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0 Alternated Hochschild Cohomology

Pierre Lecomte Valentin Ovsienko

Abstract

In this paper we construct a graded Lie algebra on the space of cochains on a Z2-graded
vector space V = V0 ⊕ V1 that are skew-symmetric on the subspace V1. The Lie bracket
is obtained from the classical Gerstenhaber bracket by (partial) skew-symmetrization; the
coboundary operator is a skew-symmetrized version of the Hochschild differential. We show
that an order-one element m satisfying the zero-square condition [m,m] = 0 defines an
algebraic structure called “Lie antialgebra” in [17]. The cohomology (and deformation)
theory of these algebras is then defined. We present two examples of non-trivial cohomology
classes which are similar to the celebrated Gelfand-Fuchs and Godbillon-Vey classes.
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1 Introduction

Let V = V0 ⊕ V1 be a Z2-graded vector space. We consider the space of parity preserving
multilinear maps on V , that are skew-symmetric on the subspace V1

ϕ : (V0 ⊗ · · · ⊗ V0)⊗ (V1 ∧ · · · ∧ V1) → V. (1.1)

We will define a natural structure of graded Lie algebra on this space and develop an adequate
cohomology theory.

The graded Lie algebra on the space of all multilinear maps on a (multi-graded) vector space
V is the classic Gerstenhaber algebra [4, 5]. The graded Lie algebra on the space of skew-
symmetric maps V ∧ · · · ∧ V → V is another classic graded Lie algebra called the Nijenhuis-
Richardson algebra [14, 15]. A natural homomorphism between the Gerstenhaber algebra and
that of Nijenhuis-Richardson is given by the skewsymmetrization, see [7].

In this article, we introduce a graded Lie algebra defined by the Gerstenhaber bracket
skewsymmetrized only in a part of variables. In this sense, our graded Lie algebra is a kind
of “intermediate form” between the Gerstenhaber and Nijenhuis-Richardson algebras.

The related cohomology is defined in a usual way. We consider a parity preserving bilinear
map m : V ×V → V of the form (1.1), understood as an odd element (of degree 1) in our graded
Lie algebra. We assume that m satisfies the condition

[m, m] = 0. (1.2)
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This defines a coboundary operator
δ = adm (1.3)

and the corresponding cochain complex. Note that the condition δ2 = 0 is an immediate
consequence of (1.2) and the graded Jacobi identity. We then calculate the explicit combinatorial
formula of the differential, it turns out to be an amazing “interpolation” between the Hochschild
and Chevalley-Eilenberg differentials.

Let us stress on the fact that most of the known algebraic structures, such as associative or
Lie algebras, Lie bialgebras, Poisson structures, etc. can be represented in terms of an order-one
element m of a graded Lie algebra (usually the algebra of derivations of an associative algebra
of tensors) that satisfies the condition (1.2). This general idea goes back to Gerstenhaber and
Nijenhuis-Richardson and became a powerful tool for producing new (or better understanding
of the known) algebraic structures, see [8] as an example of such approach.

It turns out quite remarkably, that a bilinear map m, symmetric on V0 and skew-symmetric
on V1, satisfying the condition (1.2) is precisely the structure of Lie antialgebra introduced in [17]
and further studied in [9]. This class of algebras is a particular class of Jordan superalgebras
closely related to the Kaplansky superalgebras defined in [12]. Lie antialgebras appeared in
symplectic geometry, see [17]. Deducing this algebraic structure directly from the Gerstenhaber
algebra explains its cohomologic nature.

In this paper, we define cohomology of Lie antialgebras. We pay a special attention to
lower degree cohomology spaces and explain their algebraic sense. In particular we show that
the second cohomology space classifies extensions of Lie antialgebras already considered in [17],
while the first cohomology space classifies extensions of modules. In the end of the paper, we
present two examples of non-trivial cohomology classes generalizes two celebrated cohomology
classes of infinite-dimensional Lie algebras. One of them is analog of the Gelfand-Fuchs class
and the second one is analog of the Godbillon-Vey class.

The notion of deformation is also provided by the equation (1.2). Considering a family mt

satisfying [mt,mt] = 0 and such that m0 = m, one immediately obtains the Maurer-Cartan
equation for the variational part m̃ = mt −m:

δm̃ = 1
2 [m̃, m̃] (1.4)

crucial in the deformation theory. We hope to develop this approach in a subsequent work.

2 The graded Lie algebra

In this section, we introduce our main object, the graded Lie algebra on the space of maps (1.1).
We start with a brief description of the most classical Gersternhaber algebra. We then discuss
in some details the case of Z2-graded vector space and finally define our graded Lie algebra by
a skew-symmetrization of the Gersternhaber bracket.
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2.1 The Gerstenhaber algebra

Given a vector space V , consider the space M(V ) of all multilinear maps ϕ : V ⊗ · · · ⊗ V → V .
The standard Z≥−1-grading on M(V ) is given by

M(V ) =
⊕

k≥−1

Mk(V ),

where Mk(V ) is the space of (k + 1)-linear maps.
The Gerstenhaber product of two elements ϕ ∈ Mk(V ) and ϕ′ ∈ Mk′(V ) usually denoted by,

jϕ ϕ′ ∈ Mk+k′(V ) is given by

(jϕ ϕ′) (x0, . . . , xk+k′) =
k′∑

i=0

(−1)i k ϕ′ (x0, . . . , ϕ(xi, . . . , xi+k), . . . , xk+k′) . (2.1)

