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SYMMETRIC OPERATORS WITH REAL DEFECT SUBSPACES

OF THE MAXIMAL DIMENSION. APPLICATIONS TO

DIFFERENTIAL OPERATORS

VADIM MOGILEVSKII

Abstract. Let H be a Hilbert space and let A be a simple symmetric operator
in H with equal deficiency indices d := n±(A) < ∞. We show that if, for all λ in
an open interval I ⊂ R, the dimension of defect subspaces Nλ(A)(= Ker(A∗

−λ))

coincides with d, then every self-adjoint extension Ã ⊃ A has no continuous

spectrum in I and the point spectrum of Ã is nowhere dense in I . Application of
this statement to differential operators makes it possible to generalize the known
results by Weidmann to the case of an ordinary differential expression with both
singular endpoints and arbitrary equal deficiency indices of the minimal operator.
Moreover, we show in the paper, that an old conjecture by Hartman and Wintner
on the spectrum of a self-adjoint Sturm - Liouville operator is not valid.

1. Introduction

Let H be a Hilbert space, let A be a simple symmetric densely defined operator
in H with equal and finite deficiency indices d = n±(A) < ∞ and let Nz(A) =
Ker(A∗ − z), z ∈ C be a defect subspace of A. As is known [15] dimNλ(A) ≤ d for
all λ ∈ R and dimNλ(A) = d if the range of A−λ is closed, i.e., if λ belongs to the set
ρ̂(A) of all regular type points of A (note that Ker(A−λ) = {0}, since the operator
A is simple). Moreover, if I = (µ1, µ2) is an interval such that I ⊂ ρ̂(A), then for any

self-adjoint extension Ã ⊃ A the spectrum σ(Ã) in I consists of isolated eigenvalues

of Ã with finite multiplicity (the discrete spectrum σd(Ã)). In this connection it
seems to be rather interesting to find out if the situation is the same for the weaker
condition

dimNλ(A) = d, λ ∈ I. (1.1)

It turns out that the answer is negative. More precisely, we show in the paper (see
Proposition 3.6) that for any interval I there is an operator A such that (1.1) is

satisfied and for any (equivalently for some) self-adjoint extension Ã ⊃ A the set

of all points λ ∈ I belonging to the essential spectrum σe(Ã)(= σ(Ã) \ σd(Ã)) is

infinite. At the same time the spectrum of such an extension Ã is ”small” enough.
Namely, in the main theorem of the paper we prove that under the condition (1.1)

the following statement (s) is valid for any self-adjoint extension Ã ⊃ A:
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(s) the set σ(Ã) ∩ I is nowhere dense in I and coincides with the closure of the

set σp(Ã) ∩ I, where σp(Ã) is the set of all eigenvalues of Ã (the point spectrum).
Our considerations are substantially inspired by the book [18] and the recent

paper [17] in Journal of Funct. Anal., where similar results were obtained for differ-
ential operators. Namely, let L0 be the minimal symmetric operator generated by
a formally self-adjoint differential expression l[y] of an even order 2n on an interval
(a, b),−∞ ≤ a < b ≤ ∞ (see (4.1)). For the operator L0 satisfying (1.1) the validity

of the statement (s) for any extension Ã = Ã∗ ⊃ L0 was proved by Weidmann [18]
under the assumptions, that a is a regular endpoint for the expression l[y] and L0 has
minimal deficiency indices d(= n±(L0)) = n. Moreover, it was shown in [17] that in
the case of the regular endpoint a and an arbitrary defects d the statement (s) holds

for some self-adjoint extension Ã ⊃ L0 defined by separated boundary conditions.
In the present paper we generalize the Weidmann’s result to the case of arbitrary

(regular or singular) endpoints a and b and arbitrary equal deficiency indices d =
n±(L0). More precisely, let La0 and Lb0 be minimal operators for the expression
l[y] on intervals (a, c) and (c, b) respectively (with some c ∈ (a, b)), let n+(La0) =
n−(La0) =: da, n+(Lb0) = n−(Lb0) =: db and let for some interval I = (µ1, µ1) ⊂ R

dim Nλ(La0) = da, dim Nλ(Lb0) = db, λ ∈ I.

We show in Theorem 4.1 that under such assumptions the statement (s) holds for

any self-adjoint extension Ã ⊃ L0.
In the paper [9] Hartman and Wintner suggested that for the second order, i.e.

