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Abstract

A new procedure is proposed for the dimensional reduction of time series. Similarly
to principal components, the procedure seeks a low-dimensional manifold that minimizes
information loss. Unlike principal components, however, the new procedure involves
dynamical considerations, through the proposal of a predictive dynamical model in the
reduced manifold. Hence the minimization of the uncertainty is not only over the choice
of a reduced manifold, as in principal components, but also over the parameters of the
dynamical model. Further generalizations are provided to non-autonomous and non-
Markovian scenarios, which are then applied to historical sea-surface temperature data.

Keywords: Principal component analysis, time series, empirical orthogonal functions,
autocorrelation.
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1 Introduction

Complex systems typically involve a large number of degrees of freedom. Thus to eluci-
date the fundamental mechanisms underlying one such system’s behavior, one may consider
its projection onto smaller-dimensional manifolds, selected so as to capture as much of the
dynamics as possible. A tool frequently used for this purpose is principal components [1],
whereby a linear subspace of prescribed dimensionality of the phase-space of observations is
sought, so as to maximize the amount of the variability that is preserved when the data are
projected onto it.

Given a dataset zj , j ∈ [1, . . . , N ], where each observation zj consists of n real numbers,
its first m (m ≤ n) principal components are given by xj = Q′x(zj − z̄), where z̄ is the
mean value of z, and Qx is an n × m matrix with orthonormal columns, chosen so that∑N

j=1 ‖(zj − z̄)−Qxxj‖
2 is as small as possible. From a statistical perspective, among all

m-dimensional subspaces, x is the one whose knowledge minimizes the uncertainty of z. The
matrix Qx consists of the first m columns of U in the singular value decomposition

Z = USV ′,
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where the elements Zji of the matrix Z ∈ Rn×N contain the ith component of the jth
observation minus its mean value z̄i over all observations, U ∈ Rn×n and V ∈ RN×N are
orthogonal matrices, and S ∈ Rn×N is the diagonal matrix of singular values of Z, the
eigenvalues of the empirical covariance matrix C = ZZ ′ sorted in decreasing order.

In the probabilistic scenario underlying this procedure, the zj ’s are independent samples of
a Gaussian distributionN (µ,Σ), z̄ is an estimate for its mean µ, and the principal components
estimate the principal axes of the covariance matrix Σ, sorted in decreasing order by the
fraction of the total variance that they explain. Yet principal components are often sought
for data that do not quite fit this scenario. Of particular concern to us here is the situation
where the zj ’s form a time series, representing snapshots of the vector z at equidistant times
tj . In this context, the dimensional reduction by principal components, oriented toward
data compression, lacks any concept of dynamics: the various snapshots zj are treated as
independent observations, which renders immaterial even the order in which they are sorted.
If there is an underlying dynamics, this is neither unveiled nor exploited by the analysis.

An example is provided by the Empirical Orthogonal Functions (EOFs) [2] –the name
given to principal components in climate studies–, which take a time series of atmospheric or
oceanic data, subtract its time average or “climatology”, and find those modes that explain
the largest share of its variability. These modes may then be assigned suggestive names such
as “El Niño” or “The north-Atlantic oscillation” and given a dynamical interpretation. Yet
no dynamics ever entered into their calculation: just the static variability of the data, treated
as a series of independent, unsorted observations.

In this paper, we develop an alternative methodology, highly reminiscent of the principal-
component framework, but with a dynamical core. We seek, as in principal components,
a hierarchy of manifolds, that we name “principal dynamical components”. Attached to
these manifolds is a model of predictive dynamics. The cost function to minimize has, as in
principal components, the variability in the unrepresented variables, but also the fraction of
the variability in the preserved variables that is not explained by the dynamics. Thus the
dynamical components are characterized not by capturing most of the system’s variability, but
by explaining dynamically its largest possible share. Hence this methodology can be thought
of as a blend of autoregression analysis [6], which is used as a reduced dynamical model, and
principal components, though the criterium for selecting a reduced manifold differs from the
latter’s.

We first present the new methodology, as a natural extension of principal components,
in a linear, autonomous framework, with a dynamic manifold given by x = Q′xz, where Qx
is a fixed n ×m orthogonal matrix, and the dynamics by xj+1 = Axj , where A is another
fixed, m×m matrix. The definition of principal dynamical components results in a minimiza-
tion problem over both Qx and A. Section 2 presents this problem and provides an efficient
methodology to solve it. Yet many real problems are not autonomous: climate dynamics, for
instance, is season-dependent. In Section 3 we extend the methodology to non-autonomous
situations and, more generally, to accommodate for the presence of exogenous variables and
external controls, that appear in many engineering applications. Here Qx and A depend
on time and on those external variables. Section 4 extends the procedure further to handle
non-Markovian processes, where the dynamics involves more than the immediate past. We il-
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lustrate the procedure throughout with synthetic data and, in Section 5, we concern ourselves
with a real application to time series of sea-surface temperature over the ocean. Section 6
gives a probabilistic interpretation of the principal dynamical component procedure, which
provides a conceptual extension to general nonlinear, non-Gaussian settings. The develop-
ment of effective algorithms for the numerical implementation of this broad generalization
will be described elsewhere.

2 The linear, autonomous framework

The probabilistic set-up for principal component analysis consists of independent observations
drawn from a Gaussian distribution. The natural extension to time series has a time series
zj , j ∈ [1, . . . , N ] drawn from the linear Markovian dynamics

zj+1 = N (Azzj ,Σ
z).

Here the matrix Az models autocorrelation, and N represents a Gaussian process with mean
Azzj and covariance matrix Σz. Neither Az nor Σz are known to us; instead, we seek an
m-dimensional manifold x = Q′xz and reduced dynamics

xj+1 = Axj + ξj ,

where ξj is the prediction error, such that the predictive uncertainty or cost

c =

N−1∑
j=1

‖zj+1 −Qxxj+1‖2 =

N−1∑
j=1

∥∥zj+1 −QxAQ′xzj
∥∥2

is minimal. This is the conceptual basis of what we shall denote linear autonomous principal
dynamical component analysis.

