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Summary

As a matter of continuation of [45, 2010] - we deliver here H(x)-binomials’ re-
currence formula appointed by Ward-Horadam H(x) = 〈Hn(x)〉n≥0 functions’
sequence which comprises in H ≡ H(x = 1) number sequences case the V -
binomials’ recurrence formula determined by the primordial Lucas sequence of
the second kind V = 〈Vn〉n≥0 as well as its well elaborated companion funda-
mental Lucas sequence of the first kind U = 〈Un〉n≥0 which gives rise in its
turn to the U-binomials’ recurrence as in [1, 1878] , [6, 1949], [8, 1964], [10,
1969], [14, 1989] or in [15, 1989] etc.

For the sake of combinatorial interpretations and in number theory H(x = 1),
Hn(x = 1) ≡ Hn is usually considered to be natural or integer numbers valued
sequence. Number sequences H = H(x = 1) = 〈Hn〉n≥0 were recently called
by several authors: Horadam sequences.

The list of references is mostly indicatory (see references therein) and is far from
being complete.

AMS Classification Numbers: 05A10 , 05A30.

Keywords: extended Lucas polynomial sequences, generalized multinomial co-
efficients.

1 General Introduction

1.1. p, q people are Lucas’ followers people. The are many authors who
use in their investigation the fundamental Lucas sequence U ≡ 〈np,q〉n≥0 -

frequently with different notations - where np,q =
∑n−1

j=0 p
n−j−1qj = Un; see

Definition 1 and then definitions that follow it. In regard to this a brief intimation
is on the way.

To our knowledge it was François Édouard Anatole Lucas in [1, 1878] who
was the first who had not only defined fibonomial coefficients as stated in [15,
1989] by Donald Ervin Knuth and Herbert Saul Wilf but who was the first who
had defined Un ≡ np,q-binomial coefficients

(

n
k

)

U
≡
(

n
k

)

p,q
and had derived a
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recurrence for them: see page 27, formula (58) [1, 1878]. Then - referring to
Lucas - the investigation relative to divisibility properties of relevant number
Lucas sequences D, S as well as numbers’ D - binomials and numbers’ D
- multinomials was continued in [82, 1913] by Robert Daniel Carmichel; see
pp. 30, 35 and 40 in [82, 1913] for U ≡ D = 〈Dn〉n≥0 and

(

n
k1,k2,...,ks

)

D
- respectively. Note there also formulas (10) , (11) and (13) which might
perhaps serve to derive explicit untangled form of recurrence for the V- binomial
coefficients

(

n
k

)

V
≡
(

n
k

)

S
denoted by primordial Lucas sequence 〈Sn〉n≥0 = S ≡

V . Number sequence F (x = 1 = A) A - multinomial coefficients’ recurrences
are not present in that early works and up to our knowledge a special case of
such appeared at first in [62, 1979] by Anthony G. Shannon. More on that - in
what follows after Definition 3.

Significant peculiarity of Lucas originated sequences includes their importance
for number theory (see middle-century paper [95] by John H. Halton and re-
cent, this century papers [118, 2010] by Chris Smith and [119, 2010] by Kálmán
Györy with Chris Smith and the reader may enjoy also the PhD Thesis [128,
1999] by Anne-Marie Decaillot-Laulagnet). This Lucas originated investigation
amalgamates diverse areas of mathematics due to hyberbolic - trigonometric
character of these Fonctions Numériques Simplement Priodiques i.e. funda-
mental and primordial Lucas sequences - as beheld in [1, 1878]. One may track
then a piece of further constructions for example in [25, 1999]).
There in [25, 1999] tail formulas (3.12) and (3.14) illustrating proved and ex-
ploited by Éduard Lucas the complete analogy of the Vn and Un symmetric
functions of roots with the circular and hyperbolic functions of order 2 due
to Lucas formulas (5) in [1] rewritten in terms of cosh and sinh functions as
formulas (3.13) and (3.14) in [25] as resulting from de Moivre one parameter
group introduced in [25] via (1.4) in order to pack compactly addition formulas
(1.6), (1.7) in [25] equivalent to (49) and corresponding recurrence relations in
[1] into abelian group ”parcel” encompassing Tchebycheff polynomials of both
kinds.

In this connection see the Section 2 in the recent Ward-Horadam people paper
[79, 2009] by Tian-Xiao He, Peter Jau-Shyong Shiue. There in Proposition 2.7.
illustrative Example 2.8. with Tchebycheff polynomials of the first kind the
well known recurrence formula (2.28) is equivalent to abelian one-parameter de
Moivre matrix group multiplication rule from which the corresponding recurrence
(1.7) in [25, 1999] follows.

2.1. As has been foreshadowed in [45, 2010] we deliver here - continuing the
note [45] - the H(x)-binomials’ recurrence formula appointed by Ward-Horadam
H(x) = 〈Hn(x)〉n≥0 field of zero characteristic nonzero valued functions’ se-
quence which comprises for H ≡ H(x = 1) number sequences case - the
V -binomials’ recurrence formula determined by the primordial Lucas sequence
of the second kind V = 〈Vn〉n≥0 [45, 2010] as well as its well elaborated com-
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panion fundamental Lucas sequence of the first kind U = 〈Un〉n≥0 which gives
rise in its turn to the U-binomials’ recurrence as in [1, 1878] , [6, 1949], [8,
1964], [10, 1969], [14, 1989] or in [15, 1989] and so on.

