such that hβ <∗ fαi(β)

. By thinning out we may assume that
hβ <∗ fαi(β)

<∗ hβ+1. Since ω1 has uncountable cofinality, by further thinning out
and reenumerating we may assume that, for a fixed m ∈ ω and for every β < ω1,
we have hβ(m) < fαi(β)

(m) < hβ+1(m). For every β < γ < ω1 we have fαi(β)
(m) <

hβ+1(m) ≤ hγ(m) < fαi(γ)
(m). Therefore,

⋃

i<ω1
ran fαi

is uncountable.
Shelah’s original proof actually provided a stronger results. �

We can now provide some upper bounds on Nt((2ℵω )δ). The ZFC upper bound
will later be improved by a finer analysis of the relationship between sparseness and
PCF scales.

Theorem 3.21.

(1) Nt((2ℵω )δ) ≤ Cov(ℵω, ω).
(2) If cov(ℵω, ω) = ℵω+1 and there exists a good scale of size ℵω+1 then

Nt((2ℵω )δ) = ℵ1.

Proof. Let F be a (κ,ℵ1)-sparse cofinal family in ([ℵω]
ω,⊆) where κ = Cov(ℵω , ω)

in Item 1 and κ = ℵ1 in Item 2. Apply Theorem 3.5 (and note that trivially
Nt((2ℵω)δ) ≥ ℵ1). �

Remarkably, the cardinal functions weight and π-weight don’t enjoy ZFC bounds
on (2ℵω )δ. For completeness we include a proof of the following probably well-known
fact.

Fact 3.22. w((2ℵω )δ) = πw((2ℵω )δ) = (ℵω)
ℵ0 .

Proof. Let F be the set of all partial countable functions from ℵω to {0, 1}. The cofi-
nality of (F ,⊆) is clearly the π-weight of (2ℵω)δ, and is at least max{Cov(ℵω , ω), c} =
(ℵω)

ℵ0 . Clearly, πw((2ℵω )δ) ≤ w((2ℵω )δ) ≤ (ℵω)
ℵ0 , so we are done. �

(In contrast, it is equally easy to prove that χ((2ℵω )δ) and πχ((2ℵω )δ) both equal
cov(ℵω, ω).)

Corollary 3.23. If �ℵω
and cov(ℵω, ω) = ℵω+1 hold then Nt((2ℵω )δ) = ℵ1.

Proof. By Theorem 4 of [9], �ℵω
implies that there is a good (actually, “very

good”) scale of length ℵω+1 on (
∏

n∈A ℵn,≤∗) for some infinite A ⊆ ω. The proof
of Lemma 3.20 can be trivially modified to accomodate the restriction of the index
set to A. �

Let us also note three reasons why Nt((2ℵω )δ) = ℵ1 is consistent with large
cardinals. First, it is standard that we can add a �ℵω

-sequence (and force GCH at
ℵω) with a mild forcing (i.e., a forcing smaller than any large cardinal). Second, we
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can directly produce an (ℵ1,ℵ1)-sparse cofinal family with a mild forcing. Assume
that c < ℵω in the ground model (or force it) and let P = [[ℵω]

ω]ω with q ≤ p iff
q ⊇ p and y 6⊆ x for all x ∈ p and y ∈ q \ p. If G is a V -generic filter of P, then

F =
⋃

G is cofinal in ([ℵω]
ω)

V
. Since P is countably closed and has the c

+-cc,

([ℵω]
ω)V [G] = ([ℵω]

ω)V , so F is actually cofinal in the [ℵω]
ω of V [G]. Therefore, for

every x ∈ [ℵω]
ω we can find y, p with x ⊆ y ∈ p ∈ G, which implies F ∩ P(x) ⊆ p.

Thus, F is (ℵ1,ℵ1)-sparse.
Third, the combinatorial principle Very Weak Square of Foreman and Magidor

[12] implies that a continuous scale contains a club set of functions such that every
function indexed by an ordinal of cofinality ω1 is a flat point ([12], Claim 4.4).
So if we restrict ourselves to that club set of points, using the same argument of
Lemma 3.20, (2) we get an (ℵ1,ℵ1)-sparse cofinal family of countable subsets of
ℵω. Now, by Theorem 2.5 of [12], if κ is supercompact in a model M of GCH,
there is a generic extension of M in which cardinals and cofinalities are preserved,
Very Weak Square holds at the successor of every singular cardinal, and κ remains
supercompact. This third reason has advantage of easily generalizing Theorem 3.21
about Nt((2ℵω )δ) to, for example, the global consistency of Nt((2ℵα+ω)δ) = ℵ1 for
all ordinals α, even in the presence of large cardinals.