Sturm - Liouville, operator L0 on the semiaxis [0,∞) with

dimNλ(L0) = 1(= d), λ ∈ I = (µ1, µ2). (1.2)

the statement (s) can be strengthened to ”the spectrum of any self-adjoint extension

Ã ⊃ L0 is discrete in I” (similar conjecture for the operator L0 of an arbitrary order
2n is contained in [18, 17]). We prove in the paper, that this conjecture is not valid.
More precisely we show that for any finite interval I = (µ1, µ2) there exists a Sturm -

Liouville operator L0 such that (1.2) holds and for any self-adjoint extension Ã ⊃ L0

the set σe(Ã) ∩ I is infinite (see Proposition 4.3).
In conclusion note that our approach is based on the concepts of a boundary

triplet for A∗ and the corresponding abstract Weyl function, which has become a
convenient tool in the extension theory of symmetric operators and its applications
(see [8, 3, 13, 5, 14] and references therein). Such an approach enabled us to obtain

the above results without complicated construction of the self-adjoint extension Ã ⊃
L0 with the desired properties of the spectrum σ(Ã) (cf. [17]).

2. Preliminaries

In the sequel we use the following notations: H, H denote separable Hilbert
spaces; [H1,H2] is the set of all bounded linear operators defined on H1 with values
in H2; [H] := [H,H]; C+ (C−) is the upper (lower) half-plain of the complex plain.
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Moreover, for a (not necessarily bounded) operator T from H1 to H2 we denote by
D(T ), R(T ) and KerT the domain, range and the kernel of T respectively.

For a closed operator T in H we denote by ρ̂(T ) = {λ ∈ C : Ker(T − λ) =

{0}, R(T − λ) = R(T − λ)} and ρ(T ) = {λ ∈ ρ̂(T ) : R(T − λ) = H} the set of
regular type points and the resolvent set of T respectively.

Let H be a finite dimensional Hilbert space. Recall that a holomorphic operator
function Φ(·) : C+ ∪ C− → [H] is called a Nevanlinna function (and is referred to
the class R[H]) if Im z · ImΦ(z) ≥ 0 and Φ∗(z) = Φ(z), z ∈ C+ ∪ C−. According to
[10, 2] a function Φ(·) : C+ ∪ C− → [H] belongs to the class R[H] if and only if it
admits the integral representation

Φ(z) = C0 + z C1 +

∫

R

(
1

t− z
−

t

1 + t2

)
dFΦ(t), (2.1)

where C0, C1 ∈ [H], C0 = C∗
0 , C1 ≥ 0 and FΦ(·) : Bb → [H] is an operator valued

measure defined on the ring Bb of all bounded Borel sets in R and such that
∫

R

1

t2 + 1
dFΦ(t) ∈ [H]. (2.2)

The operator valued measure FΦ(·) in (2.1) is called the spectral measure of the
function Φ(·) ∈ R[H].

The following lemma is well known.

Lemma 2.1. Let Φ(·) ∈ R[H] and let F (·) = FΦ(·) be the corresponding spectral
measure. Then for each λ ∈ R the following relations are equivalent:

(i) lim
y→0

1/y Im (Φ(λ+ iy)h, h) < ∞, h ∈ H;

(ii)

∫

R

d(F (t)h, h)

(t− λ)2
< ∞, h ∈ H; (2.3)

If the relation (i) (or, equivalently, (ii)) is satisfied, then there exists the limit

M(λ+ i0) := lim
y→0

M(λ+ iy)

and ImM(λ+ i0) = 0.

Let A be a closed densely defined symmetric operator in H and let A∗ be the
adjoint operator. For each z ∈ C denote by

Nz(A) := Ker(A∗ − z)(= H⊖R(A− z))

the defect subspace of A and let n±(A) = dimNz(A) (z ∈ C±) be the deficiency
indices of A.

Definition 2.2. [8] A triplet Π = {H,Γ0,Γ1} consisting of an auxiliary Hilbert
space H and linear mappings Γj : D(A∗) → H, j ∈ {0, 1} is called a boundary

triplet for A∗ if the mapping Γ = (Γ0 Γ1)
⊤ : D(A∗) → H⊕H is surjective and the

following abstract Green’s identity holds

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ D(A∗).
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The following Proposition was proved in [4].

Proposition 2.3. Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then n+(A) =
n−(A) = dimH and the equalities

D(A0) = KerΓ0 = {f ∈ D(A∗) : Γ0f = 0}, A0 = A∗ ↾ D(A0) (2.4)

define a self-adjoint extension A0 ⊃ A.