We do it by following recent applicable work [2, 2009] by Nicolas A. Loehr and
Carla D. Savage thought one may - for that purpose - envisage now easy exten-
sions of particular p, q - cases considered earlier - as for example the following:
the relevant recursions in [6, 1949], in [14, 1989], in [18, 1992] - ( recursions
(40) and (51)) , or [114, 2000] by John M. Holte (Lemmas 1,2 dealing with
U -binomials provide a motivated example for observation Theorem 17 in [2] )
One is invited also to track Lemma 1 in [115, 2001] by Hong Hu and Zhi-Wei
Sun ; see also corresponding recurrences for p, q-binomials ≡ U -binomials in [1,
1878] or in [44, 2008] v[1] by Maciej Dziemiańczuk (compare there (1) and (2)
formulas), or see Theorem 1 in [41, 2008] by Roberto Bagsarsa Corcino as well
as track the proof of the Corollary 3. in [44, 2009] v[2] by Maciej Dziemiańczuk.

This looked for here H(x)-binomials’ recurrence formula (recall: encompassing
V -binomials for primordial Lucas sequence V ) is not present neither in [1] nor
in [2], nor in [3, 1915] , nor in [5, 1936], nor in [6, 1949]. Neither we find it in -
quoted here contractually by a nickname as ”Lucas (p, q)-people” - references [1-
44]. Neither it is present in all other - quoted here contractually by a nickname
as ”Ward-Horadam -people” - references [49-79]. Ad ”Lucas (p, q)-people”
and ”Ward-Horadam -people” references - (including these [n] with n > 73- the
distinction which are which is quite contractual. The nicknames are nevertheless
indicatively helpful. We shall be more precise soon - right with definitions are
being started.

Meanwhile H(x)-binomials’ recurrence formula for the Ward-Horadam sequence
H(x) = 〈Hn(x)〉n≥0 follows straightforwardly from the easily proved important
observation - the Theorem 17 in [2, 2009] as already had it been remarked in
[45, 2010] for the H ≡ H(x = 1) case.

This paper formula may and should be confronted with Fontené obvious recur-
rence for complex valued A-binomials

(

n
k

)

A
, A ≡ A(x = 1) in [3, 1915] i.e. with

(6) or (7) identities in [10, 1969] by Henri W. Gould or with recurrence in [27,
1999] by Alexandru Ioan Lupas , which particularly also stem easily just from
the definition of any F (x)-binomial coefficients arrays with F (x) = 〈Fn(x)〉n≥0

staying for any field of characteristic zero nonzero valued functions’sequence ;
Fn(x) 6= 0, n ≥ 0. For F = F (x = 1)-multinomial coefficients automatic def-
inition see [82, 1913] by Robert Daniel Carmichel or then [10, 1969] by Henri
W. Gold and finally see [62, 1979] by Anthony G. Shannon, where recurrence
is proved for

(

n
k1,k2,...,ks

)

U
with U -Lucas fundamental being here complex val-

ued number sequence. For F (x) - multinomial coefficients see [46, 2004] and
compare with F (x)-binomials from [27, 1999] or those from [47, 2001].
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To this end we supply now two informations pertinent ad references and ad
nomenclature.

3.1. Ad the number theory and divisibility properties references. For the
sake of combinatorial interpretations of F - number sequences as well as their
correspondent F -multinomial coefficients and also for the sake of the number
theoretic studies of Charles Hermite [80] and with Thomas Jan Stieltjes in [81]
or by Robert Daniel Carmichel [82, 1913] or [83, 1919] or that of Ward [88,
1936], [89, 1939], [90, 1937], [91, 1937], [49, 1954], [92, 1955], [93, 1959] and
that of Lehmer [84, 1930], [85, 1933], [86, 1935] or this of Andrzej Bobola
Maria Schinzel [97, 1974] and Others’ studies on divisibility properties - these
are the sub-cases Fn ∈ N or Fn ∈ Z which are being regularly considered at the
purpose.

As for the ”Others” - see for example: [94, 1959], [96, 1973], [98, 1974], [99,
1974], [100, 1974], [101, 1973], [61, 1977], [102, 1977], [63, 1979], [103, 1979],
[104, 1980], [64, 1980], [15, 1989], [105, 1991], [109, 1992], [106, 1995], [107,
1999], [108], [110, 1995], [111, 1995], [112, 1995], [113, 1998], [115, 2001],
[116, 2006], [117, 2009].

3.4. Ad Ward-Horadam naming. According to the authors of [79, 2009] it
was Mansour [76] who called the sequence H = 〈an〉n ≥ 0 defined by (1) a Ho-
radam’s sequence, as - accordingly to the author of [76] - the number sequence
H was introduced in 1965 by Horadam [52] (for special case of Ward-Horadam
number sequences see Section 2 in [59, 1974] and see also [77, 2009]), this
however notwithstanding the ingress of complex numbers valued F -binomials
and F -multinomials into Morgan Ward’s systematic Calculus of sequences in
[5, 1936] and then in 1954 Ward’s introduction of ”‘nomen omen”’ W ≡ H in
[49, 1954] integer valued sequences.

Perceive then the appraisal of adequate Morgan Wards’ work in the domain by
Henri W.Gould [10, 1959] and by Alwyn F. Horadam and Anthony G. Shannon
in [60, 1976] or Derrick Henry Lehmer in [87, 1993]. On this occasion note also
the Ward-Horadam number sequences in [50, 1965] and [53, 1965].

2 Preliminaries

Names: The Lucas sequence V = 〈Vn〉n≥0 is called the Lucas sequence of the
second kind - see: [61, 1977, Part I], or primordial - see [63, 1979].
The Lucas sequence U = 〈Un〉n≥0 is called the Lucas sequence of the first kind
- see: [61, 1977, Part I], or fundamental - see p. 38 in [6, 1949] or see [62,
1979] and [63, 1979].