3.4. Steps towards a tight bound. We now improve the bound from Theorem
3.21, (1). The proof uses the main idea in Shelah’s proof of the existence of a
stationary set S ⊆ Sλ

κ in Shelah’s ideal I[λ] for regular κ and λ satisfying κ++ < λ.
(For an exposition, see [21].)

Theorem 3.24. There exists a cofinal family F ⊆ [ℵω]
ℵ0 which is (ℵα,ℵα)-sparse

for every 4 ≤ α ≤ ω.

Corollary 3.25. The Noetherian type of (2ℵω )δ is at most ℵ4.

Proof of Theorem. It suffices to prove the existence of a family F ⊆ [ℵω]
ℵ0 of

cardinality cov(ℵω, ω) which is (ℵ4,ℵ1)-sparse by Claim 3.1. By Claim 3.1 the
proof below is needed only when the continuum is larger than ℵ3, but we do not
make this assumption.

Let Ω be a sufficiently large regular cardinal and let 〈H(Ω),∈,≺, . . .〉 be the
structure of all sets of hereditary cardinality smaller than Ω with a well ordering and
perhaps some countably many constants. For example, for every regular κ, λ < Ω
satisfying κ+ < λ, the structure 〈H(Ω),∈,≺, . . .〉 contains a constant for a club
guessing sequence of the form C = 〈cδ : δ ∈ Sλ

κ〉. Such a sequence shall be called
“canonical”.

Denote λ = maxpcf({ℵn : n ∈ ω}) = cov(ℵω, ω) and recall that λ is regular. Let
I be an ideal such that tcf(

∏

n<ω ℵn/I) = cov(ℵω, ω). In 〈H(Ω),∈,≺, . . .〉 there is
a canonical λ-scale 〈fα : α < λ〉 ⊆ 〈

∏

n ωn, <I〉.
Fix a continuous sequence M := 〈Mi : i < λ〉 of elementary submodels of

〈H(Ω),∈,≺, . . .〉 satisfying the following for all i < λ.

• i+ 1 ⊆ Mi and ||Mi|| < λ
• M ↾ i ∈ Mi+1

Let E ⊆ λ be the club set of points i < λ for which Mi ∩ λ = i. The sequence
〈fi : i ∈ E〉 is a λ-scale. Finally, set F = {ran fi : i ∈ E}. To prove that F is
(ℵ4,ℵ1)-sparse let A ∈ [E]ℵ4 be given of order-type ω4, and we shall find some
B ∈ [A]ℵ1 such that |

⋃

j∈B ran fj| = ℵ1.
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Fix an increasing and continuous chain N = 〈Nζ : ζ ≤ ω3〉 of submodels of
〈H(Ω),∈,≺, . . .〉 satisfying the following for all ζ ≤ ω3.

• ||Nζ || = ℵ3

•
{

M,A,E
}

∪ ω3 ⊆ N0

• N ↾ (ζ + 1) ∈ Nζ+1

Let h(ζ) = sup(Nζ ∩ A) for all ζ ≤ ω3. As A has order-type ω4 and Nζ has
cardinality ω3, h(ζ) < supA for all ζ ≤ ω3. Also, as A,E ∈ Nζ , it follows that
h(ζ) ∈ E and is a limit of A for every ζ ≤ ω3.

For ζ ≤ ω3 let j(ζ) = min{A \ h(ζ)}. So j(ζ) ≥ h(ζ) and by elementarity,
j(ζ) < h(ζ + 1) for all ζ < ω3.

In the model Mh(ω3)+1 there exists some canonical function g : ωn+2 → h(ω3)
which is increasing and continuous and has range cofinal in h(ω3).

Let C ⊆ ω3 be the club set of points ζ < ω3 which satisfy h(ζ) = g(ζ), and let
δ ∈ Sω3

ω1
be such that cδ ⊆ C (where cδ is the δ-th element in the canonical club

guessing sequence C = 〈cδ : δ ∈ Sω3
ω1
).

Let B = {j(ξ) : ξ ∈ cδ}. As otp(c)δ = ω1 and ζ 7→ j(ζ) is order-preserving,
B ∈ [A]ℵ1 .

We shall show that
⋃

j∈B ran fj =
⋃

ξ∈cδ
ran fj(ξ) has cardinality ℵ1 by proving

that for every ρ ∈ cδ the union
⋃

ξ∈cδ∩ρ ranfj(ξ) does not contain the full union
⋃

ξ∈cδ
ran fj(ξ).

