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A NEW GENERALIZED FIELD OF VALUES

RICARDO REIS DA SILVA∗

Abstract. Given a right eigenvector x and a left eigenvector y associated with the same eigen-
value of a matrix A, there is a Hermitian positive definite matrix H for which y = Hx. The matrix H

defines an inner product and consequently also a field of values. The new generalized field of values
is always the convex hull of the eigenvalues of A. Moreover, it is equal to the standard field of values
when A is normal and is a particular case of the field of values associated with non-standard inner
products proposed by Givens. As a consequence, in the same way as with Hermitian matrices, the
eigenvalues of non-Hermitian matrices with real spectrum can be characterized in terms of extrema
of a corresponding generalized Rayleigh Quotient.
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1. Introduction. We propose a new generalized field of values which brings all
the properties of the standard field of values to non-Hermitian matrices. For a matrix
A ∈ Cn×n the (classical) field of values or numerical range of A is the set of complex
numbers

F (A) ≡ {x∗Ax : x ∈ C
n, x∗x = 1}. (1.1)

Alternatively, the field of values of a matrix A ∈ Cn×n can be described as the region
in the complex plane defined by the range of the Rayleigh Quotient

ρ(x,A) ≡
x∗Ax

x∗x
, ∀x 6= 0. (1.2)

For Hermitian matrices, field of values and Rayleigh Quotient exhibit very agreeable
properties: F (A) is a subset of the real line and the extrema of F (A) coincide with
the extrema of the spectrum, σ(A), of A. Equivalently, the vector v maximizing
ρ(x,A) is an eigenvector associated with the largest eigenvalue, ρ(v,A), of the matrix
A. Therefore, every eigenpair of A is the solution of a maximization-minimization
problem in some constraint subspace. Such results are Rayleigh-Ritz and Courant-
Fischer’s theorems [4, §4.2].

Unfortunately, as the next example shows, for non-Hermitian matrices such pleas-
ant properties no longer hold. Even if all the eigenvalues of A would be real.

Example 1.1. Figure 1.1 and 1.2 depict the classical field of values of a Her-

mitian matrix, A, and a non-Hermitian matrix, B, with real eigenvalues respectively.

Although the eigenvalues of the matrix B lay on the real line such as those of A, the
extrema of the field of values and of the spectrum no longer coincide.

Within the last sixty years several generalizations for the field of values were
proposed (see [5, §1.8] for a more complete list). Each of the generalizations attempted
to replicate one or more of the properties of the classical field of values. In 1952,
Givens [2] proposed the field of values of A ∈ Cn×n associated with a generalized

inner product. For any A ∈ Cn×n Givens field of values is the set

FH(A) ≡ {x∗HAx : x ∈ C
n×n, x∗Hx = 1, H is Hermitian positive definite}. (1.3)
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Fig. 1.1. Field of Values of A, F (A)
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Fig. 1.2. Field of Values of B, F (B)

Givens intent was to extend F (A)’s invariance under unitary similarity transfor-
mations to arbitrary similarity transformations. If, for arbitrary nonsingular V ,
B = V AV −1 is a similarity transformation of A, then FH(A) = F (B) for H = V ∗V .
The converse is also true. Givens proves two important statements:

Theorem 1.2. The intersection of the regions FH(A) for all positive definite

matrices H is the minimum convex polygon, Co(σ(A)) containing all the roots of A.

Theorem 1.3. FH(A) = Co(σ(A)) for some positive definite hermitian matrix

H if and only if the elementary divisors corresponding to roots lying on the boundary

of Co(σ(A)) are simple.

When A is normal FH(A) = F (A) = Co(σ(A)), the convex hull of the spectrum
of A. It is unclear, however, if for arbitrary A, Givens knew which H (if any) satisfies
FH(A) = Co(σ(A)).