In the sequel we shall deliver the looked for recurrence for H-binomial coeffi-
cients

(

n
k

)

H
determined by the Ward-Horadam sequence H - defined below.
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In compliance with Edouard Lucas’ [1, 1878] and twenty, twenty first century
p, q-people’s notation we shall at first review here in brief the general second
order recurrence; (compare this review with the recent ”Ward-Horadam” peo-
ples’ paper [79, 2009] by Tian-Xiao He and Peter Jau-Shyong Shiue or earlier
p, q-papers [30, 2001] by Zhi-Wei Sun, Hong Hu, J.-X. Liu and [115, 2001]
by Hong Hu and Zhi-Wei Sun). And with respect to natation: If in [1, 1878]
François Édouard Anatole Lucas had been used a = p and b = q notation, he
would be perhaps at first glance notified and recognized as a Great Grandfather
of all the (p, q) - people. Let us start then introducing reconciling and matched
denotations and nomenclature.

(1) Hn+2 = P ·Hn+1 −Q ·Hn, n ≥ 0 and H0 = a, H1 = b.

which is sometimes being written in 〈P,−Q〉 7→ 〈s, t〉 notation.

(2) Hn+2 = s ·Hn+1 + t ·Hn, n ≥ 0 and H0 = a, H1 = b.

Simultaneously and collaterally we mnemonically pre adjust the starting point
to discuss the F (x) polynomials’ case via - if entitled - antecedent ”7→ action”:
H 7→ H(x), s 7→ s(x), t 7→ t(x), etc.

(3) Hn+2(x) = s(x) ·Hn+1(x) + t(x) ·Hn, n ≥ 0, H0 = a(x),H1 = b(x).

enabling recovering explicit formulas also for sequences of polynomials corre-
spondingly generated by the above linear recurrence of order 2 - with Tchebysh-
eff polynomials and the generalized Gegenbauer-Humbert polynomials included.
See for example Proposition 2.7 in the recent Ward-Horadam peoples’ paper
[79, 2009] by Tian-Xiao He and Peter Jau-Shyong Shiue.

The general solution of (1): H(a, b;P,Q) = 〈Hn〉n≥0 is being called throught
this paper - Ward-Horadam number’sequence.

The general solution of (3): H(x) ≡ H(a, b(x); s(x), t(x)) = 〈Hn(x)〉n≥0 is be-
ing called throughout this paper - Ward-Horadam functions’ sequence. It is
then to be noted here that ideas germane to special Ward-Horadam polynomials
sequences of the [71] paper were already explored in some details in [52]. For
more on special Ward-Horadam polynomials sequences by Alwyn F. Horadam
- consult then: [57], [65, 1985], [66] , [72] or see for example the following
papers and references therein: recent papers [77, 2009] by Tugba Horzum and
Emine Gökcen Kocer and [78, 2009] by Gi-Sang Cheon, Hana Kim and Louis
W. Shapiro. For Ward-Horadam functions sequences [79, 2009] by Tiang-Xiao
He and Peter J. -S. Shiue who however there then concetrate on on special
Ward-Horadam polynomials sequences only.
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In [127, 2010] Johann Cigler considers special Ward-Horadam polynomials se-
quences and among others he supplies the tiling combinatorial interpretation of
these special Ward-Horadam polynomials sequences which are q-analogues of
the Fibonacci and Lucas polynomials introduced in [125, 2002] and [126, 2003]
by Johann Cigler.

In the paper [75, 2003] Johann Cigler introduces ”abstract Fibonacci polynomi-
als” - interpreted in terms of Morse coding sequences monoid with concatenation
(monominos and dominos tiling then) Cigler’s abstract Fibonacci polynomial
sare monoid algebra over reals valued polynomials with straightforward Morse
sequences i.e. tiling recurrence originated (1.6) ”addition formula”

Fm+n(a, b) = Fm+1(a, b) · Fm(a, b) + b · Fn−1(a, b) · Fn(a, b),

which is attractive and seductive to deal with within the context of this paper
Theorem 1 below.

From the characteristic equation of (1)

(4) x2 = P · x−Q,

written by some of p.q-people as

(5) x2 = s · x+ t

we readily find the Binet form solution of (1) (see (6) in [77, 2009]) which is
given by (6) and (7).

(6) Hn(a, b;P,Q) ≡ Hn(A,B; p, q) = Apn +Bqn, n ≥ 0,H0 = A,H1 = B.

where p, q are roots of (3) and we have assumed since now on that p 6= q. As
for the case p = q included see for example Proposition 2.1 in [79, 2009] and
see references therein.

Naturally : p+ q = P ≡ s , p · q = Q ≡ −t and

(7) A =
b− qa

p− q
, B = −

b− pa

p− q
.

hence we may and we shall use the following conventional identifications-abbreviations
:

(8) H ≡ H(a, b;P,Q) ≡ H(A,B;P,Q) ≡ H(A,B; p, q).
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It is obvious that the exponential generating function for Ward-Horadam se-
quence H reads:

(9) EH(A,B; p, q)[x] = Aexp[p · x] +Bexp[q · x].

The derivation of the formula for ordinary generating function for Ward-Horadam
sequence is a standard task and so we have (compare with (5) in [77])

(10) GH(a, b;P,Q)[x] =
a+ (b− aP )x

1− P · x+Q · x2
=

a+ (b− a[p+ q])x

1− P · x+ p · q · x2
.

where from we decide an identification-abbreviation

GH [x] ≡ GH(A,B; p, q)[x] ≡ GH(a, b;P,Q)[x].

Naturally - in general H(A,B; p, q) 6= H(A,B; q, p). If H(A,B; p, q) = H(A,B; q, p)
we then call the Ward-Horadam sequence symmetric and thus we arrive to Lucas
Théorie des Fonctions Numériques Simplement Priodiques [1, 1878].