The classical result of Gerstenhaber [4] states that graded bracket

[
ϕ,ϕ′

]
= jϕϕ

′ − (−1)kk
′

jϕ′ϕ (2.2)

equips M(V ) with a structure of graded Lie algebra. In particular, it satisfies the graded Jacobi
identity

(−1)k1k3 [ϕ1, [ϕ2, ϕ3]] + (−1)k1k2 [ϕ2, [ϕ3, ϕ1]] + (−1)k2k3 [ϕ3, [ϕ1, ϕ2]] = 0, (2.3)

where ϕi ∈ Mki(V ) for i = 1, 2, 3.
The most conceptual way to prove this statement consists in a simple observation [16] that

the Gerstenhaber algebra is nothing but the algebra of derivations of the associative tensor
algebra TV ∗. Indeed, one obviously has Mk(V ) ∼= (V ∗)⊗(k+1) ⊗ V, as a vector space. On
the other hand, a derivation D ∈ Der (TV ∗) is uniquely defined (via the Leibniz rule) by its
restriction to the first-order component V ∗ of the algebra TV ∗, namely,

D|V ∗ : V ∗ → TV ∗.

The derivation D is therefore identified with an element of TV ∗ ⊗ V . One thus obtains the
isomorphism

(M(V ), [ , ]) ∼= Der (TV ∗) (2.4)

as vector spaces. The bracket (2.2) precisely the (graded) commutator in Der (TV ∗) so that the
above isomorphism is, indeed, an isomorphism of graded Lie algebras.

3



2.2 Z2-graded case

It is easy to generalize the above definitions in the case of Z2-graded vector space V = V0 ⊕ V1.
To make this paper self-content, we give here all the necessary details.

The space Mk(V ) has the following decomposition

Mk(V ) =
⊕

ℓ+m=k+1

M ℓ,m(V ),

where M ℓ,m(V ) is the space of all (ℓ,m)-linear maps ϕ : V ⊗ℓ
0 ⊗ V ⊗m

1 → V .
Every element ϕ ∈ M ℓ,m(V ) is a sum of two homogeneous components: ϕ = ϕ0 + ϕ1 with

values in V0 and V1, respectively. The parity of a homogeneous ϕi ∈ M ℓ,m(V ) is defined by

p(ϕi) := ℓ+ i+ 1 (mod 2),

where i = 0 or 1.

Remark 2.1. Note that the parity in this definition is somewhat “inverted”. That was already
the case for the usual Gerstenhaber algebra, cf. Section 2.1. In particular, an even bilinear map,
m : Vi × Vj → Vi+j , is of parity 1 and is understood as an odd element of M(V ). Furthermore,
the space V is viewed as a subspace of M(V ), and parity of v ∈ Vi is p(v) = i+ 1.

The operations (2.1) and (2.2) are now defined via the standard sing rule. Note that this
is a particular case of the multi-graded Gerstenhaber algebra defined in [7]. In order to fix the
notation, we will give the formula for the Gerstanhaber product denoting by x elements of V0

and by y elements of V1. For an (ℓ,m)-linear map ϕ0 with values in V0 and an (ℓ′,m′)-linear
map ϕ′, one obtains an (ℓ+ ℓ′ − 1,m+m′)-linear map

(jϕ0
ϕ′) (x1, . . . , xℓ+ℓ′−1; y1, . . . , ym+m′) =

ℓ′∑

i=0

(−1)i p(ϕ0) ϕ′ (x1, . . . , ϕ0(xi+1, . . . , xi+ℓ; y1, . . . , ym), . . . , xℓ+ℓ′−1; ym+1, . . . , ym+m′) .
(2.5)

Similarly, for a map ϕ1 with values in V1, one has

(jϕ1
ϕ′) (x1, . . . , xℓ+ℓ′ ; y1, . . . , ym+m′−1) =

(−1)ℓ
′ p(ϕ1)

m′∑

i=0

ϕ′ (x1, . . . , xℓ′ ; y1, . . . , ϕ1(xℓ′+1, . . . , xℓ+ℓ′ ; yi, . . . , yi+m), . . . , ym+m′−1) .
(2.6)

The commutator (2.2) with k1 and k2 replaced by p(ϕ1) and p(ϕ2), respectively, is again a
graded Lie algebra structure.

Observe the lack of sign depending upon i in (2.6) is due to the fact that the y ∈ V1 are of
even parity in M(V ).
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2.3 The Nijenhuis-Richardson algebra

The Nijenhuis-Richardson algebra, A(V ), is the graded Lie algebra defined on the space of skew-
symmetric multilinear maps V ∧· · ·∧V → V . The space A(V ) is precisely the space of derivations
Der(ΛV ∗), the graded Lie bracket on A(V ) is defined and similar to the Gersternhaber bracket.
This algebra is called the Nijenhuis-Richardson algebra, it is related to the Chevalley-Eilenberg
cohomology of Lie (super)algebras, see [14]. We omit the explicit formulæ.

The definition of the Nijenhuis-Richardson algebra holds in the Z2-graded case.

Remark 2.2. If V = V0⊕V1, then multilinear maps V ∧· · ·∧V → V are skew-symmetric in the
graded sense, in particular ϕ is symmetric on V1. The multilinear maps (1.1) that we consider
in this paper are skew-symmetric on V1.

It was proved in [7] that the natural homomorphism of graded Lie algebras M(V ) → A(V )
is given by skew-symmetrization.