Conversely, let A be a symmetric operator in H with n+(A) = n−(A) and let Ã be
a self-adjoint extension of A. Then there exists a boundary triplet Π = {H,Γ0,Γ1}

for A∗ such that Ã = A0(= A∗ ↾ KerΓ0).

It turns out that for any z ∈ ρ(A0) the operator Γ0 ↾ Nz(A) isomorphically maps
Nz(A) onto H. This enables one to introduce the following definition.

Definition 2.4. [3] The operator function M(·) : ρ(A0) → [H] defined by

Γ1 ↾ Nz(A) = M(z)Γ0 ↾ Nz(A), z ∈ ρ(A0)

is called the Weyl function corresponding to the boundary triplet {H,Γ0,Γ1}.

As was shown in [3] the Weyl function M(·) belongs to the class R[H] and 0 ∈
ρ(ImM(z)), z ∈ C+ ∪ C−.

3. Symmetric operators with real defect subspaces of the maximal

dimension

In the sequel we denote by A a simple symmetric densely defined operator in H

with equal deficiency indices d = n±(A) < ∞. Since the operator A is simple, it
follows that Ker(A− λ) = {0} and, consequently, dimNλ(A) ≤ d for all λ ∈ R. We
denote by ρ̃(A) the set of all λ ∈ R such that dimNλ(A) = d.

Proposition 3.1. Assume that A is a simple symmetric operator in H with d =
n±(A) < ∞, Π = {H,Γ0,Γ1} is a boundary triplet for A∗, A0 is the self-adjoint
extension (2.4) and M(·) is the corresponding Weyl function. Then a real point λ
belongs to ρ̃(A) and Ker(A0 − λ) = {0} if and only if

lim
y→0

1/y Im(M(λ+ iy)h, h) < ∞, h ∈ H. (3.1)

Proof. For a point λ ∈ R denote by Hλ the subspace in H given by Hλ = Γ0Nλ(A).
It follows from (2.4) that

Ker(Γ0 ↾ Nλ(A)) = D(A0) ∩Nλ(A) = Ker(A0 − λ)

and, consequently,

dimNλ(A) = dimKer(A0 − λ) + dimHλ. (3.2)

Since dimNλ(A) ≤ d, the equality (3.2) yields the equivalences

(Ker(A0 − λ) = {0} and dimNλ(A) = d) ⇐⇒ dimHλ = d ⇐⇒ Hλ = H. (3.3)

Moreover according to [13] for any h ∈ H the following equivalence holds

h ∈ Hλ ⇐⇒ lim
y→0

1/y Im(M(λ+ iy)h, h) < ∞. (3.4)
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In view of (3.4) the equality Hλ = H is equivalent to the condition (3.1), which
together with (3.3) gives the desired statement. �

Remark 3.2. It is easily seen that for all λ ∈ R there exists a self-adjoint extension
A0 ⊃ A with Ker(A0 − λ) = {0}. Moreover by Proposition 2.3 there exists a
boundary triplet Π = {H,Γ0,Γ1} for A∗ such that A0 is defined by (2.4). This
implies that Proposition 3.1 provides actually the criterium (in terms of the Weyl
function) for a point λ ∈ R belongs to ρ̃(A).

Lemma 3.3. Assume that dimH < ∞ and F (·) : Bb → [H] is an operator valued
measure satisfying (2.2) and the relation

lim
[α,β)→R

(F ([α, β))h, h) = ∞, h ∈ H.

Moreover, let L2(F,H) be the Hilbert space of vector functions f(·) : R → H such
that

||f ||2L2(F,H) :=

∫

R

(dF (t)f(t), f(t)) < ∞

(see [11, 6]) and let ÃF be the self-adjoint multiplication operator in L2(F,H) given
by

D(ÃF ) = {f ∈ L2(F,H) : tf(t) ∈ L2(F,H)}, (ÃF f)(t) = tf(t). (3.5)

Then: 1) the equalities

D(AF ) =

{
f ∈ D(ÃF ) :

∫

R

dF (t)f(t) = 0

}
, (AF f)(t) = tf(t) (3.6)

define a simple symmetric densely defined operator in L2(F,H) such that n±(AF ) =

dimH and AF ⊂ ÃF ;

2) for each point λ ∈ R with F ({λ}) = 0(⇔ Ker(ÃF − λ) = {0}) the inclusion
λ ∈ ρ̃(AF ) is equivalent to the relation (2.3).