It is convenient to introduce some further notation: y for the orthogonal complement of
x, so that

z = [QxQy]

(
x
y

)
,

where Q = [QxQy] is an orthogonal matrix, and x̃ for the conditional expectation of x:

x̃j+1 = Axj .

Since the dynamics of y is not explained by the model, we have ỹj+1 = 0.

2.1 Two-dimensional case

The simplest scenario, appropriate for a first view of the proposed algorithm, has the obser-
vations zj in a two-dimensional space, n = 2, and seeks a reduced manifold x of dimension
m = 1. We introduce the following notation:

z =

(
A
P

)
,
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where, mimicking an application to climate dynamics, A stands for Atlantic and P for Pacific
spatially-averaged sea-surface temperatures,

x = A cos(θ∗) + P sin(θ∗) ,

y = −A sin(θ∗) + P cos(θ∗) ,

where the angle θ∗ defines the direction of the dynamic component x in (A,P ) space, and

x̃j+1 = a xj ,

where the stretching factor a describes the deterministic component of the reduced dynamics.
The cost function adopts the form

c(θ, a) =
N−1∑
j=1

∥∥∥∥( Aj+1 − Ãj+1

Pj+1 − P̃j+1

)∥∥∥∥2 =
N−1∑
j=1

∥∥∥∥( xj+1 − x̃j+1

yj+1 − ỹj+1

)∥∥∥∥2

=

N−1∑
j=1

∥∥∥∥( xj+1 − axj
yj+1

)∥∥∥∥2 =

N−1∑
j=1

(yj+1)
2 + (xj+1 − axj)2 .

By contrast, the corresponding cost function for regular principal components in this 2-
dimensional scenario is

cpc(θ) =
N∑
j=1

(yj)
2 :

the amount of variability in the unrepresented variable y.
The minimization of c can be solved iteratively. If at the beginning of a step we have

coordinates (x, y), then

∂c

∂a
= −2

N−1∑
j=1

(xj+1 − axj)xj .

Equating ∂c
∂a to zero yields the standard regression formula

a =

∑N−1
j=1 xjxj+1∑N−1
j=1 x2j

.

If now we update x and y through a further rotation

x← x cos(θ) + y sin(θ) ,

y ← −x sin(θ) + y cos(θ) ,

we have

∂c

∂θ
= 2a

N−1∑
j=1

[
(axjyj − (xj+1yj + xjyj+1)) cos(2θ) +(

xj+1xj − yj+1yj +
a

2

(
y2j − x2j

))
sin(2θ)

]
.
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Rather than seeking a closed expression for θ that would make this derivative vanish –notice
that θ is implicitly included in the definition of the x and y’s–, it is preferable to descend the
gradient

∂c

∂θ

∣∣∣
θ=0

= 2a

N−1∑
j=1

[axjyj − (xj+1yj + xjyj+1)]

or, more efficiently, to involve also the second derivative

∂2c

∂θ2

∣∣∣
θ=0

= 2a
N−1∑
j=1

[
2xj+1xj − 2yj+1yj + a

(
y2j − x2j

)]
,

and compute the θ that minimizes the quadratic local approximation to c:

θ = θq = −
∂c
∂θ

∣∣∣
θ=0

∂2c
∂θ2

∣∣∣
θ=0

.

A little extra care is required when applying the quadratic approximation far from the optimal

θ: if ∂2c
∂θ2

∣∣∣
θ=0
≤ 0, then we must do descent instead:

θ = −εl
∂c

∂θ

∣∣∣
θ=0

, (2.1)

where εl > 0 is a chosen learning rate. Also, if θq is too big, we must limit our step size:

|θ| = max(|θq|, ε),

where ε is the maximum allowable step in θ. It is sensible to relate the values of the two ε’s
through

εl =
ε√

ε2 +
(
∂c
∂θ

∣∣∣
θ=0

)2 ,
which, when applied to (2.1), yields descent steps of size bounded by ε, and much smaller
near the optimal θ.

To illustrate the procedure just described, we created data from the dynamical model

xj+1 = axj + rxη
x
j ,

yj+1 = ryη
y
j ,

for j = 1, . . . , N −1 (the initial values x1 and y1 are picked at random), where N = 1000, the
ηx,yj are independent samples from a normal distribution, and we adopted the values a = 0.6
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for the dynamics1, and rx = 0.3 and ry = 0.6 for the amplitudes of the noise in x and y.
Then we rotated the data through

Aj = xj cos(θ∗)− yj sin(θ∗),

Pj = xj sin(θ∗) + yj cos(θ∗),

with θ∗ = π
3 , and provided the Aj and Pj as data for the principal dynamical component

routine. The results are displayed in Figure 1. The first plot shows the “observations” in
the plane (A,P ). These are treated as independent samples in a regular principal component
analysis; we keep instead track of the sequential order of the observations, represented by the
dotted lines in the plot. For this data, the first regular principal component, drawn in black,
is in fact orthogonal to the principal dynamical component, drawn in green. The reason is
that the total variability has a larger y-component, due to the bigger amplitude of the noise in
y, while all the variability that is explainable dynamically is in x. This is an extreme example
where regular principal components yield a leading mode that is absolutely irrelevant from a
dynamical viewpoint. The other three plots in the figure display the evolution of the estimates
for a and θ∗ and the cost function c, as functions of the step-number. The dotted lines, drawn
for reference, have the exact values of a and θ∗ in the data, as well as the unexplainable part

of the cost, c∗ = 1
N−1

∑N−1
j=1

(
rxη

x
j

)2
+
(
ryη

y
j

)2
≈ r2x+r2y = 0.45. Notice the fast convergence

to the exact solution, that in this example took 14 steps.

2.2 The multidimensional case

For dimensions n bigger than two, we write

z = [QxQy]

(
x
y

)
,

and
xj+1 = Axj .

The minimization problem that defines Q = [QxQy] and A is

min
Q,A

c =
N−1∑
j=1

∥∥∥∥zj+1 −Q
(
AQx

′zj
0

)∥∥∥∥2 =
N−1∑
j=1

∥∥∥∥( xj+1 −Axj
yj+1

)∥∥∥∥2 .
Notice that Q and A are not univocally defined: any pair of orthogonal bases for the optimal
subspaces represented by x and y will give rise to different Q’s and A’s representing the same
dynamics. The algorithm proposed below walks nicely around this degeneracy, avoiding
unnecessary re-parameterizations of the two subspaces.