In [1, 1878] Edouard Lucas considers Lucas sequence of the second kind V =
〈Vn〉n≥0 (second kind - see: [61, 1977, Part I]) as well as its till now well
elaborated companion Lucas sequence of the first kind U = 〈Un〉n≥0 (first
kind - see: [61, 1977, Part I]) which gives rise in its turn to the U-binomials’
recurrence (58) in [1, 1878] (see then [6, 1949], [8, 1964], [10, 1969], [14, 1989]
or in [15, 1989] etc. )

These sequences i.e (A = B = 1) the Lucas sequence of the second kind

(11) Hn(2, P ; p, q) = Vn = pn + qn.

and (A = −B = 1) the Lucas sequence of the first kind

(12) Hn(0, 1; p, q) = Un =
pn − qn

p− q
,

where called by Lucas [1, 1878] the simply periodic numerical functions because
of

[quote] at the start, the complete analogy of these symmetric functions with
the circular and hyperbolic functions. [end of quote].

More ad Notation 1. The letters a,b a 6= b in [1, 1878] denote the roots of
the equation x2 = Px−Q then (a, b) 7→ (u, v) in [2, 2009] and u,v stay there
for the roots of the equation x2 = ℓx− 1.
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We shall use here the identification (a, b) ≡ (p, q) i.e. p, q denote the roots of
x2 = Px−Q as is common in ”‘Lucas (p, q)-people”’ publications.
For Lucas (p, q)-people then the following U -identifications are expediency nat-
ural:

Definition 1

(13) np,q =

n−1
∑

j=0

pn−j−1qj = Un =
pn − qn

p− q
, 0p,q = U0 = 0, 1p,q = U1 = 1,

where p, q denote now the roots of the equation x2 = P · x−Q ≡ x2 = sx+ t
hence p + q = s ≡ P , pq = Q ≡ −t and the empty sum convention was
used for 0p,q = 0. Usually one assumes p 6= q. In general also s 6= t - though
according to the context [14, 1989] s = t may happen to be the case of interest.

The Lucas U -binomial coefficients
(

n
k

)

U
≡
(

n
k

)

p,q
are then defined as follows:

([1, 1878], [3, 1915], [5, 1936], [6, 1949], [8, 1964], [10, 1969] etc.)

Definition 2 Let U be as in [1, 1878] i.e Un ≡ np,q then U -binomial coefficients
for any n, k ∈ N ∪ {0} are defined as follows

(14)

(

n

k

)

U

≡

(

n

k

)

p,q

=
np,q!

kp,q! · (n− k)p,q!
=

n
k
p,q

kp,q!

where np,q! = np,q ·(n−1)p,q ·...·1p,q and n
k
p,q = np,q ·(n−1)p,q ·...·(n−k+1)p,q.

Definition 3 Let V be as in [1, 1878] i.e Vn = pn + qn, hence V0 = 2 and
Vn = p+q = s. Then V -binomial coefficients for any n, k ∈ N∪{0} are defined
as follows

(15)

(

n

k

)

V

=
Vn!

Vk! · V(n− k)!
=

V
k
n

Vk!

where Vn! = Vn · Vn−1 · ... · V1 and V
k
n = Vn · Vn−1 · ... · Vn−k+1.

One automatically generalizes number F -binomial coefficients’ array to func-
tions F (x)-multinomial coefficients’ array (see [46, 2004] and references to
umbral calculus therein) while for number sequences F the F = F (x = 1)-
multinomial coefficients see p. 40 in [82, 1913] by Robert Daniel Carmichel ,
see [5, 1936] by Morgan Ward, [10, 1969] by Henri W. Gould or [62, 1979])
by Anthony G. Shannon where recursion for U = F (x = 1)-multinomial coeffi-
cients is provided and where there specifically U denotes the fundamental Lucas
sequence (i.e. the Lucas sequence of the first kind) and see also important paper
[105, 1991] by Shiro Ando and Daihachiro Sato. The x-Fibonomial coefficients
from [47, 2001] by Thomas M. Richardson are motivating example of functions
F (x)-binomial coefficients’ array from [46, 2004].
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Definition 4 Let F (x) be any natural, or complex numbers’ non zero valued
functions’ sequence i.e. Fn(x) ∈ N or and Fn(x) ∈ C. The F (x)-multinomial
coefficient is then identified with the symbol

(16)

(

n

k1, k2, ..., ks

)

F (x)

=
Fn(x)!

Fk1(x)! · ... · Fks(x)!

where ki ∈ N and
∑s

i=1 ki = n for i = 1, 2, ..., s. Otherwise it is equal to zero,

and where Fr(x)! = Fr(x) · Fr−1(x) · ... · F1(x).

Naturally for any natural n, k and k1 + ...+ km = n− k the following holds

(17)

(

n

k

)

F (x)

·

(

n− k

k1, k2, ..., km

)

F (x)

=

(

n

k, k1, k2, ..., km

)

F (x)

,

(

n

k1, k2, ..., km

)

F (x)

=

(

n

k1

)

F (x)

(

n− k1
k2

)

F (x)

· · ·

(

n− k1 − · · · − km−1

km

)

F (x)

.

More ad Notation 2.
We shall use further on the traditional , XIX-th century rooted notation under
presentation in spite of being inclined to quite younger notation from [43, 2010]
by Bruce E. Sagan and Carla D. Savage. This wise, economic notation is ready
for straightforward record of combinatorial interpretations and combinatorial
interpretations’ substantiation in terms of popular text book tiling model since
long ago used for example to visualize recurrence for Fibonacci-like sequences
; see for example [143, 1989] by Ronald Graham, Donald Ervin Knuth, and
Oren Patashnik. The translation from François Édouard Anatole Lucas via Dov
Jarden and Theodor Motzkin notation [6, 1949] and notation of Bruce E. Sagan
and Carla D. Savage [43, 2010] is based on the succeeding identifications: the
symbol used for U -binomials is C {...} in place of (...)U , the would be symbol
for V -binomials i.e. P 〈...〉 in place of (...)V is not considered at all in [43]
while

{n} ≡ Un ≡ np,q, 〈n〉 ≡ Vn.