2.4 Alternated Gerstenhaber algebra

In this section, we give our main construction. The vector space V we consider is Z2-graded.

Definition 2.3. A map ϕ ∈ M ℓ,m(V ) is called parity preserving if

{
ϕ0 = 0, if m is odd,

ϕ1 = 0, if m is even,

where ϕ0 is with values in V0 and ϕ1 is with values in V1.

In the sequel, we restrict our considerations to the parity preserving cochains.
We denote by al(V ) the space of parity preserving multilinear maps of the form (1.1). Of

course, al(V ) is a subspace of M(V ). There is a natural projection Alt : M(V ) → al(V ) defined
by skew-symmetrization in y-variables:

(Altϕ) (x1, . . . , xℓ; y1, . . . , ym) =
1

m!

∑

σ∈Sm

sign(σ)ϕ
(
x1, . . . , xℓ; yσ(1), . . . , yσ(m)

)
. (2.7)

We define a bilinear skew-symmetric operation on al(V ) by projection of the Gerstenhaber
bracket (2.2):

[ϕ,ϕ′]al := Alt [ϕ,ϕ′]. (2.8)

Our first main result is the following.

Theorem 1. The space al(V ) equipped with the bracket (2.8) is a graded Lie algebra.
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Proof. It will suffice to check that the Gerstenhaber bracket commutes with the map Alt, that
is

Alt [ϕ,ϕ′] = Alt [Altϕ,Altϕ′], (2.9)

for all ϕ,ϕ′ ∈ M(V ). Indeed, the Jacobi identity for [., .]al will then follow from the Jacobi
identity for the Gerstenhaber bracket.

The formula (2.9) is obviously satisfied whenever both ϕ and ϕ′ are skew-symmetric in y-
variables since Alt is a projection. It remains to prove this formula when one of them belongs
to the kernel of Alt.

Consider the alternated Gerstenhaber product (2.5-2.6). It is obvious that if ϕ0 or ϕ
′ belongs

to ker(Alt), then jϕ0
ϕ′ also belongs to ker(Alt). It is also clear that jϕ1

ϕ′ ∈ ker(Alt) when
ϕ1 ∈ ker(Alt). It remains to show that this is also guaranteed when ϕ′ ∈ ker(Alt). Indeed, due
to the parity preserving property, the transposition

(ϕ1(xℓ′+1, . . . , xℓ+ℓ′ ; yi, . . . , yi+m), yj) ↔ (yj, ϕ1(xℓ′+1, . . . , xℓ+ℓ′ ; yi, . . . , yi+m))

is an odd permutation of {yi, . . . , yi+m, yj}. Therefore Alt(jϕ1
ϕ′) is the skew-symmetrization of

Alt(ϕ′)(x1, . . . , xℓ;ϕ1(xℓ′+1, . . . , xℓ+ℓ′ ; y1, . . . , ym), ym+1, . . . , ym+m′−1)

with respect to the y’s. Hence it vanishes.

Note that the parity preserving condition is essential, identity (2.9) fails without it.

3 Cohomology

In this section, we define and calculate explicitly the cochain operator associated to an arbitrary
element m ∈ al1(V ) satisfying the condition (1.2). This is the cohomology theory we are
interested in. We start with a brief account on the classic Hochschild cohomology defined
within the context of Gerstenhaber algebra, as well as the Chevalley-Eilenberg cohomology of
Lie (super)algebras related to the Nijenhuis-Richardson algebra.

3.1 Gerstenhaber algebra and Hochschild cohomology

Let us recall the most classical case of Hochschild cohomology in the purely even case. A bilinear
map m : V ×V → V satisfies the condition (1.2) if and only if m is an associative product on V .
The linear map δH := adm from Mk(V ) to Mk+1(V ) is as follows

(δH ϕ)(x0, . . . , xk+1) = m(x0, ϕ(x1, . . . , xk+1))

−
k∑

i=0

(−1)i ϕ(x0, . . . ,m(xi, xi+1), . . . , xk+1)

+ (−1)k m(ϕ(x0, . . . , xk), xk+1),

(3.1)
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for an arbitrary ϕ ∈ Mk(V ). This map coincides with the classic Hochschild differential; the
corresponding cohomology is the classic Hochschild cohomology of the associative algebra (V,m),
see [11] for more details.

3.2 Nijenhuis-Richardson algebra and cohomology of Lie superalgebras

A skew-symmetric bilinear map m ∈ A1(V ) satisfies the condition (1.2) if and only if g = (V,m)
is a Lie (super)algebra. One now uses the notation

[x1, x2] := m(x1, x2),

for all x1, x2 ∈ V . The map (1.3) coincides with the Chevalley-Eilenberg differential:

(δCE ϕ)(x0, . . . , xk+1) =
k+1∑

i=0

(−1)i [xi, ϕ(x0, . . . , x̂i, . . . , xk+1)]

+
∑

0≤i<j≤k+1

(−1)i+j ϕ([xi, xj], x0, . . . , x̂i, . . . , x̂j , . . . , xk+1),

(3.2)

for every ϕ ∈ Ak(V ).

3.3 Combinatorial formula for the differential on al(V )

Consider now the graded Lie algebra al(V ) defined in Section 2.4. Let m ∈ al1(V ) be a parity
preserving bilinear map satisfying the condition [m,m] = 0. In this section, we calculate the
combinatorial expression of the differential δ = adm.