The most straightforward methodology decouples the descent steps for A and Q. For A,
we have

∂c

∂A
= −2

N−1∑
j=1

(xj+1 −Axj)x′j . (2.2)

1The value of |a| needs to be smaller than one for the time series not to blow up.
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Figure 1: A two-dimensional example of the basic procedure. The first plot displays the
data points, with dotted lines joining successive observations, and the directions for the first
regular principal component –in black– and the principal dynamical component –in green–,
which in this case are orthogonal to each other. The other three plots show the evolution
of the estimates for the parameters a and θ for the dynamics and reduced manifold, and of
and the cost function c –normalized by (N − 1)– as functions of the step-number, with their
exact values as dotted lines.

Instead of descending the gradient we can, as in the two-dimensional case, directly solve
∂c
∂A = 0, yielding

A = X1X0
′ (X0X0

′)−1 ,
where

X0 = [x1, . . . , xN−1] and X1 = [x2, . . . , xN ] .

For the descent steps in Q, we first note that any orthogonal matrix can be factorized as a
product of elementary rotations of the form

Rkl(θ) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . cos(θ) . . . sin(θ) . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . − sin(θ) . . . cos(θ) . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1


,
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which act in the plane of the two coordinates k and l, rotating them an angle θ. Then we can,
in each descent step, pick at random the two indices k and l, and perform a rotation following
the derivative of c with respect to θ at θ = 0. From the observation above about degeneracy,
however, we note that picking both k and l from either the dynamical coordinates x or their
orthogonal complement y alone, serves no purpose other than re-parametrization. Then we
always pick k at random in [1, . . . ,m], and adopt l = m + h, with h picked at random in
[1, . . . , n −m]. In order to consider arbitrary directions in these two manifolds though, we
first perform a random orthogonal transformation to each:

x→ Qrxx, y → Qryy,

where Qrx,y are random orthogonal matrices.
For each elementary rotation, we have

∂c

∂θ

∣∣∣
θ=0

= −2
N−1∑
j=1

yhj+1Akxj + yhj

m∑
p=1

Akp

(
xpj+1 −Apxj

) (2.3)

and

∂2c

∂θ2

∣∣∣
θ=0

= 2
N−1∑
j=1

xkj+1Akxj − 2yhj+1A
k
ky
h
j +

m∑
p=1

[
xkjA

k
p(x

p
j+1 −Apxj) + (yhjA

k
p)

2
] . (2.4)

As before, θ can be computed so as to minimize the quadratic local approximation to c:

θ = θq = −
∂c
∂θ

∣∣∣
θ=0

∂2c
∂θ2

∣∣∣
θ=0

,

with the same caveats on big steps as in the one-dimensional case.
After performing the optimization, one can, if desired, resolve the degeneracy in the

description of the dynamical manifold by choosing a natural basis for x, such as the one
made out of the principal components of A. For non-normal A’s, there are two such bases:
the eigenvectors of A′A and those of AA′. Both are significant and sorted by sensitivity to
perturbations: the former gives the directions where initial perturbations yield the highest
effect; the latter, the directions where these effects manifest themselves after a time-step.

To create a simple synthetic example for the multidimensional case, we chose n = 5 and
m = 2, and created data from the dynamical model

xj+1 = Axj + rxη
x
j ,

yj+1 = ryη
y
j ,
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for j = 1, . . . , N − 1, where N = 1000, the ηx,yj ’s are independent samples from a normal
distribution –two and three dimensional vectors respectively– and we adopted arbitrarily the
values

A =

(
0.4569 0.3237
−1.0374 1.0378

)
for the dynamics, and rx = 0.3 and ry = 0.6 for the amplitudes of the noise in x and y. Then
we rotated the data through an arbitrary orthogonal matrix,

z = [QxQy]

(
x
y

)
,

with

Qx =

(
−0.7044 −0.3823 −0.3407 −0.1985 −0.4497
0.5754 −0.1555 −0.1798 0.2477 −0.7423

)′
,

and generated the data displayed in the first panel of Figure 2. Running our algorithm
on these data yields estimates A∗ and Q∗x for A and Qx that, as remarked before, are not
univocally defined. Indeed, the algorithm found

A∗ =

(
0.6505 0.2401
−1.1591 0.8685

)
and

Q∗x =

(
−0.8143 −0.3258 −0.2896 −0.2545 −0.2865
0.4089 −0.2108 −0.2570 0.1873 −0.8290

)′
,

quite different in appearance from their exact values above.
To verify that Qx and Q∗x span the same plane and that A and A∗ represent the same

transformation in the corresponding coordinates, we project the two columns of Q∗x onto the
space spanned by those of Qx, through the projection P (Q∗x)′ = BQ′x, with B = (Q∗x)′Qx,
and define the relative errors

eQ =
‖ (Q∗x)′ −BQ′x‖

‖Qx‖
, eA =

‖A−B−1A∗B‖
‖A∗‖

,

which vanish only if the two pairs of matrices represent exactly the same reduced manifold
and dynamics.

The results are displayed in Figure 2. The first plot shows the first three components of
the data points zj . The second plot displays the evolution of the normalized cost function
c as a function of the step-number, with the dotted line displaying the exact value of the

unexplainable part of the cost, c∗ = 1
N−1

∑N−1
j=1

(
rx‖ηxj ‖

)2
+
(
ry‖ηyj ‖

)2
≈ 2r2x + 3r2y = 1.26.

The third and fourth plots display the evolution of the errors eQ and eA defined above. Notice
again the fast convergence of the algorithm to the exact solution.

9



−1
0

1

−1
0

1
−2

0

2

z
1

z
2

z 3

0 10 20 30 40 50
1

1.5

2

2.5

3

step

c
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

step

e Q

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

step

e A

Figure 2: A multidimensional, autonomous example, with n = 5 and m = 2. The first plot
displays the first three coordinates of the data points, with dotted lines joining successive
observations, the second plot shows the evolution of the cost function, with its exact value as
a dotted line, and the third and fourth plots display the evolution of the errors eQ and eA.