In Bruce E. Sagan and Carla D. Savage notation we would then write down the
fundamental and primordial sequences’ binomial coefficients as follows.

Definition 5 Let {n} be fundamental Lucas sequence as in [1, 1878] i.e {n} ≡
Un ≡ np,q then {n}-binomial coefficients for any n, k ∈ N ∪ {0} are defined as
follows

(18) F {n, k} =
{n

k

}

p,q
=

{n}!

{k}! · {n− k}!
=

{n}k

{k}!

9



where {n}! = {n}·{n− 1}· ... ·{1} and {n}k = {n}·{n− 1}· ... ·{n− k + 1} ,

Definition 6 Let 〈n〉 be primordial Lucas sequence as in [1, 1878] i.e 〈n〉 ≡ Vn

then 〈n〉-binomial coefficients for any n, k ∈ N ∪ {0} are defined as follows

(19) P 〈n, k〉 =
〈n

k

〉

p,q
=

〈n〉!

〈k〉! · 〈n− k〉!
=

〈n〉k

〈k〉!
,

where 〈n〉! = {n}·{n− 1} · ... · {1} and {n}k = {n}·{n− 1} · ... · {n− k + 1} .

The above consequent symbols
{

n
k

}

p,q
and

〈

n
k

〉

p,q
are - in not exceptional

conflict - with second kind Stirling numbers notation and Euler numbers notation
respectively in the spirit of [143, 1989] what extends on both p, q - extensions’
notation.
Regarding the symbol

{

n
k

}

p,q
one draws the attention of a reader to [9, 1967]

where Verner Emil Hoggatt, Jr. considers the C-binomial coefficients with in-
dices in an arithmetic progression denoting them by symbols

{

n
k

}

u,k
, where

{un}n≥0 = U with Ubeing the primordial Lucas sequence. For
{

n
k

}

corre-
sponding notation see also: [10, 1969] by Henri W.Gould, [14, 1989] by Ira M.
Gessel and Xavier Gérard Viennot , [36, 2005], [37, 2005], [38, 2006] by Jaroslav
Seibert and Pavel Trojovský and [39, 2007] by Pavel Trojovský.

Whereas as in the subset-subspace problem ( Example [Ex. q* ; 6] in subsection
4.3.) we rather need another natural notation. Namely for q 6= 0 introduce
q∗ = p

q
and observe that

(

n

k

)

U

≡

(

n

k

)

p,q

= qk(n−k)

(

n

k

)

1,q∗

q∗7→1
→

(

n

k

)

.

The V -binomial P 〈n, k〉 =
〈

n
k

〉

p,q
≡
(

n
k

)

V
is not considered in [43, 2010].

3 H(x)-binomial coefficients’ recurrence

3.1. Let us recall convention resulting from (3).

Recall. The general solution of (3): H(x) ≡ H(a, b(x); s(x), t(x)) = 〈Hn(x)〉n≥0

is being called throughout this paper - Ward-Horadam functions’ sequence.

From the characteristic equation of the recurrence (3)

(20) z2 − s(x) · z − t(x) = 0

we readily see that for H0 = a(x), H1 = b(x), n ≥ 0,

(21) Hn(x) ≡ Hn(a(x), b(x); p(x), q(x)) = A(x)p(x)n +B(x)q(x)n,
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where p(x), q(x) are roots of (20) and we have assumed that p(x) 6= q(x) as
well as that p(x), q(x) are not roots of unity. Naturally:

(22) A(x) =
b(x)− q(x)a(x)

p(x)− q(x)
, B = −

b(x)− p(x)a(x)

p(x)− q(x)
.

hence we may and we shall use the following conventional identifications-abbreviations

(23) H(x) ≡ H(a(x), b(x); s(x), t(x)) ≡ H(A(x), B(x); s(x), t(x)).

As for the case p(x) = q(x) included see for example Proposition 2.7 in [79,
2009].

Another explicit formula for Ward-Horadam functions sequences is the mnemon-
ically extended formula (9) from [77, 2009] by Tugba Horzum and Emine Gökcen
Kocer, where here down we use contractually the following abbreviations:

Hn(x) ≡ Hn(a(x), b(x); s(x), t(x)) , a(x) ≡ a, b(x) ≡ b, s(x) ≡ s and t(x) ≡ t

(24)

Hn(x) = a
∑

0≤k≤⌊n
2 ⌋

(

n− k

k

)

sn−2ktk+

(

b

s
− a

)

∑

0≤k≤⌊n−1

2 ⌋

(

n− k − 1

k

)

sn−2ktk

Note and compare. The recurrence (1.1) and (1.2) in [71, 1996] defines a
polynomials’ subclass of Ward-Horadam functions sequences defined by (3).
The standard Jacques Binet form (1.8) in [71, 1996] of the recurrence (1.1)
and (1.2) solution for Ward-Horadam polynomials sequences in [71, 1996] is
the standard Jacques Binet form (19), (20) of the recurrence (3) solution for
Ward-Horadam functions sequences.

The recurrence (2.23) in [79, 2009] by Tian-Xiao He and Peter Jau-Shyong Shiue
defines exactly the class of Ward-Horadam functions’ second order sequences
and the standard Jacques Binet form (19), (20) of the recurrence (3) solution
for Ward-Horadam functions sequences H(x) constitutes the content of their
Proposition 2.7. - as has been mentioned earlier. No recurrences for H(x)-
binomials neither for H(x = 1)-binomials are considered.