Of course, the operator δ increases the degree of the cochains. We will use the notation δk

for the restriction of δ to alk(V ), viz

δk : alk(V ) → alk+1(V ).

Since m preserves the parity, it is of the form:

m : V0 × V0 → V0, m : V0 × V1 → V1, m : V1 × V1 → V0.

It follows that the operator δk has three terms:

δk = δk1,0 + δk0,1 + δk−1,2, (3.3)

where δki,j : al
p,q(V ) → alp+i,q+j(V ), for p+ q = k.

The following statement follows from Theorem 1.
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Corollary 3.1. The operator δk = δk1,0 + δk0,1 + δk−1,2 defined by:
(i) if q = 0, then δ1,0 is the standard Hochschild differential, if q 6= 0, then

(δk1,0ϕ)(x0, . . . , xp; y0, . . . , yq−1) =

m (x0, ϕ(x1, . . . , xp; y0, . . . , yq−1))

−

p−1∑

i=0

(−1)i ϕ(x0, . . . , xi−1,m(xi, xi+1), xi+2, . . . , xp; y0, . . . , yq−1)

−
1

q

q−1∑

j=0

(−1)p+j ϕ(x0, . . . , xp−1; m(xp, yj), y0, . . . , ŷj, . . . , yq−1);

(3.4)

(ii) δk0,1 is given by

(δk0,1ϕ)(x0, . . . , xp−1; y0, . . . , yq) =

1

q + 1

q∑

j=0

(−1)p+j m (ϕ(x0, . . . , xp−1; y0, . . . , ŷj , . . . , yq), yj)
(3.5)

(iii) δk−1,2 is given by

(δk−1,2 ϕ)(x0, . . . , xp−2; y0, . . . , yq+1) =

2

(q + 1)(q + 2)

∑

i<j

(−1)p+i+j ϕ(x0, . . . , xp−2,m(yi, yj); y0, . . . , ŷi, . . . , ŷj, . . . , yq+1)
(3.6)

is a coboundary operator, that is, δk+1 ◦ δk = 0.

Proof. This is just the formula (3.1) skew-symmetrized in y-variables, i.e. δ = adm in the graded
Lie algebra al(V ).

Note that the operator δ1,0 is very close to the Hochschild differential, while δk−1,2 is that of
Chevalley-Eilenberg.

Proposition 3.2. The relation δk+1 ◦ δk = 0 is equivalent to the following system:

δk+1
1,0 ◦ δk1,0 = 0

δk+1
1,0 ◦ δk0,1 + δk+1

0,1 ◦ δk1,0 = 0

2 δk+1
0,1 ◦ δk0,1 + δk+1

1,0 ◦ δk−1,2 + δk+1
−1,2 ◦ δ

k
1,0 = 0

δk+1
−1,2 ◦ δ

k
−1,2 = 0.

(3.7)

Proof. The above equations obviously represent linearly independent terms in the equation
δk+1 ◦ δk = 0.
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3.4 Cohomology with coefficients in an arbitrary module

So far, the cohomology we considered was with coefficients in the algebra itself. However, this
particular case actually contains the most general one. The definition of a module is universal
for all classes of algebras.

Definition 3.3. Let (V,m) be an algebra (of an arbitrary type: associative, Lie, anti-Lie, etc.).
Assume that the vector space V is a direct sun of two subspaces V = V ′ ⊕W . If the space V ′

is closed with respect to the bilinear map m, in other words,

m : V ′ × V ′ → V ′,

and, in addition,
m : V ′ ×W → W and m : W ×W → 0,

then the space W is called a module over the algebra (V ′,m)

The space of multilinear maps from V to V contains the subspace, C(V ′,W ), of multilinear
maps from V ′ to W . This subspace is obviously stable under the differential δ = adm. The
corresponding complex

δ : Ck(V ′,W ) → Ck+1(V ′,W )

defines the cohomology of the algebra (V ′,m) with coefficients in the module W .

4 Lie antialgebras

The notion of Lie antialgebra was introduced in [17] in the context of symplectic geometry
(see also [3] for the first example) and was further studied in [13] and [9]. It was shown in [9]
that Lie antialgebras is a particular case of Jordan superalgebras. The definition of a Lie
antialgebra is almost identical to that of a Kaplansky Jordan superalgebra, see [12] (except
that a Lie antialgebra is not necessarily half-unital). Lie antialgebras are closely related to Lie
superalgebras. More precisely, there is a Lie superalgebra ga canonically associated to every Lie
antialgebra a.

In this section, we show that the structure of Lie antialgebra can be understood as the
algebraic structure defined by an element m ∈ al1(V ) satisfying the condition [m,m] = 0.

4.1 Definition and examples

We give two equivalent definitions, each of them has its advantages.

Definition 4.1. A Lie antialgebra (a, ·) is a commutative Z2-graded algebra: a = a0 ⊕ a1 and
ai · aj ⊂ ai+j, so that for all homogeneous elements a, b ∈ a one has

a · b = (−1)āb̄ b · a (4.1)
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where ā is the degree of a, satisfying the third-order identities:

x1 · (x2 · x3) = (x1 · x2) · x3, (4.2)

x1 · (x2 · y) = 1
2 (x1 · x2) · y, (4.3)

x · (y1 · y2) = (x · y1) · y2 + y1 · (x · y2) , (4.4)

y1 · (y2 · y3) + y2 · (y3 · y1) + y3 · (y1 · y2) = 0, (4.5)

for all xi ∈ a0 and yi ∈ a1. In particular, a0 is a commutative associative subalgebra.