Proof. The statement 1) was proved in [5].
2) Let the function M(·) ∈ R[H] be given by (2.1) with C1 = 0 and FM (·) = F (·).

Then according to [5] there exists a boundary triplet Π0 = {H,Γ0,Γ1} for A∗
F such

that A0(= A∗ ↾ KerΓ0) = ÃF and the corresponding Weyl function coincides with
M(·). Applying now Proposition 3.1 to the triplet Π0 and taking Lemma 2.1 into
account one obtains the desired statement. �

For a given operator A and an interval I = (µ1, µ2), −∞ ≤ µ1 < µ2 ≤ ∞, we
denote by ρ̃I(A) = ρ̃(A)∩I the set of all points λ ∈ I with dimNλ(A) = d(= n±(A))
and let ρ̂I(A) = ρ̂(A) ∩ I be the set of all regular type points of A belonging to
I. Since dimNλ(A) = d for all λ ∈ ρ̂I(A), the inclusion ρ̂I(A) ⊂ ρ̃I(A) is valid.
Moreover, the set ρ̃I(A)\ ρ̂I (A) consists of all points λ ∈ I such that dimNλ(A) = d
and the range R(A− λ) is not closed.

As is known [16] the spectrum σ(T ) of a self-adjoint operator T admits the rep-
resentation

σ(T ) = σp(T ) ∪ σc(T ), σc(T ) = σac(T ) ∪ σsc(T ), (3.7)
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where σp(T ) = {λ ∈ R : Ker(T −λ) 6= {0}} is the point spectrum and σc(T ), σac(T )
and σsc(T ) are continuous, absolutely continuous and singular continuous parts of
σ(T ) respectively. Recall that the continuous spectrum σc(T ) is defined as the
spectrum of the self-adjoint operator Tc = T ↾ Hc, where Hc := H⊖span{Ker(T−λ) :
λ ∈ σp(T )} is the subspace reducing the operator T .

Another basic partition of the spectrum is in terms of the discrete spectrum σd(T )
and the essential spectrum σe(T ). Namely, σd(T ) is the set of all isolated eigenvalues
of T with finite multiplicity and σe(T ) = σ(T )\σd(T ). It is clear that σc(T ) ⊂ σe(T ).
Moreover, the following lemma is well known.

Lemma 3.4. Let A be a simple symmetric operator with d = n±(A) < ∞. Then all

self-adjoint extensions Ã ⊃ A have the same essential spectrum

σe(Ã) = R \ ρ̂(A). (3.8)

Recall also that a set X ⊂ (µ1, µ2) is called nowhere dense in (µ1, µ2) if for any
interval (µ′

1, µ
′
2) ⊂ (µ1, µ2) there exists an interval (µ′′

1, µ
′′
2) ⊂ (µ′

1, µ
′
2) such that

X ∩ (µ′′
1, µ

′′
2) = ∅.

Now we are ready to prove the main theorem of the paper.

Theorem 3.5. Assume that A is a simple symmetric densely defined operator in H

with equal deficiency indices d = n±(A) < ∞ and I = (µ1, µ2), −∞ ≤ µ1 < µ2 ≤ ∞,
is an interval such that the set I \ ρ̃I(A) is at most countable. Then:

1) for each self-adjoint extension Ã ⊃ A the intersection σc(Ã) ∩ I is empty and

the set σ(Ã) ∩ I is nowhere dense in I;
2) the set I \ ρ̂I(A) is nowhere dense in I.

Proof. 1) Let Ã be a self-adjoint extension of A and let Π = {H,Γ0,Γ1} be a

boundary triplet for A∗ with Ã = A0(= A∗ ↾ KerΓ0) (such a triplet exists in view of
Proposition 2.3). Moreover, let M(·) ∈ R[H] be the corresponding Weyl function.

Next assume that

Xp = {λk}(= σp(Ã) ∩ I)

is the (at most countable) set of all eigenvalues of Ã belonging to I and let X1 :=
ρ̃I(A) \Xp, X2 := (I \ ρ̃I(A)) \Xp, so that

I = Xp ∪X1 ∪X2, Xp ∩X1 = Xp ∩X2 = X1 ∩X2 = ∅. (3.9)

Then Xp ∪X2 is an at most countable subset in I and by Proposition 3.1 the Weyl
function M(·) satisfies the relation (3.1) for all λ ∈ X1. This and Lemma 2.1 yield
the following statement (s1) :

(s1) there exists a subsetX1 ⊂ I such that: (i) I\X1 is an at most countable set;
(ii) for all λ ∈ X1 the limit M(λ+ i0) := lim

y→0
M(λ+ iy) exists and ImM(λ+ i0) = 0.