A few years later, Bauer [1] proposed a new generalization. Bauer extended the
original formulation of the field of values to norms which need not be associated with
inner products

F‖·‖(A) ≡ {y∗Ax : x, y ∈ C
n and ‖y‖D = ‖x‖ = y∗x = 1} (1.4)

where ‖y‖D stands for the dual (vector) norm (see [8]). Bauer’s generalized field of
values makes use of different (though related) vectors at the right and left sides of A.
Those vectors are dual pairs with respect to the vector norm ‖ · ‖. Moreover, F‖·‖(A)
depends only on the norm and A and not on an inner product. However, and although
Bauer’s generalized field of values always contains σ(A), it is not always convex [8, 12].
Moreover, according to the authors in [8] the field of values from Givens is a special
case of Bauer’s field of values.

A more recent generalization is the q-field of values [7]

Fq(A) ≡ {y∗Ax : x, y ∈ C
n, y∗y = x∗x = 1, and y∗x = q}. (1.5)

Also for Fq(A) different vectors x and y are used for the inner product 〈Ax, y〉. They
must, however, satisfy an extra constraint y∗x = q. The convexity property holds for
q ∈ [0, 1] and A ∈ Cn×n with n ≥ 2 [5]. Finally, if q = 1, the q-field of values reduces
to the standard field of values.
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1.1. Notation and Outline. Although most of the notation we use is consid-
ered standard, we believe to be useful to clarify some assumptions. We represent
eigenvalues by the Greek letters λ and choose to label them in non-decreasing order
of magnitude: min λ = λ1 ≤ λ2 ≤ ... ≤ λn−1 ≤ λn = maxλ. The spectrum of a
matrix A, the set of the eigenvalues of A, is denoted by σ(A). Letters at the end of
the alphabet represent vectors and these will always be column vectors. Lower case
Latin letters i and j denote indices. The conjugate transpose of a matrix X is denoted
by X∗, also for X real. With In we mean the n × n identity matrix and by ej its
jth column. To minimize clutter we use A−∗, if necessary, to mean (A∗)−1 = (A−1)∗

while 〈x, y〉 will denote the standard inner product between vectors x, y ∈ Cn.
In §2 we define the new generalized field of values giving emphasis to the relations

between left and right eigenvectors of non-Hermitian matrices. In §3 we prove impor-
tant properties of the generalized two-sided field of values and show how, for particular
types of matrices, it naturally reduces to the classical field of values and to some of
the early generalized approaches. Section 4 describes the two-sided Rayleigh Quotient
illustrating some of its properties and relating it with the newly defined generalized
two-sided field of values. Here we show how the properties of the classic Rayleigh
Quotient carryover to the generalized field of values once the correct inner product
is chosen. Finally, in that same section, we show how using the new definitions the
extremal properties of the standard Rayleigh Quotient known for Hermitian matrices
can be extended to the non-Hermitian case for matrices with real eigenvalues.

2. A new generalized field of values. If A is a Hermitian matrix and λ ∈ R

an eigenvalue of A, the set of vectors v satisfying Av = λv is equal to the set of vectors
w satisfying w∗A = λw∗. These are the right and left eigenvectors associated with the
eigenvalue λ. If A is non-Hermitian, however, that is not necessarily the case. None
of the generalizations of the field of values discussed in section §1 focuses on capturing
the dynamics of left and right eigenvectors associated with the same eigenvalue of a
non-Hermitian matrix. Assume A is nondefective. Then there exists a nonsingular
matrix V whose columns are right eigenvectors of A and that satisfies

V −1A = ΛV −1 and AV = V Λ.

The rows of V −1 are the left eigenvectors of A while Λ is the diagonal matrix of the
eigenvalues of A. A crucial observation is the following

Lemma 2.1. Let vr, vl ∈ Cn×n be the right and left eigenvectors corresponding

to the same eigenvalue λi of a nondefective matrix A ∈ Cn×n. Let A = V ΛV −1 be

a diagonalization of A and denote by Λ the diagonal matrix of the eigenvalues. Take

V to be a matrix whose columns are eigenvectors of A scaled appropriately. Then vr
and vl satisfy

V ∗vl = V −1vr = ei or equivalently vr = V V ∗vl = V ei.