2.3 Non-zero means

We have worked so far under the assumption that all means have been removed from the
problem: the plane x goes through the origin, and the transformation given by the matrix
A is linear, not affine. If the observations z have a well-defined mean (that is, if there is not
a trend over time that makes the local mean of z evolve), these assumptions are fine: it is
enough to remove from z its mean –the “climatology” of atmosphere-ocean science– ad initio,
and add it back at the end. However, for the non-autonomous scenario to be described below,
it will be necessary to consider nontrivial means. In order to have our methodology prepared
for this more general case, we consider the means in our present autonomous situation too,
even though they have no practical consequence. Then we write

z − z̄ = Q

(
x
y

)
,

and
xj+1 = Axj + b .

It is convenient to partition z̄ into its x and y components,

x̄ = Q′xz̄ , ȳ = Q′y z̄.

10



The addition of the mean x̄, however, is unnecessary, for its effects can be absorbed into the
drift b. We have the gradients

∂c

∂b
= −2

N−1∑
j=1

(xj+1 − (Axj + b)) (2.5)

and

∂c

∂ȳ
= −2

N−1∑
j=1

(yj+1 − ȳ) , (2.6)

that can be used either for descent or for the direct calculation of the optimal b and ȳ.

3 Non-autonomous problems

We have considered up to now only autonomous problems, where the manifold x and the
corresponding dynamical model are assumed to be time-independent. Yet there are many
examples of practical importance where this assumption does not hold. Consider, for in-
stance, climate-related data, such as monthly averages of sea-surface temperatures at various
locations, recorded over many years. One should expect much of the dynamics to depend
on seasonal changes in insolation. We should, accordingly, have a time-dependent dynamical
model, with a period of one year. Similarly, in long series of economic or financial data, we
should expect a change in the dynamics as populations or affluence levels change, new mar-
kets arise, new tools are developed. The corresponding dynamical model should not longer be
constant, nor periodic as in the seasonal case, but rather evolve slowly, with scale separation
between the time-scale of the dynamics and that of the evolution of the model itself (without
the hypothesis of scale separation, little can be inferred statistically from the data, since the
dynamical model can be adjusted instantly to account for each individual observation).

To incorporate this into our framework, it is enough to add a qualifying sub-index “t” (or
more precisely “j”, since our time-series are discrete) to the various functions involved: Q,
A, b and ȳ , plus the requirements of periodicity or scale separation. For instance, Qt should
satisfy either Qt+T = Qt in the periodic case, or ‖Qt+1 −Qt‖ � 1 for slowly varying trends.
In this section, we discuss how to modify the methodology of Section 2.2 so as to make it
applicable to the non-autonomous linear case.

The idea is simple: in the notation of the previous section, we are seeking a time-dependent
orthogonal transformation Qt and mean ȳt, and a time-dependent dynamical model param-
eterized by At and bt. To this end, in each descent step, we pick at random a time t0 and
propose, in order to update Q, a time-dependent rotation angle θ(t) in the k-l plane, centered
at t = t0. Similarly, we propose time-dependent variations for ȳ, A and b:

θ = αF (t) , ȳ = ȳ + v F (t) , A = A+B F (t) , b = b+ dF (t) ,

where F (t) is a given scalar function, centered at t0, and satisfying the corresponding restric-
tions: periodicity, slow variation, etc., and the parameters α, a scalar, v and d, vectors, and
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B, a matrix, are computed by descent of the cost function as before. Then equations (2.3)
and (2.4) generalize into

∂c

∂α

∣∣∣
α=0

= −2

N−1∑
j=1

wj+1yhj+1 (Akxj + bk) + wjyhj

m∑
p=1

Akp

(
xpj+1 −Apxj − bp

)
and

∂2c

∂α2

∣∣∣
α=0

= 2
N−1∑
j=1

[
(wj+1)2xkj+1 (Akxj + bk)− 2wj+1wjyhj+1A

k
ky
h
j +

m∑
p=1

[
(wj)2xkjA

k
p(x

p
j+1 −Apxj − bp) + (wjyhjA

k
p)

2
] ]

,

and equations (2.2), (2.5) and (2.6) into

∂c

∂B
= −2

N−1∑
j=1

wj (xj+1 − (Axj + b))x′j ,

∂c

∂d
= −2

N−1∑
j=1

wj (xj+1 − (Axj + b))

and

∂c

∂v
= −2

N−1∑
j=1

wj (yj+1 − ȳ) ,

where the weights wj are given by
wj = F (tj) .

As before, equating the derivatives with respect to B, d and v to zero provides simple closed
forms for B, d and v, while α can be found through the minimization of a local quadratic
approximation to c.

3.1 Exogenous variables

The time t of the non-autonomous scenario discussed above is just one example of an exoge-
nous variable: one whose state is known independently at all times, and that may affect the
dynamics of the z’s. Other examples are state variables of a bigger system of which the z’s
are only a small part; and external controls.

One can collectively denote these exogenous variables s, and apply a straightforward
generalization of the procedure above, where F is now a function of s rather than the single
variable t.
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3.2 Trial functions

We have not yet considered the issue of how to pick the functions F (s) and corresponding
weights wj = F (sj) (here we use s to denote either time or other exogenous variables). In
this section, we describe a few choices that we have found practical. First of all, for the
autonomous case, we have the trivial

F = 1 .

This should still be used in the more general case, to capture the s-independent components
of Q and A, but must be alternated with other functions F (s) with non-trivial s-dependence.