According to [1, Theorem 4.3] the statement (s1) implies that σsc(Ã) ∩ I =

∅, σac(Ã) ∩ I = ∅ and, consequently,

σc(Ã) ∩ I = ∅. (3.10)
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Next assume that E(·) and F (·) = FM (·) are spectral measures of the operator

Ã(= A0) and the Weyl function M(·) respectively. According to [1, Lemma 3.2] the
measures E(·) and F (·) are equivalent. Moreover, by (3.10)

σ(Ã) ∩ I = Xp, (3.11)

which implies that the measure E(·) is discrete on I and hence so is the measure
F (·). Combining this statement with Proposition 3.1 and Lemma 2.1 one obtains

∫

R

d(F (t)h, h)

(t− λ)2
=

∑

k

(Fkh, h)/(λk − λ)2 < ∞, λ ∈ X1, h ∈ H, (3.12)

where Fk = F ({λk}) ∈ [H]. Let {ej}
d
1 be an orthonormal basis in H and let ck =∑

j

(Fkej , ej). Since Fk 6= 0 and Fk ≥ 0, it follows that ck > 0 and the relation (3.12)

yields
∑

k

ck/(λk − λ)2 < ∞, λ ∈ X1. (3.13)

Thus the following statement (s2) is proved:
(s2) there exists a decomposition (3.9) of the interval I and a sequence of

positive numbers {ck} such that Xp = {λk} and X2 are at most countable sets and
for all λ ∈ X1 the relation (3.13) holds.

By using the statement (s2) one can prove in the same way as it was done [18,
Theorem11.7] that the set Xp is nowhere dense in I. This and the equality (3.11)

imply that the set σ(Ã) ∩ I is nowhere dense in I as well.

The statement 2) follows from the obvious inclusion (I \ ρ̂I(A)) ⊂ σ(Ã) ∩ I and
the statement 1). �

It turns out that the relation σc(Ã)∩I = ∅ in the statement 1) of Theorem 3.5 can

not be replaced with the stronger one σe(Ã) ∩ I = ∅. More precisely the following
proposition holds.

Proposition 3.6. For any interval I = (µ1, µ2), −∞ ≤ µ1 < µ2 ≤ ∞, and for any
d ∈ N there exist a Hilbert space H and a simple symmetric operator A in H such

that n±(A) = d, ρ̃I(A) = I and for any self-adjoint extension Ã ⊃ A the interval I

contains infinitely many points of σe(Ã). In view of (3.8) the last statement implies
that the set ρ̃I(A) \ ρ̂I(A) is infinite.

Proof. First assume that d = 1 and consider the following two alternative cases:
(i) µ2 < ∞, i.e., the interval I is bounded from above.

Let {λk}
∞
0 be a strictly increasing sequence of the points λk ∈ I such that

lim
k→∞

λk = µ2 and let {λjk}
∞
j,k=1 be a sequence of the points λjk ∈ (λk−1, λk) such

that λjk < λj+1,k, λk − λjk < 1 and lim
j→∞

λjk = λk, j, k ∈ N. Consider also two
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sequences of positive numbers {sk}
∞
1 and {ujk}

∞
j,k=1 such that

∞∑

k=1

sk < ∞ and

∞∑

j=1

ujk = sk

and let Fjk = ujk(λk − λjk)
2. Since Fjk ≤ ujk, it follows that

∑

k

∑

j

Fjk ≤
∑

k

∑

j

ujk =
∑

k

sk < ∞.

This enables one to introduce the scalar discrete measure F ′(·) on Borel sets B ⊂ I
by

F ′({λjk}) = Fjk, F ′(B) =
∑

λjk∈B

Fjk. (3.14)

Assume also that F ′′(·) is a scalar measure on bounded Borel sets B ⊂ R such that
F ′′(R \ I) = ∞ and

∫

R\I

(t2+1)−1dF ′′(t) < ∞ (for example one can take as F ′′(·) the

standard Lebesgue measure on the line). Then the equality

F (B) = F ′(B ∩ I) + F ′′(B ∩ (R \ I)) (3.15)

defines the scalar measure F (·) on bounded Borel sets B ⊂ R such that F (R) = ∞
and ∫

R

dF (t)

t2 + 1
< ∞. (3.16)

Next we show that ∫

R

dF (t)

(t− λk)2
< ∞ (3.17)

for each point λk. Let (αk, βk) be an interval such that λk−1 < αk < λ1,k and
λk < βk < λ1,k+1. Then

∫

[αk ,βk)

dF (t)

(t− λk)2
=

∞∑

j=1

Fjk

(λjk − λk)2
=

∞∑

j=1

ujk = sk < ∞ (3.18)

and in view of (3.16) one has
∫

R\[αk,βk)

dF (t)

(t− λk)2
< ∞. (3.19)

Combining (3.18) and (3.19) we arrive at (3.17).
(ii) µ2 = ∞, i.e., the interval I is unbounded from above.