Proof. The nondefectiveness of A guarantees the existence of a nonsingular matrix
V for which A = V ΛV −1 where Λ = diag(λ1, . . . , λn). As a consequence, the matrix
Λ is complex symmetric. Therefore, for vr and vl as above, (v

∗
l V )∗ = V −1vr = ei or

equivalently, vl = (V V ∗)−1vr = V −∗ei or yet vr = V V ∗vl = V ei.

The Hermitian case (A∗ = A), emerges as a particular occurrence of the previous
lemma. The matrix V is then unitary, i.e. V ∗ = V −1 and as a consequence the
statement shortens to vr = vl = V ei.
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Similar to the case of Bauer’s and of the q-field of values, so does our generalized
two-sided field of values uses different vectors on the right and left of A. Those vectors
y and x now form a dual pair with respect to an eigenvalue of A. The definition that
follows introduces the generalized two-sided field of values.

Definition 2.2 (Generalized two-sided field of values). For a nondefective ma-

trix A = V ΛV −1, the generalized two-sided field of values is the set of complex numbers

G(A) ≡ {y∗Ax : x, y ∈ C
n, y = (V V ∗)−1x and y∗x = 1}. (2.1)

3. Properties of the generalized two-sided field of values. We will assume
that A can be diagonalized as A = V ΛV −1 and that G(A) is defined as in (2.1). The
first two properties to come are standard properties for fields of values (see also [6]).
Further on we introduce some particular characteristics of G(A).

Property 3.1. For any complex number α,

G(A+ αI) = G(A) + α.

Proof. That the basis of eigenvectors of A and A + αI is the same follows from
V −1(A+ αI)V = Λ+ αI = D. Therefore,

G(A+ αI) = {y∗(A+ αI)x : y = (V V ∗)−1x, y∗x = 1}

= {y∗Ax+ αy∗x : y = (V V ∗)−1x, y∗x = 1}

= {y∗Ax : y = (V V ∗)−1x, y∗x = 1}+ α = G(A) + α.

Property 3.2. For any nonzero complex number α,

G(αA) = αG(A).

Proof.

G(αA) = {y∗(αA)x : y = (V V ∗)−1x, y∗x = 1}

= {αy∗Ax : y = (V V ∗)−1x, y∗x = 1}

= α{y∗Ax : y = (V V ∗)−1x, y∗x = 1} = αG(A).

Property 3.3. For all nondefective matrices A ∈ Cn×n,

G(A) = FH(A)

with H = (V V ∗)−1. Proof. Define H = (V V ∗)−1. The matrix H−1 = V V ∗ is
positive definite and therefore so is H . Consequently,

y∗Ax = x∗(V V ∗)−1Ax = x∗HAx and 1 = y∗x = x∗Hx.

As such, G(A) is a particular case of FH(A). However, as the next properties
show it possesses very agreeable characteristics.

Property 3.4. For all nondefective A ∈ Cn×n of the form A = V ΛV −1,

G(A) = F (Λ).
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Proof. Let z = V −1x. Then,

y∗Ax = xV −∗V −1Ax = z∗V −1AV z = z∗Λz and 1 = y∗x = z∗z.

Property 3.5. Let H(A) = 1
2 (A+A∗),

G(H(A)) = ℜF (A).

Proof. Because H(A) is normal it follows from Property 3.8 that

G(H(A)) = F (H(A)) = ℜF (A),

where the last equality follows from the properties of the classical field of values.
Property 3.5 contrasts with the equivalent one for the classical field of values. Unlike
the latter, the projection of G(H(A)) onto the real axis for non-Hermitian matrices
is not orthogonal but oblique and so G(H(A)) 6= ℜG(A).