An equivalent definition is as follows. A Z2-graded commutative algebra a is a Lie antialgebra
if and only if the following three conditions are satisfied.

1. The subalgebra a0 ⊂ a is associative.

2. For all x1, x2 ∈ a0, the operators of left multiplication commute: x1 · (x2 · a) = x2 · (x1 · a).

3. For every y ∈ a1, the operator of right multiplication by y is an odd derivation of a, i.e.,
one has

(a · b) · y = (a · y) · b+ (−1)ā a · (b · y) . (4.6)

Example 4.2. The simplest example of a Lie antialgebra is 3-dimensional algebra known as
tiny Kaplansky Superalgebra and denoted by K3. This algebra has the basis {ε; a, b}, where ε is
even and a, b are odd, satisfying the relations

ε · ε = ε

ε · a = 1
2 a, ε · b = 1

2 b,

a · b = 1
2 ε.

(4.7)

It is simple, i.e., it contains no non-trivial ideal.

The corresponding algebra of derivations is the simple Lie superalgebra osp(1|2). Let us
mention that the algebra K3 plays an important rôle in the study of some exceptional Jordan
algebras, cf. [1].

Example 4.3. The main example of (an infinite-dimensional) Lie antialgebra is the conformal
Lie antialgebra AK(1). This is a simple infinite-dimensional Lie antialgebra with the basis{
εn, n ∈ Z; ai, i ∈ Z+ 1

2

}
, where εn are even and ai are odd and satisfy the following relations

εn · εm = εn+m,

εn · ai = 1
2 an+i,

ai · aj = 1
2 (j − i) εi+j .

(4.8)
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The algebra AK(1) is closely related to the well-known Neveu-Schwarz conformal Lie superal-
gebra, K(1), namely K(1) = Der(AK(1)), see [17]. Note that AK(1) contains infinitely many
copies of K3, among which we quote the one with basis

{
ε0; a− 1

2

, a 1

2

}
.

A very similar algebra, called the full derivation algebra, was considered in [12]. This algebra
is also defined by the formulæ (4.8), but the odd generators ai are indexed by integer i’s.

Example 4.4. Our next example is the simple infinite-dimensional Lie antialgebra M1 which is
a “truncated version” of AK(1). The algebra M1 is the algebra of formal series in the elements
of the basis: {

αn, n ≥ 0, ai, i ≥ −1
2

}
,

subject to the relations (4.8).
We understand this algebra as analog of the Lie algebra, W1, of formal vector fields on the

real line. Note that W1 plays an important role in algebra and in topology (see, i.g., [2]).

Further examples of finite-dimensional Lie antialgebras can be found in [17]. An interesting
series of simple infinite-dimensional examples is constructed in [16].

4.2 Lie antialgebra and the zero-square condition

Let us show that the notion of Lie antialgebra is related to graded Lie algebra al(V ).
Given a Lie antialgebra a, in order to use the notation of Section 2.4, we denote by V the

ambient vector space, i.e., V ∼= a. Define the bilinear map m : V × V → V as follows:

m(x1, x2) :=
1
2 x1 · x2 , m(x, y) := x · y , m(y1, y2) := y1 · y2 , (4.9)

where x1, x2 ∈ V0(= a0) and y1, y2 ∈ V1(= a1) and where · stands for the product in a.

Proposition 4.5. The operation m satisfies the condition [m,m] = 0 in the graded Lie algebra
al(V ) if and only if a is a Lie antialgebra.

Proof. The condition [m,m] = 0 reads:

m (m(x1, x2), x3)−m (x1,m(x2, x3)) = 0,

m (m(x1, x2), y) −m (x1,m(x2, y)) = 0,

1
2 m (m(x1, y1), y2)−

1
2 m (m(x1, y2), y1)−m (x1,m(y1, y2)) = 0,

m (m(y1, y2), y3) + cycle = 0.

Note that this is just the associativity skew-symmetrized with respect to the y-variables, where
y ∈ V1. Using the definition (4.9), one immediately checks that the above condition is indeed
equivalent to the identities (4.2)–(4.5).
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The structure of Lie antialgebra is therefore equivalent to the zero-square condition in the
graded Lie algebra al(V ). It follows that the cohomology developed in Section 3.3 is the coho-
mology of Lie antialgebras. Let us give a detailed description of cohomology of a Lie antialgebra
with coefficients in an arbitrary module.

4.3 Modules over Lie antialgebras

The notion of module over a Lie antialgebra fits into the general Definition 3.3. Given a Lie
antialgebra a and an a-module B, the space a⊕B is equipped with a Lie antialgebra structure.
More precisely, for a ∈ a and b ∈ B, one has

(a, b) · (a′, b′) =
(
a · a′, ρab

′ + (−1)ā
′ b̄ρa′b

)
,

where ρ : a → End(B) is the linear map that defines the a-action on B. The Lie antialgebra
structure on the space a⊕ B is called a semi-direct product and is denoted by a⋉ B.

Proposition 4.6. Given an a-module B, the dual space B∗ is naturally an a-module the a-action
being given by

〈ρ∗au, b〉 := (−1)ūā 〈u, ρab〉 (4.10)

for all u ∈ B∗ and b ∈ B.

Proof. Straightforward.

In particular, the space a∗ dual to a given Lie antialgebra a is an a-module, as the Lie
antialgebra a itself is obviously an a-module with ρab = a · b.