On Binet Formula - Historical Remark. We just quote Radoslav Rasko
Jovanovic’s information from

http : //milan.milanovic.org/math/english/relations/relation1.html :

Quotation 1 Binet’s Fibonacci Number Formula was derived by Binet in 1843
although the result was known to Euler and to Daniel Bernoulli more than a
century ago. ... It is interesting that A de Moivre (1667-1754) had written about
Binet‘s Formula, in 1730, and had indeed found a method for finding formula
for any general series of numbers formed in a similar way to the Fibonacci series.

11



See also the book [145, 1989] by Steven Vajda.

3.2. The authors of [2] provide an easy proof of an observation named there
Theorem 17 which extends automatically to the statement that the follow-
ing recurrence holds for the general case of

(

r+s
r,s

)

H(x)
H(x)-binomial arrays in

multinomial notation.

Theorem 1 Let us admit shortly the abbreviations: gk(r, s)(x) = gk(r, s) ,
k = 1, 2. Let s, r > 0. Let F (x) be any zero characteristic field nonzero valued
functions’ sequence (Fn(x) 6= 0). Then

(25)

(

r + s

r, s

)

F (x)

= g1(r, s) ·

(

r + s− 1

r − 1, s

)

F (x)

+ g2(r, s) ·

(

r + s− 1

r, s − 1

)

F (x)

where
(

r
r,0

)

F (x)
=
(

s
0,s

)

F (x)
= 1 and

(26) F (x)r+s = g1(r, s) · F (x)r + g2(r, s) · F (x)s.

are equivalent.

On the way historical note Donald Ervin Knuth and Herbert Saul Wilf in [15,
1989] stated that Fibonomial coefficients and the recurrent relations for them
appeared already in 1878 Lucas work (see: formula (58) in [1, 1878] p. 27 ; for
U -binomials which ”Fibonomials” are special case of). More over on this very p.
27 Lucas formulated a conclusion from his (58) formula which may be stated in
notation of this paper formula (2) as follows: if s, t ∈ Z and H0 = 0 , H1 = 1
then H ≡ U and

(

n
k

)

U
≡
(

n
k

)

np,q
∈ Z. Consult also in next century [144, 1910]

by Paul Gustav Heinrich Bachmann or later on - [82, 1913] by Robert Daniel
Carmichel [p. 40] or [6, 1949] by Dov Jarden and Theodor Motzkin where in all
quoted positions it was also shown that np,q - binomial coefficients are integers
- for p and q representing distinct roots of (5) with their ratio being not a root
of unity.
Let us take an advantage to note that Lucas Théorie des Fonctions Numériques
Simplement Périodiques i.e. investigation exactly of fundamental U and primor-
dial V sequences constitutes the far more non-accidental context for binomial-
type coefficients exhibiting their relevance at the same time to number theory
and to hyperbolic trigonometry (in addition to [1, 1878] see for example [25],
[26] and [28]).

It seems to be the right place now to underline that the addition formulas for
Lucas sequences below with respective hyperbolic trigonometry formulas and
also consequently U -binomials’recurrence formulas - stem from commutative
ring R identity: (x− y) · (x+ y) ≡ x2 − y2, x, y ∈ R.

12



Indeed. Taking here into account the U-addition formula i.e. the first of two
trigonometric-like L-addition formulas (42) from [1, 1878] (L[p, q] = L = U, V
- see also [25, 1999] by A.K.Kwaśniewski and [26], [28]) i.e.

(27) 2Ur+s = UrVs + UsVr, 2Vr+s = VrVs + UsUr

one readily recognizes that the U -binomial recurrence from the Corollary 18 in
[2, 2009] is a case of the U -binomial recurrence (58) [1, 1878] which may be
rewritten after François Édouard Anatole Lucas in multinomial notation and
stated as follows: according to the Theorem 1 case i.e. the Theorem 2 below
the following is true

2Ur+s = UrVs + UsVr

is equivalent to

(28) 2 ·

(

r + s

r, s

)

np,q

= Vs ·

(

r + s− 1

r − 1, s

)

np,q

+ Vr ·

(

r + s− 1

r, s− 1

)

np,q

.

To this end see also Proposition 2.2. in [43, 2010] and compare it with both
(28) and Example 3. below.

However there is no companion V -binomial recurrence i.e. for
(

r+s
r,s

)

V
neither

in [1, 1878] nor in [2, 2009] as well as all other quoted papers except for [45,
2010] - up to knowledge of this note author.

Consequently then there is no H(x)-binomial recurrence neither in [1, 1878] nor
in [2] (2009) as well as all other quoted papers except for Final remark : p.5 in
[45, 2010] up to this note author knowledge.

The End of the on the way historical note.

The looked for H(x)-binomial recurrence (29) accompanied by (30-33) might
be then given right now in the form of (25) adapted to - Ward-Lucas func-
tions’sequence case notation while keeping in mind that of course the expres-
sions for hk(r, s)(x), k = 1, 2 below are designated by this F (x) = H(x) choice
and as a matter of fact are appointed by the recurrence (3).

For the sake of commodity let us admit shortly the abbreviations: hk(r, s)(x) =
hk(r, s) = hk , k = 1, 2. Then for H(x) of the form (21) we evidently have
what follows.

Theorem 2.

(29)

(

r + s

r, s

)

H(x)

= h1(r, s)

(

r + s− 1

r − 1, s

)

H(x)

+ h2(r, s)

(

r + s− 1

r, s − 1

)

H(x)

,
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where p(x) 6= q(x) and
(

r
r,0

)

H(x)
=
(

s
0,s

)

H(x)
= 1, is equivalent to

(30) H(x)r+s = h1(r, s)H(x)r + h2(r, s)H(x)s.

where Hn(x) is explicitly given by (21) and (22). The end of the Theorem 2.