It follows from Property 3.4 and from the properties of the classical field of values
that

Property 3.6. G(A) is a compact and convex set.

Not only is the set compact and convex as it also possesses a very important
property related to the spectrum of A.

Property 3.7. For all nondefective A ∈ C
n×n

G(A) = Co(σ(A)).

where Co(σ(A)) denotes the convex hull of the spectrum of A.
Proof. If A is nondefective, there exists a nonsingular matrix V for which A =

V −1ΛV , where Λ = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues of A.
By definition G(A) = F (Λ) where the field of values of Λ is the set of all convex
combinations of the diagonal elements of Λ:

z∗Λz =
n
∑

i=1

|zi|
2λi where

n
∑

i

|zi|
2 = 1.

The proof follows from the definition of convex hull of a set S as the set of all convex
combinations of finitely many points of S.

Property 3.8. For all normal A ∈ Cn×n,

G(A) = F (A).

Proof. As a consequence of the normality of A the matrix V is unitary, i.e.
V −1 = V ∗. Therefore,

G(A) = F (V −1AV ) = F (V ∗AV ) = F (A)

where the last equality results from the unitary invariance property of the classical
field of values ([5, Property 1.2.8]).

In summary, G(A) is, for any nondefective matrix, always convex and always the
convex hull of the eigenvalues of A. This gives the following corollary to Theorem 1.2:
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Corollary 3.9. When V is the matrix of eigenvectors of A and H̄ = (V V ∗)−1,

the region FH̄(A) is the intersection of the regions FH(A) over all positive definite H.

The matrix H̄ = (V V ∗)−1, however, is not the only matrix H for which FH =
Co(σ(A)) as the next example shows.

Example 3.10. Let A be a nondefective matrix such that both A = V ΛV −1 and

V can be partitioned as follows

A =

[

Λ1

A2

]

and V =

[

I
V2

]

where Λ1 is diagonal and F (A2) ⊂ F (Λ1). Then for both H1 = I and H2 = (V V ∗)−1

,FH1
= FH2

= Co(σ(A)).
Note: So far we have assumed that the matrix A must be nondefective. However,

as Theorem 1.3 from Givens shows, this requirement can be made less tight. In fact,
let A be any (square) matrix whose elementary divisors corresponding to eigenvalues
lying on the boundary of Co(σ(A)) are simple. Let J be the bidiagonal matrix of the
Jordan normal form of A and partition it as follows

J =

[

Λ
T

]

.

Here, Λ is the (diagonal) matrix of eigenvalues of A located on the boundary of
Co(σ(A)) and T the bidiagonal matrix containing the remaining roots. Partition W
in a similar fashion as W = [W1 W2] where W1 contains the set of linear indepen-
dent eigenvectors associated with the eigenvalues in Λ and W2 the set of generalized
eigenvectors associated with the eigenvalues on the diagonal of T . Then,

G(A) = {y∗Ax : x, y ∈ C
n, y = (WW ∗)−1x, y∗x = 1}.

To end this section we prove a result on the location of G(A) in the complex
plane when A is positive definite. First, however, we need to extend the definition of
positive definite matrices. It is widely accepted that a positive definite matrix is a
Hermitian matrix, A ∈ Cn×n, for which

x∗Ax > 0, for all 0 6= x ∈ C
n.

The previous definition neglects non-Hermitian matrices with (real) positive eigen-
values. Furthermore, there is no agreement on the literature on what the proper
extension to the non-Hermitian case should be. We wish to contribute to the discus-
sion by proposing a definition consistent with the earlier generalization of the field of
values. In this way,

Definition 3.11 (Positive definite matrix). A nondefective matrix A ∈ Cn×n

diagonalizable as A = V ΛV −1 is said to be positive semidefinite if

y∗Ax ≥ 0, for all 0 6= x ∈ C
n and (V V ∗)y = x, (3.1)

and positive definite if, in addition,

y∗Ax > 0, for all 0 6= x ∈ C
n and (V V ∗)y = x. (3.2)