4.4 Cohomology with coefficients in a module

Given a Lie antialgebra a and an a-module B, we define the space, Cp,q(a;B), of parity preserving
multi-linear (skew-symmetric on a1) maps

ϕ : (a1 ⊗ · · · ⊗ a1)︸ ︷︷ ︸
p

⊗ (a0 ∧ · · · ∧ a0)︸ ︷︷ ︸
q

→ B. (4.11)

We also consider the following space:

Ck(a;B) =
⊕

q+p=k

C(q,p)(a;B)

that we call the space of k-cochains. One obviously has Ck(a;B) ⊂ al(a⋉ B).
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The coboundary map δ to the space of cochains Cp,q(a;B) is defined by formulae (3.4)-(3.6)
of Theorem 3.1, where m is as in (4.9). We define the cohomology of a Lie antialgebra a with
coefficients in an a-module B in a usual way:

Hk(a;B) = ker(δk)/im(δk−1).

The space ker(δk) is called the space of k-cocycles and the space im(δk−1) is called the space of
k-coboundaries.

4.5 The case of trivial coefficients

In the case, where B = R (or C) is a trivial module, the coboundary map (3.3) becomes simpler.
The operator δ0,1 vanishes identically, while the system (3.7) reads:

δ1,0
2 = 0, δ−1,2

2 = 0, [δ1,0, δ−1,2] = 0.

One therefore obtains a structure of bicomplex with two commuting differentials, δ1,0 and δ−1,2.
We denote by Hk(a) the k-th cohomology space with trivial coefficients of a Lie antialgebra a.

Example 4.7. Consider the Kaplansky superalgebra K3. In this case, the cohomology with
trivial coefficients are quite easy to calculate. The result is as follows:

H0(K3) = R (orC), Hk(K3) = 0, k > 0.

We omit the explicit computation.

5 Algebraic interpretation of lower degree cohomology

Cohomology spaces of lower degree have algebraic meaning quite similar to that in the usual
case of Lie algebras. In this section, we use the notation a · b for the action ρab of a ∈ a on an
element b ∈ B, thinking of B as an ideal in a⋉ B.

5.1 The cohomology of degree zero

The space H0(a;B) is the space of elements b ∈ B0 satisfying the condition

b · y = 0 (5.1)

for all y ∈ a1. We call such elements a-invariants of the module B.
Indeed, a 0-cocycle is an element of C0(a;B), that is, an element of B. The parity preserving

condition for the cochains means that b is even. The equation δb = 0 then has two independent
terms: δ10b = 0 and δ01b = 0. The first equation reads x · b− b · x = 0 for x ∈ a0 and is satisfied
identically. The equation (δ01b)(y) = 0 is precisely (5.1).

13



5.2 The first cohomology space H1(a;B)

An even derivation of a with values in the a-module B is a parity preserving linear map c : a → B
such that

c(a · a′) = c(a) · a′ + a · c(a′)

where · stays both for the product in a and for the a-action on B.
Given an even element b ∈ B0, one immediately associates a derivation cb of a by the formula

cb(x) = 0, cb(y) = b · y,

where x ∈ a0 and y ∈ a1. We call such derivations inner.

Proposition 5.1. The first cohomology space H1(a;B) is the space of even outer derivations
of a with values in B.

Proof. Let us first show that the space Z1(a;B) of 1-cocycles on a with coefficients in an a-
module B is the space of even derivations. A parity preserving linear map c : a → B is a sum
c = c00 + c11, where c00 : a0 → B0 and c11 : a1 → B1. The condition δ c = 0 reads:

δ10 c00 = 0, δ01 c00 + δ10 c11 = 0, δ−12 c00 + δ01 c11 = 0.

These equations are equivalent to c(a · a′) = c(a) · a′ + a · c(a′). For instance, one easily obtains:

δ01 c00(x, y) = c00(x) · y, δ10 c11(x, y) = x · c11(y)− c11(x · y).

The second equation is thus equivalent to c00(x) · y + x · c11(y) − c11(x · y) = 0 and similar for
the other two equations.

The space of coboundaries is precisely the space of inner derivations.

5.3 Second cohomology space H2(a,B) and abelian extensions

An exact sequence of homomorphisms of Lie antialgebras

0 −−−→ B −−−→ ã −−−→ a −−−→ 0, (5.2)

where B is a trivial algebra, is called an abelian extension of the Lie antialgebra a with coefficients
in B.

As a vector space, ã = a⊕B and the subspace B is obviously an a-module, the Lie antialgebra
structure on ã being given by

(a, b) · (a′, b′) =
(
a · a′, a · b′ + (−1)ā

′ b̄ a′ · b+ c(a, a′)
)
, (5.3)

where a, a′ ∈ a and b, b′ ∈ B and where c : a× a → B is a bilinear map preserving the parity.
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An extension (5.2) is called trivial if the Lie antialgebra ã is isomorphic to the semi-direct
sum a⋉ B, i.e., to the extension (5.3) with c = 0, and the isomorphism is of the form

(a, b) 7→ (a, b+ L(a)), (5.4)

where L : a → B is a Linear map. If such an isomorphism does not exist, then the extension is
called non-trivial.

The following statement shows that second cohomology space H2(a,B) classifies non-trivial
extensions of a with coefficients in B.

Proposition 5.2. (i) The formula (5.3) defines a Lie antialgebra structure if and only if the
map c is a 2-cocycle.