3.2.1 One-dimensional functions

When s represents time, the domain of F (s) must be either the real line –for the trend– or a
parametrization of the unit circle –for periodic factors such as the seasons. A sensible choice
for the trend is

F (s) =
S√

S2 + L2
− F̄ , S = s− s0,

displayed on Figure 3, depending on the choice of a center s0, picked at random at each
step, and a mollification parameter, the length-scale L. As L → 0, F (s) becomes piecewise
constant, with a discontinuity at s = s0. For larger values of L, the transition between the
two constant states is smoothed over an interval of order L. The subtraction of the mean
F̄ over the observations is intended to decouple the effect of these steps from the ones using
F = 1, a function concerned only with the mean. At the initial stages of the algorithm, L
should be large, providing a global perspective; then it should decrease gradually, to tune the
finer, more local details.
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Figure 3: Plot of the function F (S) = S√
S2+L2

over the interval [−10, 10] for different values

of L.

We can be more specific: calling L0 the largest length scale in s, we need L0/L steps to
cover it with transitions of length L. Then the amount dt of algorithmic time spent using a
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length L should satisfy
dL

dt
∝ L,

leading to the expression

L = L0

(
Lf
L0

) k
ktot

,

where k is the step number, ktot the total number of steps, and Lf the smallest length scale
to be used, not to over-resolve the dynamics.

In the periodic case, we can make an entirely analogous proposal:

F (s) =
sin(S)√

4 sin2(S/2) + L2
, S =

2π (s− s0)
T

, (3.1)

where T is the period; see Figure 4.
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Figure 4: Plot of the function F (S) = sin(S)√
4 sin2(S/2)+L2

over the interval [−π, π] for different

values of L.

Sometimes s can adopt only a discrete set of values: the months of the year, an on-off
control, etc. In that case, it may be useful to consider signature functions F that are one on
each of these values at a time, and zero on the others:

Fi(j) = δmod(j,T ),i, (3.2)

where T is the integer period.
An alternative to the F (s)’s above, which have local derivatives but global effects, are the

more localized bumps given by

F (s) =
L3

(S2 + L2)3/2
− F̄ ,

and

F (s) =
L3

(4 sin2(S/2) + L2)3/2
− F̄ ,
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displayed in Figures 5 and 6. We can also alternate between the two, or among more proposals
satisfying different needs.
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Figure 5: Plot of the function F (S) = L3

(S2+L2)3/2
over the interval [−10, 10] for different values

of L.
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Figure 6: Plot of the function F (S) = L3

(4 sin2(S/2)+L2)3/2
over the interval [−π, π] for different

values of L.

Still another natural alternative in the periodic case is to use Fourier components

F ck = cos(kS), F sk = sin(kS), S =
2πs

T
.

There is no need for a center s0 here, since the use of both sines and cosines renders the F
spatially homogeneous. Each step one must use either F c or F s with probability 1/2 each
(discounting the steps with F = 1), and an integer value for the wave number k. The latter
should be sampled from a distribution that decays rapidly with k, so as to result into smooth
composite functions.
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An advantage of the use of Fourier modes, particularly when only a finite number K of
modes is allowed, is that one can store the accumulated amplitude added to each mode at the
various steps, and thus end up with explicit expressions for the non-autonomous dynamical
matrix A(s) and shift b(s) as finite Fourier series. To obtain a similar bonus for the non-
periodic case (i.e., for representations of the trend), one would need to replace the functions
above by others that do not involve a variable length-scale L and random point s0. A simple
choice is that of monomials

Fk(s) = sk,

up to a power K. Then the dynamics is represented by a matrix A and a vector b that depend
explicitly on s through polynomials of degree K.

When the problem has more that one kind of variable –some periodic and some trendy,
for instance–, we can alternate the various types of function F (s) among steps.

3.2.2 Multidimensional choices

When s lives in a multidimensional space, we can still use the one-dimensional proposals
involving s0 and L above, but picking the direction of space in which they apply each step
at random. Yet this is not a very effective procedure when the dimensionality of s is large.
An alternative is to use radial functions centered at s0, such as

F (s) = e−r
2
, r =

‖s− s0‖
L

.

3.3 A non-autonomous example

For clarity, we illustrate the non-autonomous procedure through a simple example where
n = 2,m = 1. We created data from the dynamical model

xj+1 = ajxj + bj + rxη
x
j ,

yj+1 = ȳj+1 + ryη
y
j ,

for j = 1, . . . , N − 1, where N = 1000, the ηx,yj ’s are independent samples from a normal

distribution, rx = 0.3 and ry = 0.6, and we adopted the values aj = 6
5 cos2

(
2πtj
T

)
for the

dynamics, bj = 1
2 sin

(
2πtj
T

)
for the drift, and ȳj = 2

5 cos
(
2πtj
T

)
for the non-zero mean of y,

where tj = j and T = 12, mimicking the twelve months of the year that we will find again
in our application to the sea-surface temperature field in Section 5. Then we introduce, as
before, “Atlantic” and “Pacific” temperatures

Aj = xj cos(θj)− yj sin(θj),

Pj = xj sin(θj) + yj cos(θj),

with θj = π
6 sin

(
2πtj
T

)
, and provide the Aj and Pj as data for the principal dynamical

component routine.
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For this example, we have adopted the trial function F from (3.1). The results are
displayed in Figure 7. The first plot shows the “observations” in the plane (A,P ), with
the first regular principal component drawn in black, and the 12 first principal dynamical
components, one for each month, drawn in green. The other plots in the figure display the
evolution of the normalized cost function c, and the estimated results for a(t), b(t), ȳ(t) and
θ(t) at convergence (we only show the first two periods). The dotted lines, drawn for reference,
have the exact values of a(t), b(t), ȳ(t) and θ(t) in the data, as well as the unexplainable

part of the cost, c∗ = 1
N−1

∑N−1
j=1

(
rxη

x
j

)2
+
(
ryη

y
j

)2
≈ r2x + r2y = 0.45. Again, the algorithm

detects essentially the exact solution to the problem; the number of required steps, about 60,
is bigger than before, because various different trial functions F (t) are involved, requiring at
least one step for each.
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Figure 7: A low dimensional (n = 2,m = 1), non-autonomous problem. The first plot
displays the data points, with dotted lines joining successive observations, the first principal
component in black, and the twelve monthly first principal dynamic components in green.
The other plots show the final estimates for a(t), b(t), ȳ(t) and θ(t), for two periods of twelve
snap-shots each, and the evolution of the cost function, with the exact answers in dotted
lines.