This definition is consistent with the generalization of the inner product. This is due
to the fact that Equations (3.1) and (3.2) are equivalent to

〈Ax, x〉H ≥ 0 and 〈Ax, x〉H > 0 (3.3)
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Fig. 3.1. Standard FoV, F (A)
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respectively, in the inner product defined by the matrix H = (V V ∗)−1, the H-inner
product. To satisfy the alternative characterization that A’s eigenvalues are real and
positive, we must have H = (V V ∗)−1. For normal matrices H = I, thus reverting to
the standard definition. We now enunciate the property

Property 3.12. If A is positive definite then G(A) ⊂ {z : Re z > 0}.

Proof. If A is positive definite in the sense of the definition above then A is either
Hermitian positive definite or has real positive eigenvalues. That the property is true
for the Hermitian case follows from Property 3.8. For non-Hermitian matrices the
result is given by Property 3.7.

Example 3.13. Figures 3.1 and 3.2 show the standard, F (A), and the Gener-

alized two-sided field of values of a non-Hermitian matrix A with real eigenvalues.

Figures 3.3 and 3.4 represent a similar situation for a random matrix B ∈ Rn×n with

some complex eigenvalues.

4. Generalized two-sided Rayleigh Quotient. Such as the standard field of
values is related to the standard Rayleigh Quotient so the generalized field of values
is connected with a generalized Rayleigh Quotient. Recall that given a Hermitian
matrix A, and an n-dimensional vector x the standard Rayleigh Quotient, ρ(x,A) is
the function

ρ(x,A) =
x∗Ax

x∗x
, x 6= 0.
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For the nonsymmetric case, the situation is more delicate. Instead of the quadratic
form, the loss of symmetry requires us to handle a bilinear one. An intuitive general-
ization would be

ρ̃(y, x,A) =
y∗Ax

y∗x
, y∗x 6= 0 (4.1)

which is consistent with the ones given in [9, In particular part III] and follow-ups
such as [10, 3]. A consequence of the loss of symmetry, however, is that with the
generalization just defined and even if all the eigenvalues of A would be real, ρ̃(y, x,A)
is no longer maximized at the largest eigenpair of A (or, for what is worth, minimized
at the smallest). The correct generalization requires an extra constraint.

Definition 4.1 (Generalized two-sided Rayleigh Quotient). Assume the ma-

trices A,M ∈ Cn×n are nondefective and let A be diagonalizable as A = V ΛV −1.

Denote by y and x two n-dimensional vectors in C such that y∗x 6= 0. The general-

ized two-sided Rayleigh Quotient of x and y is then defined as the function

ρ(y, x,A) =
y∗Ax

y∗Mx
, with y∗Mx 6= 0 and V V ∗y = x.

The matrix M in the denominator is a Hermitian and positive definite matrix in the
H-inner product, where H = (V V ∗)−1. In addition, the standard Rayleigh Quotient
is obtained for particular choices of x, y and M , namely with V V ∗ = M = I. For
what follows, we assume, that M = I.

4.1. Properties of the Generalized two-sided Rayleigh Quotient. It is
a known fact that the standard Rayleigh Quotient, ρ(vr, A) of a normalized right
eigenvector, vr, associated with eigenvalue λi of a matrix A satisfies ρ(vr , A) = λi.
An equivalent statement is true for the left eigenvector vl associated with λi, that
is, ρ(vl, A) = λi. Equivalently, for the generalized two-sided Rayleigh Quotient,
ρ(vl, vr, A)

Lemma 4.2. Let vr, vl ∈ Cn be the normalized right and left eigenvectors asso-

ciated with the same eigenvalue λi of a matrix A ∈ Cn×n. Define ρ(vl, vr, A) as the

generalized two-sided Rayleigh Quotient of vl and vr. Then,

ρ(vl, vr, A) =
v∗l Avr
v∗l vr

=
v∗l Avl
v∗l vl

=
v∗rAvr
v∗rvr

= λi.