(ii) Two extensions ã and ã′ of the same Lie antialgebra a by a module B are isomorphic if
and only if the corresponding cocycles c1 and c2 define the same cohomology class in H2(a,B).

Proof. Part (i). The axioms (4.2-4.5) applied to formula (5.3) read

x1 · c(x2, x3)− c(x1 · x2, x3) + c(x1, x2 · x3)− c(x1, x2) · x3 = 0,

c(x1, x2) · y + c(x1 · x2, y)− 2x1 · c(x2, y)− 2 c(x1, x2 · y) = 0,

c(x, y1 · y2) + x · c(y1, y2)− c(x, y1) · y2

−c(x · y1, y2)− c(y1, x · y2)− y1 · c(x, y2) = 0,

y1 · c(y2, y3) + c(y1, y2 · y3) + (cycle) = 0.

(5.5)

Substituting m defined by (4.9), one obtains precisely the condition δ c = 0, where δ is as in
Theorem 3.1.

Part (ii). Assume that an extension (5.2) is trivial and there exists an isomorphism (5.4).
One then readily checks that this is equivalent to c = δ L.

An extension (5.2) of a Lie antialgebra is called a central extension, if the module B is trivial,
i.e., if the a-action on B is identically zero. In this case, B belongs to the center of ã. Central
extensions with B = K are classified by the second cohomology with trivial coefficients that we
denote by H2(a).

6 Two remarkable cocycles

In this section, we give examples of two non-trivial cohomology classes of the infinite-dimensional
Lie antialgebras AK(1) and M1, see Examples 4.3 and 4.4. These cohomology classes are
analogues of the famous Gelfand-Fuchs and Godbillon-Vey classes.
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6.1 The Gelfand-Fuchs cocycle

Recall that the classical Gelfand-Fuchs cocycle is a 2-cocycle with trivial coefficients on the Lie
algebra of vector fields on the circle. This cocycle defines the unique central extension of the
Lie algebra of vector fields called the Virasoro algebra. This algebra plays an important rôle in
geometry and mathematical physics, see [2, 6] and references therein. In the Z2-graded case, the
graded version of the Gelfand-Fuchs cocycle defined the Neveu-Schwarz and Ramond conformal
superalgebras.

In this section, we recall the definition of the Gelfand-Fuchs cocycle on the conformal Lie
superalgebra K(1) and rewrite it in a form of a 1-cocycle with coefficients in the dual space K(1)∗.
This “dualized” version of the Gelfand-Fuchs cocycle will be of a particular interest for our
purpose.

The conformal Lie superalgebra, K(1), is spanned by the basis

{
ℓn, n ∈ Z; ξi, i ∈ Z+ 1

2

}

with the following commutation relations

[ℓn, ℓm] = (m− n) ℓn+m,

[ℓn, ξi] =
(
i− n

2

)
ξn+i,

[ξi, ξj ] = 2 ℓi+j .

(6.1)

The Lie subalgebra generated by ℓi is the Lie algebra of (polynomial) vector fields on S1.
The second cohomology space of K(1) with trivial coefficients, H2(K(1)), is one-dimensional

and is generated by the 2-cocycle

cGF (ℓn, ℓm) =
(
n3 − n

)
δn+m,0

cGF (ξi, ξj) =
(
−4 i2 + 1

)
δi+j,0

cGF (ℓn, ξi) = 0,

(6.2)

that we call the Gelfand-Fuchs cocycle. It defines a (unique) central extension of K(1). The
even part of cGF defines the Virasoro algebra.

Remark 6.1. The conformal Lie superalgebra K(1) contains a subalgebra spanned by the
elements {

ℓ−1, ℓ0, ℓ1; ξ− 1

2

, ξ 1

2

}
,

isomorphic to the Lie superalgebra osp(1|2). The cocycle (6.2) can be characterized as the unique
2-cocycle on K(1) vanishing on osp(1|2).
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6.2 The dual Gelfand-Fuchs cocycle

It is a general fact that a 2-cocycle on a Lie superalgebra with trivial coefficients corresponds to
a 1-cocycle with coefficients in the dual space.

Definition 6.2. Given a Lie algebra g and a 2-cocycle c : g ∧ g → K, the formula

〈C(X), Y 〉 := c(X,Y ),

for all X,Y ∈ g, defines a 1-cocycle C : g → g∗ with values in the dual space g∗.

The “dual Gelfand-Fuchs cocycle” then reads:

CGF (ℓn) = (n3 − n) ℓ∗−n, CGF (ξi) = (−4 i2 + 1) ξ∗−i, (6.3)

where {ℓ∗n, ξ
∗
i } is the dual basis, i.e.,

〈ℓ∗n, ℓm〉 = δn,m, 〈ξ∗i , ξj〉 = δi,j, 〈ℓ∗n, ξj〉 = 〈ξ∗i , ℓm〉 = 0.

This is a non-trivial 1-cocycle on K(1) with values in K(1)∗.

6.3 A non-trivial cocycle on AK(1)

The conformal Lie antialgebra AK(1) has no non-trivial central extension, see [17], therefore,
there is no analog of the classical Gelfand-Fuchs cocycle (6.2). However, there exists an analog
of the dual cocycle (6.3). We denote by {ε∗n, a

∗
i } the of AK(1)∗ dual to {εn, ai}.