4 Higher order processes

We have considered so far dynamical models without memory, where the current state of the
system determines its future evolution through the matrix A. Yet many real processes are not
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well-described by such models. For instance, if the observations consist only of positions xj
in a system with non-negligible inertia, one would expect a better prediction by using, in lieu
of the unavailable velocity field, a second order model, xj+1 = D(xj , xj−1). Studying systems
like this involves no significant change in our procedure: either we extend the phase-space
from the line of xj ’s to the plane of pairs (xj , xj−1) or, equivalently, consider matrices A that
are rectangular, with twice as many columns as rows. Entirely similar considerations apply
to higher order processes with longer memory.

We describe here the non-Markovian, non-autonomous case of order r, since the au-
tonomous scenario is just a special case of the non-autonomous one, and the case with more
general exogenous variables s is entirely similar. Our reduced dynamical model now adopts
the form

xj+1 = D = b+
r∑
i=1

Aixj−i+1,

where the drift b and the matrices Ai, i = 1, . . . , r, as well as the orthogonal matrix Qx
defining the x’s, may in general be time-dependent. Each algorithmic step, we update these
matrices through

Ai = Ai +Bi F (t) , b = b+ dF (t) , ȳ = ȳ + v F (t) , θ = αF (t) ,

where F (t) is a given trial function as described above.
The cost function adopts the form

c =
N−1∑
j=r

‖yj+1‖2 + ‖xj+1 −D‖2 ,

since the first x1, . . . , xr are not specified by the dynamics. Then

∂c

∂Bh
= −2

N−1∑
j=r

wj (xj+1 −D)x′j−h+1 ,

for every h = 1, . . . , r,

∂c

∂d
= −2

N−1∑
j=r

wj (xj+1 −D) ,

and

∂c

∂v
= −2

N−1∑
j=r

wj (yj+1 − ȳ) ,

where wj = F (tj).
It is possible to get explicit expressions for B1, . . . , Br by equating all ∂c

∂Bh
to zero. We

introduce the m×m matrices

Xh,k
0 =

N−1∑
j=r

(
wj
)2
xj−h+1x

′
j−k+1, Xh

1 =
N−1∑
j=r

wj (xj+1 − b)x′j−h+1,
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where Xh,k
0 =

(
Xk,h

0

)′
. In terms of these, we get a block system of linear equations:

B1X
1,1
0 +B2X

2,1
0 + · · ·+BrX

r,1
0 =X1

1 ,

B1X
1,2
0 +B2X

2,2
0 + · · ·+BrX

r,2
0 =X2

1 ,

...
...

...
...

B1X
1,r
0 +B2X

2,r
0 + · · ·+BrX

r,r
0 =Xr

1 ,

or

[
B1, B2, · · · Br

]

X1,1

0 X1,2
0 · · · X1,r

0

X2,1
0 X2,2

0 · · · X2,r
0

...
...

. . .
...

Xr,1
0 Xr,2

0 · · · Xr,r
0

 =
[
X1

1 , X2
1 , · · · Xr

1

]
,

which determines the matrices B1, . . . , Br.
For the angle α we proceed as in the previous sections, though a quadratic approximation

to c, using

∂c

∂α

∣∣∣
α=0

= −2
N−1∑
j=r

[
wj+1yhj+1 (D)k +

m∑
p=1

(Dα)p

(
xpj+1 − (D)p

)]
,

and

∂2c

∂α2

∣∣∣
α=0

=− 2
N−1∑
j=r

[
−
(
wj+1

)2
xkj+1 (D)k + 2wj+1yhj+1(Dα)k

+
m∑
p=1

[
(Dαα)p

(
xpj+1 − (D)p

)
− [(Dα)p]

2
] ]
,

where

(Dα) =
r∑
i=1

(Ai)
kwj−i+1yhj−i+1, (Dαα) = −

r∑
i=1

(Ai)
k
(
wj−i+1

)2
xkj−i+1.

Again we choose, for the sake of clarity, to illustrate the procedure in its simplest possible
setting, which is autonomous, with n = 2, m = 1, and r = 3, the order of the Non-Markovian
process. We created data from the dynamical model

xj+1 = a1xj + a2xj−1 + a3xj−2 + rxη
x
j ,

yj+1 = ryη
y
j ,

for j = 3, . . . , N − 1, where N = 1000, the ηx,yj ’s are independent samples from a normal
distribution, and we adopted the values a1 = 0.4979, a2 = −0.2846, a3 = 0.1569 for the
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dynamics and rx = 0.3 and ry = 0.6 for the amplitudes of the noise in x and y. Then, as
before, we define

Aj = xj cos(θ∗)− yj sin(θ∗),

Pj = xj sin(θ∗) + yj cos(θ∗),

with θ∗ = π
3 , and provide the Aj and Pj as data for the principal dynamical component

routine. The results are displayed in Figure 8. Again the procedure converges to the exact
answer, this time for all elements of the multi-step dynamics. As in the first example, the
first regular principal component is orthogonal to the principal dynamical component, thus
capturing none of the system’s dynamics.
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Figure 8: A multi-step process of order 3. The first plot displays the data points, with dotted
lines joining successive observations, their regular first principal component in black and
their first principal dynamical component in green. The other plots show the evolution of the
estimates for a1, a2, a3 and θ, as well as of the cost function, with their exact values and the

exact unexplainable part of the cost, c∗ = 1
N−1

∑N−1
j=1

(
rxη

x
j

)2
+
(
ryη

y
j

)2
≈ r2x + r2y = 0.45,

displayed in dotted lines.

5 A real application: the global sea-surface temperature field

To see the workings of the new procedure on real data, we have chosen a topic of present
concern: the estimation of climatic variations and trends. For this, we use a database of
monthly averaged extended reconstructed global sea surface temperatures based on COADS
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data (see [4]) from January 1854 to October 2009, and ask whether we can extract from these
a reduced low dimensional dynamical model. A few before-hand considerations are in order:

• Climate dynamics, a real pressing issue, is treated just as an illustration in this method-
ological paper. A far more in-depth treatment of how much principal dynamics com-
ponents can help increase climate predictability and elucidate its causal relations will
be pursued elsewhere.