Proof. Notice that because vr and vl are the right and left eigenvectors corre-
sponding to λi the constraint vl = (V V ∗)−1vr is superfluous. Moreover, v∗l vr 6= 0.
Assume ‖vl‖ = ‖vr‖ = 1, then the last two equalities follow from the definition of
right and left eigenvector. For if v∗l A = λiv

∗
l and Avr = λivr then

v∗l Avl = λi‖vl‖
2
2 and v∗rAvr = λi‖vr‖

2
2.

As for the second equality,

ρ(vl, vr, A) =
v∗l Avr
v∗l vr

=
λiv

∗
l vr

v∗l vr
= λi.

Given a nonzero vector x, the standard Rayleigh Quotient is the scalar ρ(x, x,A)
for which x ⊥ (A − ρ(x, x,A)I)x. Likewise, the generalized two-sided Rayleigh Quo-
tient is the scalar ρ(y, x,A) for which

y ⊥ (A− ρ(y, x,A)I)x and x ⊥ (A∗ − ρ(y, x,A)I)y.
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The vector ρ(y, x,A)x is the oblique projection onto x and orthogonally to y of Ax
while ρ(y, x,A)y is the oblique projection onto y and orthogonally to x of A∗y. More-
over, recall that given a vector x ∈ Cn with norm one and a scalar µ ∈ C, the measure
of how close (µ, x) is of being an eigenpair of A is ‖r‖22 = 〈r, r〉 where r = Ax − µx.
In truth, we need only x, as the scalar µ minimizing ‖r‖2 is no other than ρ(x, x,A)
(see [10] or [11]). The non-Hermitian case is slightly more involved since the left and
right eigenvectors differ. Therefore, a triplet (µ, x, y) consisting of a scalar and two
n-vectors is needed to determine ry = y∗A− µy∗ and rx = Ax − µx.

Standard properties of the classic Rayleigh Quotient such as homogeneity and
translation invariance are carried over, in a straightforward way, to the generalized
two-sided Rayleigh Quotient:

• Homogeneity: ρ(αv, βw,A) = ρ(v, w,A) and

ρ(v, w, βA) =
v∗βAw

v∗Bw
= β

v∗Aw

v∗Bw
= βρ(v, w,A);

• Translation Invariance: ρ(v, w,A− µI) = ρ(v, w,A) − µ.
In addition, the boundedness property that fails when taking ρ̃(y, x,A) (see [10])
is satisfied for the generalized two-sided version we propose (cf. Property 3.6 and
3.7). As is an equivalent to the minimal residue property of the standard Rayleigh
Quotient. This also in contrast to the approach given by Equation (4.1) without the
extra constraint. In this situation, we can only guarantee that for a nonsymmetric

matrix A with real eigenvalues, the quantity ρ̃(y, x,A) minimizes the inner product
〈ry , rx〉.

• Minimal Inner product :
For A ∈ Rn×n with real eigenvalues and given x, y ∈ Rn such that y∗x 6= 0,
for any scalar ρ

(A∗y − µy∗)∗(Ax − µx) ≥ y∗A2x− ρ2y∗x,

with equality only when µ = ρ = ρ(y, x,A).
Proof. Set ρ̃ = ρ̃(y, x,A).

(A∗y − µy∗)∗(Ax− µx) = y∗AAx − µy∗Ax− µy∗Ax− µ2y∗x

= y∗x
(

y∗A2x/y∗x+ (µ− ρ)2 − ρ2
)

≥ y∗A2x− ρ2y∗x,

with equality only when µ = ρ.
If, however, the extra constraint (y = (V V ∗)−1x) is used
Lemma 4.3 (Minimal residue norm). Let A = V ΛV −1 and H = (V V ∗)−1. Given

u, v 6= 0 and for any scalar ρ

‖Au− µu‖2H ≥ ‖Au‖2H − ‖ρu‖2H and ‖v∗A− µv∗‖2H ≥ ‖v∗A‖2H − ‖ρv∗‖2H

with equality only when µ = ρ = ρ(y, x,A).
Proof. Set ρ = ρ(y, x,A), H = (V V ∗)−1 and ru = Au − µu and recall that H is

a Hermitian positive definite matrix.