Theorem 2. The linear map γ : AK(1) → AK(1)∗ given by

γ(εn) = −n ε∗−n, γ(ai) =
(
i2 − 1

4

)
a∗−i, (6.4)

is a non-trivial 1-cocycle on AK(1).

Proof. Let us check that the map (6.4) is, indeed, a 1-cocycle. The action of AK(1) on AK(1)∗

can be easily calculated according to the formula (4.10). The result is as follows:

εn · ε∗m = ε∗m−n,

εn · a∗i = 1
2 a

∗
i−n

ai · ε
∗
m = (m2 − i) a∗m−i,

ai · a
∗
i = −1

2 ε
∗
i−j .

Consider the following Ansatz:

γ(εn) = t(n) ε∗−n, γ(ai) = s(i) a∗−i.
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The 1-cocycle condition then leads to: γ(εn · εm) = εn · γ(em) + εm · γ(en), so that

t(n+m) = t(n) + t(m).

The next two conditions are: 1
2γ(εn ·ai) = εn ·γ(ai)+γ(εn) ·ai and γ(ai ·aj) = ai ·γ(aj)−ajγ(ai).

They give the same equation:
s(i)− s(j) = i2 − j2.

The map (6.4) obviously satisfies both equations, so that this is, indeed, a 1-cocycle.
We have already seen in Section 5.2 that every coboundary vanishes on the even part of a

Lie antialgebra. It follows that the 1-cocycle (6.4) is non-trivial.

We conjecture that the space H1(AK(1); AK(1)∗) is one-dimensional and, thus generated
by the 1-cocycle (6.4). We think that the cocycle (6.4) is characterized by the property that it
vanishes on the subalgebra K3 ⊂ AK(1) spanned by ε0, a− 1

2

, a 1

2

.

Remark 6.3. The 1-cocycle (6.4) is skew-symmetric on the even part AK(1)0 and symmetric
on the odd part AK(1)1. This is the reason why it cannot be understood as a 2-cocycle on
AK(1) with trivial coefficients. This phenomenon is quite general for the Lie antialgebras:
approximately a half of the statements that hold in the Lie algebra setting remains true.

6.4 A cocycle on M1 and the dual Godbillon-Vey cocycle

The Godbillon-Vey cocycle is a 3-cocycle on the Lie algebra of polynomial vector fields on the
line. The simplest way to define this cocycle is as follows. Consider the Lie algebra W1 with
basis {ℓn, n ≥ −1} and the relations [ℓn, ℓm] = (m− n) ℓn+m. Then

cGV = ℓ∗−1 ∧ ℓ∗0 ∧ ℓ∗1

is a non-trivial 3-cocycle on W1 (with trivial coefficients). Similarly to Section 6.2, one can
“dualize” the above 3-cocycle and obtain a 2-cocycle with coefficients in W ∗

1 .
Let us consider the Lie antialgebra M1, see Example 4.4.

Theorem 3. The bilinear map η : M1 ⊗M1 → (M1)∗ given by

η = a∗
− 1

2

∧ a∗1
2

⊗ ε0, (6.5)

is a non-trivial 2-cocycle on M1.

Proof. First, one can easily check that

η = λa∗
− 1

2

∧ a∗1
2

⊗ ε0 + µ
(
ε∗0 ∧ ε∗0 ⊗ ε0 −

1
2 ε

∗
0 ∧ a∗

− 1

2

⊗ a 1

2

+ 1
2 ε

∗
0 ∧ a∗1

2

⊗ a
− 1

2

)
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is a 2-cocycle for all λ, µ.
Second, for any coboundary δζ, where ζ : M1 → (M1)∗ is a linear map, one has

(δζ)(ε0, ε0) = 2 (δζ)(a
− 1

2

, a 1

2

),

so that λ = 1
2µ if η is a coboundary.

We conjecture that the space H2(M1; (M1)∗) is one-dimensional. We also hope that the
cocycle (6.5) has a topological meaning and can be associated to a characteristic class, similarly
to the classical Godbillon-Vey cocycle, see [2].

Acknowledgments. We are grateful to F. Chapoton, S. Leidwanger, J.-L. Loday, S. Morier-
Genoud for enlightening discussions.
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Sér. I 310 (1990), 405–410.

[9] S. Leidwanger, S. Morier-Genoud, On the universal enveloping algebra of Lie antialgebras,
Algebr. Represent. Theory (2010), DOI 10.1007/s10468-010-9230-x.

19



[10] S. Leidwanger, S. Morier-Genoud, Jordan superalgebras of Krichever-Novikov type, in prepa-
ration.

[11] J-L. Loday, Cyclic homology, Springer-Verlag, Berlin, 1998.

[12] K. McCrimmon, Kaplansky Superalgebras, J. Algebra 164 (1994), 656–694.

[13] S. Morier-Genoud, Representations of asl2, Inter. Math. Res. Notices, 2009.

[14] A. Nijenhuis, R.W. Richardson, Deformations of Lie algebra structures, J. Math. Mech. 17
(1967) 89–105.

[15] A. Nijenhuis, R.W. Richardson, Cohomology and deformations in graded Lie algebras, Bull.
Amer. Math. Soc. 72 (1966) 1–29.

[16] M. Schlessinger, J. Stasheff, The Lie algebra structure of tangent cohomology and deforma-
tion theory, J. Pure Appl. Algebra 38 (1985), 313–322.

[17] V. Ovsienko, Lie antialgebras, prémices, J. of Algebra (2010).

Pierre Lecomte, Valentin Ovsienko,
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