• The ocean is not an isolated player in climate dynamics: it interacts with the atmosphere
and the continents, and is also affected by external conditions, such as interannual
variations in solar radiation and human-related release of CO2 into the atmosphere.
The latter are examples of slowly varying external trends that fit naturally into our
non-autonomous setting –the seasonal variations giving its periodic component. As for
the land and atmosphere, their dynamics is typically faster than that of the oceans, and
can be conceptually divided into two components: a part that is slaved to the state of
the ocean’s surface temperature –and hence can in principle be included in its dynamical
model–, and one that can be treated as external noise. Including explicitly land and
atmospheric observations involves at least two further challenges, that will be pursued
elsewhere: handling data with disparate units –such as atmospheric pressure, ice extent
and ocean temperature–, and allowing for multiple time-scale dynamical models.

• Even within the ocean, the surface temperature does not evolve alone: it is carried by
currents, and it interacts through mixing with lower layers of the ocean. As mentioned
in Section 4, one way to account for unobserved variables is to make the model non-
Markovian: discrete time derivatives of the sea-surface temperature provide indirect
evidence on the state of those hidden variables.

We have adopted as our dataset the sea-surface temperature monthly means between
January 1854 to October 2009 of the 50 points displayed on the map in Figure 9, covering
much of the world oceans in a roughly homogeneous manner.

In order to apply our methodology to the data, we need to select a class of trial functions
from Subsection 3.2, the dimension m for the reduced manifold x, and the order r of the
non-Markovian process. The trial functions for the periodic component that we have used
for these runs are the monthly discrete δ-functions from (3.2), with T = 12. This takes to a
new depth the idea behind the use of a “monthly climatology” in climate studies: not only
the climatological mean is computed independently for each month, but also the dynamical
model and manifold may change significantly from month to month. In the runs reported
here, we have not modeled any inter-annual trend.

The following physical considerations suggest picking r = 3 for the order of the Markov
process. A simplified conceptual model for the upper mixed layer of the ocean is that of a
rotating shallow layer of water, forced by the atmosphere from above and the deep ocean from
below. In such model, the active dynamical variables are the two horizontal components of the
velocity and the layer’s thickness. The surface temperature can be thought of as an emergent
of the evolution of these three variables and the external forcing. Conservation of mass
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Figure 9: The 50 points on the ocean used for the procedure.

and horizontal momentum, the core dynamics of the layer, are three differential equations,
each involving one time derivative. Hence reducing the system to a single variable –the
temperature, the only one available in the data– yields a third order differential equation: two
time derivatives relate to the evolution of gravity waves, the third to the potential vorticity.
In our discrete setting, this corresponds to a Markov process of order three.

Figure 10 illustrates a line of reasoning for choosing the values of m and r. The figure
on the left shows, for a fixed m = 4, the evolution of the final error when we move the
order of the non Markovian process from r = 1 to r = 62. The dotted line shows the
error 1

N

∑N
i=5 S

2
i , where the S’s are the singular values of the real dataset, with the monthly

climatology subtracted. We find for r = 3 the steepest drop of the final error, consistent
with our reasoning above. Therefore we pick r = 3 for the order of our non Markovian
process. In the figure on the right, we observe, for this fixed r = 3, the evolution of the
final error when m = 1, . . . , 6. The isolated points correspond to the sum of squared singular
values, 1

N

∑N
i=m+1 S

2
i . We observe that for m = 4 this error matches almost exactly the

one from the dynamical components. This can be interpreted in the following way: for

2This final error is calculated for a number of steps such that the difference between the final error and
the error 1000 steps before is less than 0.01. Therefore the number of steps used for each value of r may be
different.

22



smaller values of m, accounting for the dynamics allows us to reduce the information loss
even beyond the theoretical maximum –for autonomous settings– provided by the singular
value decomposition. Beyond m = 4, on the other hand, the biggest share in the further
reduction of information loss is probably due to the increased bare dimensionality of the
model, more than to a further refinement of the dynamics. Hence we pick m = 4 for the
dimension of our reduced dynamical manifold.
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Figure 10: Predictive uncertainty as a function of the dimension m of the reduced dynamical
manifold and the order r of the process. The figure on the left shows the final error for a fixed
m = 4 and r = 1, . . . , 6. The dotted line is the sum 1

N

∑N
i=5 S

2
i of the squared singular values

of the data, with the monthly climatology removed. The figure on the left shows the final
error for a fixed r = 3 and m = 1, . . . , 6, with the isolated points displaying the corresponding
uncertainty in the standard principal component procedure, 1

N

∑N
i=m+1 S

2
i .

Next we display various results for the chosen parameters, m = 4 and r = 3. Although
the dataset used is defined over a wide range of time, we display our results on the time
window from January 1991 to January 1999, which includes three El Niño years, represented
by vertical lines; one of them, in 1998, the strongest ever recorded. Figure 11 shows the
evolution of the four components of the manifold x in solid lines and, in dotted lines, the
same components predicted from the prior three months.

One question one may ask is whether the reduced dynamical manifold x is dominated by
a small set of locations on the ocean. This would be manifested in having the columns of
Qx dominated by a few significant rows. Yet the columns of Qx do not have a meaning per
se: x is a four dimensional manifold, but each component xi lacks individual meaning. To
fix a reference frame in the manifold x, we resort to the matrix A1: its four left principal
components U in A1 = USV ′ provide a natural set of coordinates in x-space. Figure 12
displays the first four columns of Qx(t)U(t), t = 1, . . . , 12. We observe between four and six
dominant peaks; the four clearest ones corresponding to the points 19, 24, 37 and 41 in Figure
9. This suggests that a reduced dynamical model for the ocean could be built from four to
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Figure 11: Real and predicted dynamical components (the manifold x). The vertical lines
mark El Niño years.

six selected locations. Notice that these four points are on the Pacific ocean, in locations that
one would naturally associate with the strongest El Niño signals.

Figure 13 shows the observed ocean surface temperature for these four points, comparing
them with the ones predicted by the algorithm, in dotted lines. We see that the approximation
is quite sharp, particularly near El Niño years, where changes of temperatures are most
significant. Even though we have chosen to plot only these four temperatures, all of the 50
points used are well-predicted by the procedure.