‖ru‖
2
H = (HAu − µHu)∗(Au− µu)

= u∗A∗HAu− µ̄u∗HAu− µu∗A∗Hu+ µ̄µu∗Hu

= (u∗Hu) [(u∗A∗HAu)/(u∗Hu) + (µ− ρ)(µ̄− ρ̄)− ρρ̄]

≥ ‖Au‖2H − ‖ρu‖2H
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where ‖z‖2H = 〈z, z〉H = 〈z,Hz〉 for any z ∈ Cn. We replace ru in the proof by
rv = v∗A− µv∗ to obtain the second part of the statement.

Because the range of ρ(y, x,A) is a subset of the range of ρ̃(y, x,A) we cite a
result from B.N. Parlett [10] for the stationarity property in the form of a lemma.

Lemma 4.4. The generalized two-sided Rayleigh Quotient, ρ(y, x,A), is station-

ary if and only if y and x are the left and right eigenvectors of A associated with

eigenvalue ρ(y, x,A) and y∗x 6= 0.
Proof. (see [10, §11]).

4.2. Extrema of the generalized two sided Rayleigh Quotient. Similar
to the normal case, the extrema of the generalized two-sided Rayleigh quotient are
the largest and the smallest eigenvalues of those non-Hermitian matrices whose eigen-
values are real. This is the topic of the next theorem whose Hermitian version is
attributed to Rayleigh and Ritz.

Theorem 4.5. Let A ∈ Cn×n be a non-Hermitian, nondefective matrix. Let

Λ = V −1AV be the diagonal matrix of eigenvalues of A and assumed to be real and

ordered as λ1 ≤ . . . ≤ λn. Then,

λ1y
∗x ≤ y∗Ax ≤ λny

∗x for all x ∈ C
n and y = (V V ∗)−1x (4.2)

λmax = λn = max
y∗x 6=0

y=(V V ∗)−1x

y∗Ax

y∗x
= max

y∗x=1

y∗=(V V ∗)−1x

y∗Ax (4.3)

λmin = λ1 = min
y∗x 6=0

y=(V V ∗)−1x

y∗Ax

y∗x
= min

y∗x=1

y∗=(V V ∗)−1x

y∗Ax. (4.4)

Proof. From Lemma 2.1 we know that if vl and vr are the left and right eigenvector
of A corresponding to the eigenvalue λi, then (v∗l V )∗ = V −1vr = ei or equivalently,
vl = (V V ∗)−1vr. Now, for any x ∈ Cn and y = (V V ∗)−1x

y∗Ax = y∗V ΛV −1x = x∗(V −1)∗ΛV −1x =

n
∑

i=1

λi|(V
−1x)i|

2.

Because each term |(V −1x)i|
2 is nonnegative, this is a convex combination of the real

numbers λi for i = 1, . . . , n. Therefore

λmin

n
∑

i=1

|(V −1x)i|
2 ≤ y∗Ax =

n
∑

i=1

λi|(V
−1x)i|

2 ≤ λmax

n
∑

i=1

|(V −1x)i|
2.

For z = V −1x notice that

n
∑

i=1

|(V −1x)i|
2 = ‖z‖2 = z∗z = y∗x. Consequently,

λ1y
∗x ≤ y∗Ax ≤ λny

∗x.