Assume also without loss of generality that µ1 ≤ 1. In this case we put λk =
k, λjk = k + 1

j+1 , k, j ∈ N and let {Fj}
∞
1 be a sequence of positive numbers such
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that
∞∑
j=1

(j + 1)2Fj < ∞. Then s :=
∞∑
j=1

Fj < ∞ and the equalities

F ({λjk}) = Fj , F (B) =
∑

λjk∈B

Fj . (3.20)

define the scalar measure F (·) on bounded Borel sets B ⊂ R. For this measure we
have

F ([k, k + 1)) =

∞∑

j=1

Fj = s, k ⊂ N

and, consequently, F (R) = ∞. Moreover,

∫

(−∞,1)

dF (t)

t2 + 1
= 0 and

∫

[k,k+1)

dF (t)

t2 + 1
=

∞∑

j=1

Fj(
k + 1

j+1

)2
+ 1

≤
∞∑

j=1

Fj

k2
=

1

k2
s

for all k ∈ N, which implies that
∫

R

dF (t)

t2 + 1
=

∞∑

k=1

∫

[k,k+1)

dF (t)

t2 + 1
≤ s

∞∑

k=1

1

k2
< ∞.

Hence the measure F (·) satisfies the relation (3.16). Next for a given λk = k consider
the interval (αk, βk) such that (k − 1) + 1

2 < αk < k and k + 1
2 < βk < k + 1. Then

∫

[αk,βk)

dF (t)

(t− λk)2
=

∞∑

j=1

Fj[(
k + 1

j+1

)
− k

]2 =

∞∑

j=1

(j + 1)2Fj < ∞

and by (3.16) the inequality (3.19) is also valid. This gives the relation (3.17) for
the measure (3.20).

Thus in both cases (i) and (ii) we constructed the countable infinite subsets Y1 =
{λjk} and Y2 = {λk} of I and the discrete measure F (·) with the following properties:
1) Y1 consists of isolated points and Y2 is the set of all limit points of Y1 belonging
to I; 2) the measure F (·) is concentrated on Y1, F (R) = ∞ and the relations (3.16)

and (3.17) are satisfied. This properties imply that the multiplication operator ÃF

in L2(F ) (see (3.5)) satisfies the equality

σe(ÃF ) ∩ I = Y2(= {λk}). (3.21)

Next assume that AF ⊂ ÃF is a simple symmetric operator in L2(F ) given by (3.6).

Then n±(AF ) = 1 and in view of (3.21) and Lemma 3.4 the set σe(Ã) ∩ I(= {λk})

is infinite for any self-adjoint extension Ã ⊃ AF . Moreover, by (3.17) and Lemma
3.3, 2) Y2 ⊂ ρ̃I(AF ) and the equality (3.8) gives

I \ Y2 = ρ̂I(AF ) ⊂ ρ̃I(AF ).

This implies that I = ρ̃I(AF ) and hence AF is a desired operator.
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In the case of an arbitrary d ∈ N we put A =
d⊕

k=1

AF , where AF is the constructed

above simple symmetric operator with n±(AF ) = 1. It is clear that the operator A
has the required properties. �

4. Differential operators

In this section we apply the obtained results to differential operators generated
by the formally self-adjoint differential expression

l[y] =
n∑

k=1

(−1)k((pn−ky
(k))(k) − i

2 [(q
∗
n−ky

(k))(k−1) + (qn−ky
(k−1))(k)]) + pny (4.1)

of an even order 2n. The coefficients pk(·) and qk(·) of this expression are defined
on an interval (a, b), −∞ ≤ a < b ≤ ∞, take on values in [Cm] and possess the
following properties:

(a) pk, qk are measurable on (a, b);
(b) pk(t) = p∗k(t) (k = 0÷ n) and 0 ∈ ρ(p0(t)) almost everywhere on (a, b);

(c) the operator functions pk (k = 2 ÷ n), qk (k = 1 ÷ (n − 1)), p−1
0 , q∗0p

−1
0 and

1
4q

∗
0p

−1
0 q0 − p1 are locally integrable on (a, b).