Finally, we monitor the evolution of a measure of the global anomalies associated with
El Niño. To this end, we compute a discrete analogue of the running 3-month mean SST
anomaly in the El Niño regions [5]. In particular, we average the temperatures on the points
16, 17, 24, 28, 29, 32, 33, 37, 41 and 42 on the map in Figure 9, for a time window from
February 1964 to October 2009. These 10 points are not all strictly included in what are
known as El Niño regions (there are four of them, 1+2, 3, 4 and 3.4), but they are the
closest on our discrete map to the union of all of them. We observe in Figure 14 that the
warm (positive) peaks coincide with El Niño years. The cold (negative) peaks correspond to
La Niña years. In dotted line we have plotted the predicted values of these SST anomalies
generated by the principal dynamical component procedure.
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Figure 12: Dependence of the four components of the reduced manifold x on the individual
locations on the ocean for the twelve months of the year. A natural coordinate system in x is
the one provided by the principal components of the first dynamical matrix A1. Notice that
four to six points on the ocean dominate the dynamics.

6 Probabilistic perspective and extension to nonlinear dy-
namics

Throughout this article, we have defined and developed the principal dynamical component
procedure in terms of the minimization of a specific cost function: the sum of squares of
the prediction errors. In this section, we assign a meaning to this cost in terms of the log-
likelihood function of a probabilistic model. Framing the principal dynamical component
procedure in a probabilistic setting has two main advantages: to permit a more thorough
interpretation, and to extend its applicability beyond the linear models developed in this
article. We sketch such generalization in this section; its algorithmic implementation, under
current development, will be presented elsewhere.

Generally, a probabilistic model for a time series zj ∈ Rn involves the transition proba-
bility density

T (zj+1|zj) .

(This corresponds to the Markovian, autonomous scenario, the only one that we address in
this section. The extension to non-autonomous and non-Markovian cases, involving a tran-
sition probability density of the form T (zj+1|zj , zj−1, . . . , zj−r, t, s), is straightforward). The
principal dynamical component proposal considers a dimensional reduction of such transition
probability density, using the following elements:
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Figure 13: Observed and predicted ocean surface temperature for four selected points. The
vertical lines mark El Niño years.

• A coordinate system z = z(x, y), x ∈ Rm, y ∈ Rn−m, with corresponding projection
operators Px and Py:

x = Px(z(x, y)), y = Py(z(x, y)).

• A reduced dynamical model given by a transition probability density in Rm:

d (xj+1|xj) .

• A probabilistic embedding
e(y|x).

The transition probability density for z is then given by

T (zj+1|zj) = J (zj+1) e (yj+1|xj+1) d (xj+1|xj) ,

where x = Px(z), y = Py(z), and J(z) is the Jacobian determinant of the coordinate map
z → (x, y).

A natural measure of the goodness of the model is the log-likelihood function

L =
N−1∑
j=1

log [T (zj+1|zj)] .
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Figure 14: Observed and predicted 3-month mean SST anomalies from February 1964 to
October 2009, quantifying El Niño and La Niña intensities. Only El Niño years are marked
with vertical lines; La Niña years correspond to strong negative anomalies.

In particular, in the setting of Section 2, we have the projections

Px(z) = Q′xz, Py(z) = Q′yz, (6.1)

where Q = [QxQy] is orthogonal, so J(z) = 1. The embedding and reduced dynamics are
given by the isotropic Gaussians

e(y|x) = N (0, σ2IN−m) (6.2)

and
d (xj+1|xj) = N (Axj , σ

2Im), (6.3)

where Ik stands for the k × k identity matrix. Consequently, the log-likelihood function is
given by

L =

N−1∑
j=1

−
[
n

2
log(2π) + n log(σ) +

1

2σ2
(
‖xj+1 −Axj‖2 + ‖yj+1‖2

)]
.

Thus maximizing the log-likelihood L over Q and A is equivalent to minimizing the cost
function

c =
1

N − 1

N−1∑
j=1

(
‖xj+1 −Axj‖2 + ‖yj+1‖2

)
,
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that we have used throughout the paper; the corresponding optimal value of σ is given by

σ =
( c
n

) 1
2
.

This interpretation immediately suggests the following generalization, which remains
within the realm of Gaussian distributions and linear maps: keep the orthogonal projections
in (6.1), but replace the embedding (6.2) and dynamical model (6.3) by the more general

e(y|x) = N (0,Σy),

d (xj+1|xj) = N (Axj ,Σx),

where Σx and Σy are general covariance matrices. The resulting log-likelihood function is

L =
N−1∑
j=1

−1

2

[
log((2π)n|Σx||Σy|) +

(
xj+1 −Axj ,Σ−1x (xj+1 −Axj)

)
+
(
yj+1,Σ

−1
y yj+1

)]
.

This formulation has the advantage of providing a natural ranking of the coordinates x and
y, through the principal components of the corresponding covariance matrices.

More generally, one can propose different, typically nonlinear, families of distributions,
projections and dynamical models, and maximize the corresponding log-likelihood function.
The proposed distributions can be given parametrically, in which case the maximization of
the log-likelihood is over their parameters, or non-parametrically, for instance as an extension
of the methodology proposed in [3]. Thus the principal dynamical component methodology
extends naturally to very general scenarios, with nonlinear reduced dynamical manifolds,
stochastic, nonlinear dynamical models, and non-Gaussian embeddings. This extension, how-
ever, goes beyond the scope of this paper, and will be pursued elsewhere.

7 Conclusions

A new methodology has been developed for the dimensional reduction of time series. The pro-
cedure seeks a low dimensional manifold x and a dynamical model xj+1 = D(xj , xj−1, . . . , t)
that minimize the predictive uncertainty of the series. The procedure has been successfully
tested on synthetic data, and illustrated with a real application to time series of sea-surface
temperature over the ocean. Finally, a probabilistic interpretation of the principal dynamical
component procedure was proposed, providing a conceptual extension to general nonlinear,
non-Gaussian settings.
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