There might be various h1(r, s)(x) = h1 and h2(r, s)(x)s = h2 solutions of (30)
and (21). Compare (38) in Example 1 with (42) in Example 3 below. As the
possible h1(r, s)(x) = h1 and h2(r, s)(x)s = h2 formal solutions of (30) and
(21) we may take

(31)

h1(r, s)(x) =
A(x) · p(x)r+s

A(x) · pr +B(x) · q(x)r
, h2(r, r)(x) =

B(x) · q(x)r+s

A(x) · ps +B(x) · q(x)s
.

As another possible h1(r, s)(x) and h2(r, s)(x)s = h2 solutions of (30) and (21)
we may take: for r 6= s

(32) h1(r, s) · (p((x)
rq(x)s − q(x)rp(x)s) = p(x)r+sq(x)s − q(x)r+sp(x)s,

(33) h2(r, s) · (q(x)
rp(x)s − p(x)rq(x)s) = p(x)r+sq(x)r − q(x)r+sp(x)r.

while for r = s apply formula (31) with r = s.

Usually the specific features of particular cases of (21) and (22) allow one
to infer the particular form of (30) hence the form of h1(r, s)(x) = h1 and
h2(r, s)(x)s = h2.

3.3. Three special cases examples.

Example 1. This is a particular case of the Theorem 2.

The recurrent relations (13) and (14) in Theorem 1 from [41, 2008] by Roberto
Bagsarsa Corcino for np,q-binomial coefficients are special cases of this paper
formula (29) as well as of Th. 17 in [2] with straightforward identifications of
g1, g2 in (13) and in (14) in [41] or in this paper recurrence (30) for H(x =
1) = U [p, q]n = np,q sequence. Namely, recall here now in multinomial notation
this Theorem 1 from [41, 2008] by Roberto Bagsarsa Corcino:

(34)

(

r + s

r, s

)

p,q

= qr
(

r + s− 1

r − 1, s

)

p,q

+ ps
(

r + s− 1

r, s − 1

)

p,q

,

(35)

(

r + s

r, s

)

p,q

= pr
(

r + s− 1

r − 1, s

)

p,q

+ qs
(

r + s− 1

r, s − 1

)

p,q

,
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which is equivalent to

(36) (s+ r)p,q = psrp,q + qrsp,q = (r + s)q,p = prsp,q + qsrp,q,

what might be at once seen proved by noticing that

pr+s − qr+s ≡ ps · (pr − qr) + qr · (ps − qs).

Hence those mentioned straightforward identifications follow:

(37) g1 = qr, g2 = ps or g1 = pr, g2 = qs.

The recurrence (36) in Lucas notation reads

(38) Us+r = psUr + qrUs = Ur+s = prUs + psUr.

Compare it with equivalent recurrence (42) in order to notice that both h1
and h2 functions are different from case to case of recurrence (30) equivalent
realizations.

Compare this example based on Theorem 1 in [41, 2008] by Roberto Corcino
with with [44, 2008] v[1] by Maciej Dziemiańczuk (see there (1) and (2) for-
mulas), and track as well - the simple combinatorial proof of the Corollary 3 in
[44, 2009] v[2]) by Maciej Dziemiańczuk.

Example 2. This is a particular case of the Theorem 1.

Now let A be any natural numbers’ or even complex numbers’ valued sequence.
One readily sees that also (1915) Fontené recurrence for Fontené-Ward general-
ized A-binomial coefficients i.e. equivalent identities (6) , (7) in [10] are special
cases of this paper formula (26) as well as of Th. 17 in [2] with straightforward
identifications of h1, h2 in this paper formula (25) while this paper recurrence
(27) becomes trivial identity.
Namely, the identities (6) and (7) from [10, 1969] read correspondingly:

(39)

(

r + s

r, s

)

A

= 1 ·

(

r + s− 1

r − 1, s

)

A

+
Ar+s −Ar

As

(

r + s− 1

r, s− 1

)

A

,

(40)

(

r + s

r, s

)

A

=
Ar+s −As

Ar
·

(

r + s− 1

r − 1, s

)

A

+ 1 ·

(

r + s− 1

r, s − 1

)

A

,

where p 6= q and
(

r
r,0

)

L
=
(

s
0,s

)

L
= 1. And finally we have tautology identity

(41) As+r ≡
Ar+s −As

Ar
·Ar + 1 ·As.
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Example 2. becomes the general case of the Theorem 1. if we allow A to
represent any zero characteristic field nonzero valued functions’ sequence: A =
A(x) = 〈An(x)〉n≥0 , An(x) 6= 0).

Example 3. This is a particular case of the Theorem 2.

The first example above is cognate to this third example in apparent way as
might readily seen from François Édouard Anatole Lucas papers [1, 1878] or
more recent article [115, 2001] by Hong Hu and Zhi-Wei Sun ; (see also t = s
case in [14, 1989] by Ira M. Gessel and Xavier Gérard Viennot on pp.23,24 .) In
order to experience this let us start to consider now the number H(x = 1) = U
Lucas fundamental sequence fulfilling (2) with U0 = 0 and U1 = 1 as introduced
in [1, 1878] and the - for example considered in [115, 2001]. There in [115,
2001] by Hong-Hu and Shi-Wei Sun - as a matter of fact - a kind of ”pre-
Theorem 17” from [2, 2009] is latent in the proof of Lemma 1 in [115]. We
rewrite Lemma 1 by Hong-Hu and Shi-Wei Sun in multinomial notation and
an arrangement convenient for our purpose here using sometimes abbreviation
Un(p, q) ≡ Un.
(Note that the addition formulas for Lucas sequences hence consequently U -
binomials’recurrence formulas [1, 1878] as well as (p − q) · (pj+k − qj+k) ≡
(pk+1− qk+1) · (pj − qj)−p · q(pj−1− qj−1 · (pk− qk) - stem from commutative
ring R identity: (x− y) · (x+ y) ≡ x2 − y2, x, y ∈ R.)
And so for p 6= q and bearing in mind that p · q = −t - the following is true.