The expression (4.1) is called regular at a, if a > −∞ and the assumptions on
the coefficients are satisfied in [a, b) instead of (a, b). The regularity of (4.1) at b is
defined correspondingly.

Next assume that y[k](·), k = 0 ÷ 2n are the quasi-derivatives of a function
y(·) : (a, b) → C

m [15, 12] and let D(l) be the set of all functions y(·) such that the

quasi-derivatives y[k](·), k = 0÷ (2n − 1) are absolutely continuous in (a, b). Then

for each function y ∈ D(l) the equality l[y] = y[2n] is valid.
For a given interval (α, β) ⊂ R denote by L2(α, β) the Hilbert space of all mea-

surable functions f(·) : (α, β) → C
m such that

β∫
α

||f(t)||2 dt < ∞. As is known

[15, 18] the expression (4.1) generates the maximal operator L in L2(a, b) defined on
the domain D(L) := {y ∈ D(l) ∩ L2(a, b) : l[y] ∈ L2(a, b)} by Ly = l[y], y ∈ D(L).

Moreover, the minimal operator L0 is defined by L0 = L′
0, where L′

0 is a restriction
of L onto the linear manifold of all functions y ∈ D(l) with compact support. It
is known [15, 18] that L0 is a densely defined symmetric operator in L2(a, b) and
L∗
0 = L.
For a given point c ∈ (a, b) denote by la[y] and lb[y] the restrictions of the ex-

pression l[y] onto the intervals (a, c) and (c, b) respectively and let La0 (Lb0) be the
minimal operator in L2(a, c) (resp. L2(c, b)) generated by la[y] (resp. lb[y]). It is
clear that for each λ ∈ C the defect subspace Nλ(La0) (Nλ(Lb0)) is the set of all
solutions of the equation

l[y]− λy = 0, (4.2)

which lie in L2(a, c) (resp. L2(c, b)). Therefore the defect number n+(La0) (n+(Lb0))
can be defined as the number of linearly independent solutions of the equation (4.2)
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with λ = i belonging to L2(a, c) (resp. L2(c, b)). Similarly one defines (with λ = −i
in place of λ = i) the defect numbers n−(La0) and n−(Lb0).

If the operators La0 and Lb0 have equal deficiency indices

n+(La0) = n−(La0) =: da, n+(Lb0) = n−(Lb0) =: db, (4.3)

then nm ≤ da ≤ 2nm, nm ≤ db ≤ 2nm and the operator L0 also has equal
deficiency indices

n+(L0) = n−(L0) = da + db − 2nm.

In this connection note that the relations (4.3) hold if m = 1 (the scalar case) and
in formula (4.1) qk = 0. Observe also that all the above definitions and assertions
do not depend on the choice of the point c ∈ (a, b).

Application of Theorem 3.5 to the minimal differential operator L0 gives the
following result.

Theorem 4.1. Let the operators La0 and Lb0 have equal deficiency indices (4.3)
and let I = (µ1, µ2), −∞ ≤ µ1 < µ2 ≤ ∞, be an interval such that for some
(equivalently, for all) c ∈ (a, b) and for all λ ∈ I, besides an at most countable set
X ⊂ I, the equation (4.2) has da linearly independent solutions belonging to L2(a, c)
and db linearly independent solutions which lie in L2(c, b). Then for any self-adjoint

extension Ã ⊃ L0 the statement 1) of Theorem 3.5 holds.

Proof. Since the expressions la[y] and lb[y] are regular at c, it follows that the cor-
responding minimal operators La0 and Lb0 are simple (see for instance [7]). Hence

the symmetric operator L̂0 := La0 ⊕Lb0 in L2(a, b) is also simple and in view of the

equality Nλ(L̂0) = Nλ(La0)⊕Nλ(Lb0) one has

dimNλ(L̂0) = dimNλ(La0) + dimNλ(Lb0), λ ∈ C.

Therefore by (4.3) n±(L̂0) = da + db and

dimNλ(L̂0) = da + db(= n±(L̂0)), λ ∈ I \X,

which implies that ρ̃I(L̂0) = I \X. Moreover, L̂0 ⊂ L0 and consequently L̂0 ⊂ Ã

for any self-adjoint extension Ã ⊃ L0. Now it remains to apply Theorem 3.5 to L̂0

and any self-adjoint extension Ã ⊃ L0(⊃ L̂0). �

The following corollary is immediate from Theorems 4.1 and 3.5.