Given ρ ∈ cδ, let t = sup{fj(ξ) : ξ ∈ cδ ∩ ρ}. As the sequence 〈j(ξ) : ξ ∈ cδ ∩ ρ〉
belongs to Nρ+1, also t ∈ Nρ+1.

Since cδ ⊂ C, we have h(ξ) = g(ξ) for all ξ ∈ cδ∩ρ. Since g, cδ, ρ ∈ Mh(ω3)+1 and
g(ξ) = h(ξ) for all ξ ∈ cδ, the set {g(ξ) : ξ ∈ cδ ∩ ρ} = {h(ξ) : ξ ∈ cδ ∩ ρ} belongs
to Mh(ω3)+1. So also the pointwise supremum function t = sup{fj(ξ) : ξ ∈ cδ ∩ ρ}
belongs also to Mh(ω3)+1 and hence t <I fsup(Mi+1∩λ).

There are ω4 points in A above h(ω + 3) + 1. Let j(∗) be the least point in A
strictly above h(ω3). Find some i(∗) > j(∗) in E such that i(∗) < supA. The pair
j(∗) and i(∗) witness the truth of the sentence: “there exists i(∗) ∈ (E ∩ supA)
and some j(∗) ∈ A ∩Mi(∗) such that t <I fj(∗)”.

As t, A, f ,M ∈ Nρ+1, by elementarity of Nρ+1 we can find such i(∗) in Nρ+1.
Consequently, there exists some j(∗∗) ∈ A below f(min{cδ \(ρ+1)}). In particular,
t <I fj(min(cδ\(ρ+1)), hence

⋃

ζ∈cδ∩ρ ran fj(ζ) does not contain fj(min(cδ\(ρ+1)).
�

So at this point the Noetherian type of (2ℵω )δ can be any cardinal between ℵ1

and ℵ4.

Question 3.26. Is it consistent that Nt((2ℵω )δ) > ℵ2?

(Since Nt((2ℵω )δ) ≤ c
+, this question is only interesting in the context of ¬CH .)

Question 3.26 is related to approachability. Given a sequence 〈Ci : i < λ〉 where
Ci ⊆ i is unbounded, and, for club many i, otp(Ci) = cf(i), an ordinal i < ℵω+1

is approachable with respect to C if {Ci ∩ j : j < i} ⊆ {Cj : j < i}. As argued

by Foreman and Magidor in the proof of Claim 4.4 of [12], for every C as above
and every continuous scale 〈fi〉i<λ of a reduced product

∏

n<ω ℵn/U , there is a

club D ⊆ λ such that if i ∈ D is approachable with respect to C, then f is flat at

i. Therefore, if we could find a club E and C to which every α ∈ E ∩ S
Cov(ℵω,ω)
ω2

is approachable, then we could deduce Nt((2ℵω)δ) ≤ ℵ2, arguing as in the proof
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of Lemma 3.20, (2). (Foreman and Magidor asked a related question, whether

ZFC+GCH implies a version of Very Weak Square for S
ℵω+1
ω2 .)

Sharon and Viale [31] have shown that MM implies that club many points in

S
ℵω+1

>ω1
are approachable. Now, MM implies that cov(ℵω, ω) = ℵω+1 because MM

implies that c = ℵ2 and ℵω
ω = ℵω+1 (see [13], Theorem 10 and Corollary 11). Thus,

MM implies Nt((2ℵω )δ) ≤ ℵ2.

Question 3.27. Does MM imply that Nt((2ℵω )δ) = ℵ2?

A yes answer would reduce the consistency strength thus far required to break
Nt((2ℵω)δ) = ℵ1, for the consistency of Martin’s Maximum has been proved relative
to a superstrong cardinal [13]. Mild evidence for a positive answer is provided by
Menachem Magidor’s result that MM negates the existence of good scales (see [8],
Theorem 17.1, for a proof).

Finally, we remark that the consistency of Chang conjecture’s variant (ℵω+1,ℵω) ։
(ℵ2,ℵ1) would imply the consistency of Nt((2ℵω )δ) > ℵ2. Indeed, it implies that
every cofinal family of countable subsets of ℵω contains ℵ2-many members whose
union U has size ℵ1. But then, by the pigeonhole principle, ℵ2-many of them
would have to be contained in an initial segment of U (according to some ordering
of type ω1). Thus, by Theorem 3.5, we would have Nt((2ℵω )δ) > ℵ2. However, the
consistency of this version of Chang’s Conjecture alone is an open problem [31].
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