Equality occurs when y and x are the right and left eigenvalues of A corresponding
to λ1 or λn as appropriate (see Lemma 4.2). In other words,

min
y∗x 6=0

y=(V V ∗)−1x

y∗Ax

y∗x
= λ1 and max

y∗x 6=0

y=(V V ∗)−1x

y∗Ax

y∗x
= λn.
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In addition y and x can be normalized so that y∗x = 1 resulting in

max
y∗x=1

y=(V V ∗)−1x

y∗Ax = λn and min
y∗x=1

y=(V V ∗)−1x

y∗Ax = λ1.

Two additional notes are now called for. One to say that for z = V −1x and
Λ = V −1AV

max
y∗x=1

y=(V V ∗)−1x

y∗Ax = max
‖z‖=1

z∗Λz

Therefore, by symmetry of Λ, what was just developed for x can in a similar manner
be done for y by setting x = V V ∗y. The second to draw attention to the fact that

max
y∗x 6=0

y=(V V ∗)−1x

y∗Ax

y∗x
≤ max

y∗x 6=0

y∗Ax

y∗x
and min

y∗x 6=0

y=(V V ∗)−1x

y∗Ax

y∗x
≥ min

y∗x 6=0

y∗Ax

y∗x

as a result of the extra constraint on the left-hand side.
The extra restriction to the set over which the maximum is taken, can be seen

as the nonnormal equivalent of the condition y = x, since in the normal case, V is
orthogonal and V V ∗ = I. Unfortunately the price to pay for nonnormality is high,
rendering limited practical use to the previous results. The matrix V is, in general,
not known and if otherwise there would no longer be the need for determining right
and left eigenvectors. In theoretical terms, however, it allows for the generalization
of the variational characterization of the eigenvalues to non-Hermitian matrices with
real eigenvalues. We are now able to generalize Courant-Fischer minimax theorem to
real non-Hermitian matrices with real eigenvalues.

Theorem 4.6. Let j and n be integers such that 1 ≤ j ≤ n and let A ∈ Cn×n

be a nondefective matrix. Assume the eigenvalues of A to be real and ordered as

λ1 ≤ . . . ≤ λn. Let Sj denote a j-dimensional subspace of Cn. Then,

λj = min
Sj

max
x∈Sj

y=(V V ∗)−1x

y∗x 6=0

y∗Ax

y∗x
= max

Sn−j+1
min

q∈Sn−j+1

p=(V V ∗)−1q

p∗q 6=0

p∗Aq

p∗q
(4.5)

Proof. We have shown earlier that with the variable transformation z = V −1x

ρ(y, x,A) = max
y∗x 6=0

y=(V V ∗)−1x

y∗Ax

y∗x
= max

z 6=0

z∗Λz

z∗z
= ρ(z, z,Λ).

By the basis theorem and because the columns of V form a basis for Cn, though not

orthogonal, S̃
j
∩ S̃

n−j+1
6= 0. There exist, thus, a vector z ∈ S̃

j
∩ S̃

n−j+1
for which

min
v∈S̃

n−j+1
ρ(v, v, λ) ≤ ρ(w,w,Λ) ≤ max

u∈S̃
j
ρ(u, u,Λ).

Because the inequalities are valid for all choices of S̃
j
and S̃

n−j+1
we have

max
S̃

n−j+1
min

v∈S̃
n−j+1

ρ(v, v,Λ) ≤ min
S̃

j
max
u∈S̃

j
ρ(u, u,Λ).
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In the basis of the original matrix this means

max
Sn−j+1

min
q∈Sn−j+1

p=(V V ∗)−1q

ρ(p, q, A) ≤ min
Sj

max
x∈Sj

y=(V V ∗)−1x

ρ(y, x,A).

Equality follows from taking Sj = Vj the span of the first j (right) eigenvectors and
Sn−j+1 the span of the last n− j + 1 (right) eigenvectors, rendering

λj = max
Sn−j+1

min
q∈Sn−j+1

p=(V V ∗)−1q

ρ(p, q, A) and λj = min
Sj

max
x∈Sj

y=(V V ∗)−1x

ρ(y, x,A).
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