Corollary 4.2. Let the expression (4.1) be regular at a and let the corresponding
minimal operator L0 has equal deficiency indices d = n±(L0). Moreover, let I =
(µ1, µ2), −∞ ≤ µ1 < µ2 ≤ ∞, be an interval such that Eq. (4.2) has d linearly
independent solutions which lie in L2(a, b) for all λ ∈ I besides an at most countable
set X ⊂ I. Then:

1)for any self-adjoint extension Ã ⊃ L0 the statement 1) of Theorem 3.5 holds;

2) the set of all points λ ∈ I such that R(L0 − λ) 6= R(L0 − λ) is nowhere dense
in I.
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The particular case of (4.1) is the scalar Sturm - Liouville expression

l[y] = −y′′ + p(t)y, t ∈ (0,∞), (4.4)

where p(·) : (0,∞) → C is a scalar function such that p(t) = p(t) and p(t) ∈ L1(0, c)
for every c ∈ (0,∞) (this means that the expression (4.4) is regular at 0). Let the
minimal operator L0 of the expression (4.4) has minimal deficiency indices n±(L0) =
1 (the limit point case). For a given θ ∈ R consider the boundary value problem
defined by the equation (4.2) and the boundary condition

y′(0) − θy(0) = 0. (4.5)

Assume that ϕ(t, λ) is the solution of (4.2) with the initial data ϕ(0, λ) = 1, ϕ′(0, λ) =

θ and let Ãθ be a self-adjoint extension of L0 with the domain

D(Ãθ) = {y ∈ D(L) : y′(0) = θy(0)}.

As is known [15] the scalar measure F (·) : Bb → R is called a spectral measure of
the boundary problem (4.2), (4.5) if the relation (the Fourier transform)

L2(0,∞) ∋ f → (V f)(λ) =

∫ ∞

0
ϕ(t, λ)f(t) dt ∈ L2(F ) (4.6)

defines the unitary operator V : L2(0,∞) → L2(F )(= L2(F,C)) such that the

operators Ãθ and ÃF (see (3.5)) are unitary equivalent by means of V .
If F (·) is a spectral measure of the problem (4.2), (4.5), then the unitary operator

V (4.6) gives the unitary equivalence between the minimal operator L0 and the sym-
metric operator AF defined by (3.6). Observe also that F (·) is the spectral measure
of the Titchmarsh–Weyl function m(·) of the boundary problem (4.2), (4.5)[15] and
hence it satisfies the relation (2.2).

In the following proposition we show that the conjecture by Hartman and Wintner
on the spectrum of a self-adjoint Sturm - Liouville operator is false (for more details
see Introduction).

Proposition 4.3. For any finite interval I = (µ1, µ2), −∞ < µ1 < µ2 < ∞,
there exists a Sturm–Liouville expression (4.4) such that the deficiency indices of
the minimal operator L0 are d = n±(L0) = 1 and the following statements hold:

1) for all λ ∈ I Eq. (4.2) has the unique solution which lies in L2(0,∞);

2) for any self-adjoint extension Ã ⊃ L0 the interval I contains infinitely many

points of the essential spectrum σe(Ã).

Proof. Let I = (µ1, µ2) be a finite interval, let {λk}. {λjk} and {Fjk} be the same
as in the proof of Proposition 3.6 (case (i)) and let F ′(B) be the measure on Borel
sets B ⊂ I defined by (3.14). According to [15, ch. 8. 26.3] the measure F ′(·) can
be extended to the measure F (·) on bounded Borel sets B ⊂ R with the following
property: there exists the Sturm–Liouville expression (4.4) and a real θ such that
the corresponding minimal operator L0 has the deficiency indices d = n±(L0) = 1
and F (·) is the spectral measure of the boundary problem (4.2), (4.5).
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Next assume that AF and ÃF are the operators (3.5) and (3.6) respectively. Then
repeating the same reasonings as in the proof of Proposition 3.6 one obtains that

ρ̃I(AF ) = I and for any self-adjoint extension Ã ⊃ AF the set σe(Ã) ∩ I is infinite.
Since the minimal operator L0 is unitary equivalent to AF (by means of the Fourier
transform (4.6)), the operator L0 has the same properties as AF . This implies the
desired statements 1) and 2). �
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