The identity (42) equivalent to

(p− q) · (pj+k − qj+k) ≡ (pk+1− qk+1) · (pj − qj)− p · q(pj−1 − qj−1 · (pk − qk)

(42) Uj+k(p, q) = Uk+1 · Uj(p, q) + tUj−1 · Uk(p, q)

is equivalent to

(43)

(

j + k

j, k

)

U

= Uk+1 ·

(

j + k − 1

j − 1, k

)

U

+ Uj−1 ·

(

j + k − 1

j, k − 1

)

U

,

where p, q are the roots of (5) and correspondingly the above Lucas fundamental
sequence Hn = Un(p, q) i.e. U0 = 0 and U1 = 1 is given by its Binet form
(6),(7).

Compare (42) with equivalent recurrence (48) in order to notice that both h1
and h2 functions are different from case to case of recurrence (30) equivalent
realizations.

Compare now: this paper recurrence formula (42) with recurrence formula (4)
in [43, 2010], compare this paper recurrence formula (43) with Proposition 2.2.
in [43, 2010] by Bruce E. Sagan and Carla D. Savage. Compare this paper
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recurrence (28) equivalent to (5) and proposition 2.2. in [43, 2010] and note
that (5) in [43, 2010] is just the same - as (58) in [1, 1878] - the same except
for notation. The translation from ”younger” notation of Bruce E. Sagan and
Carla D. Savage (from one - left hand - side) into more matured by tradition
notation of François Édouard Anatole Lucas (from the other - right hand - side)
is based on the identifications: the symbol used for U -binomials is {...} in place
of (...)U and

{n} ≡ Un ≡ np,q, 〈n〉 ≡ Vn.

For s = t = 1 we get Fibonacci Un = Fn sequence with recurrence (41)
becoming the recurrence known from Donald Ervin Knuth and Herbert Saul
Wilf masterpiece [15, 1989].

Example 3. becomes more general case of the Theorem 1. if we allow U
to represent any zero characteristic field nonzero valued functions’ sequence:
U(x) = 〈Un(x)〉 n ≥ 0, Un(x) =

p(x)n−q(x)n

p(x)−q(x) ≡ np(x),q(x), p(x) 6= q(x), where

p(x), q(x) denote the distinct roots of (20) and we have assumed as well that
p(x), q(x) are not roots of unity.

The End of three examples.

4 Snatchy information on F -binomials’ and their

relatives’ combinatorial interpretations

4.1. In regard to combinatorial interpretations of L-binomial or F -multinomial
coefficients or related arrays we leave that subject apart from this note. Nev-
ertheless we direct the reader to some comprise papers and references therein;
these are for example here the following:

Listing. 1. [12, 1984] by Bernd Voigt: on common generalization of binomial
coefficients, Stirling numbers and Gaussian coefficients .

Listing. 2. [16, 1991] by Michelle L. Wachs and Dennis White and in [20, 1994]
by Michelle L. Wachs: on p,q-Stirling numbers and set partitions.

Listing. 3. [19, 1993] by Anne De Médicis and Pierre Leroux: on Generalized
Stirling Numbers, Convolution Formulae and (p,q)-Analogues.

Listing. 4. [120, 1998] John Konvalina: on generalized binomial coefficients
and the Subset-Subspace Problem. Consult examples [Ex. q* ; 6] and [Ex. q*
; 7] in 4.3. below. Then see also [121, 2000] by John Konvalina on an uni-
fied simultaneous interpretation of binomial coefficients of both kinds, Stirling
numbers of both kinds and Gaussian binomial coefficients of both kinds.

Listing. 5. Ira M. Gessel and Xavier Gérard Viennot in [14, 1989] deliver now
well known their interpretation of the fibonomials in terms of non-intersecting
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lattice paths .

Listing. 6. In [34, 2004] Jeffrey B. Remmel and Michelle L. Wachs derive a new
rook theory interpretation of a certain class of generalized Stirling numbers and
their (p, q)-analogues. In particular they prove that their (p, q)-analogues of the
generalized Stirling numbers of the second kind may be interpreted in terms of
colored set partitions and colored restricted growth functions.

Listing. 7. [122, 2005] by Ottavio M. D’Antona and Emanuele Munarini deals
with - in terms of weighted binary paths - combinatorial interpretation of the
connection constants which is in particular unified, simultaneous combinatorial
interpretation for Gaussian coefficients, Lagrange sum, Lah numbers, , q-Lah
numbers, Stirling numbers of both kinds , q-Stirling numbers of both kinds.
Notr the correspondence: weighted binary paths ⇔ edge colored binary paths

Listing. 8. Maciej Dziemiańczuk in [146, 2011] extends the results of John
Konvalina from 4. above. The Dziemiańczuk’ ζ - analogues of the Stirling
numbers arrays of both kinds cover ordinary binomial and Gaussian coefficients,
p, q-Stirling numbers and other combinatorial numbers studied with the help of
object selection, Ferrers diagrams and rook theory. The p, q-binomial arrays are
special cases of ζ- numbers’ arrays, too.

ζ -number of the first and the second kind is the number of ways to select k
objects from k of n boxes without box repetition allowed and with box repetition
allowed, respectively.

The weight vectors used for objects constructions and statements derivation are
functions of parameter ζ.

Listing. 9. As regards combinatorial interpretations via tilings in [123, 2003]
and [124, 2010] - see 4.2. below.

Listing. 10. In [75, 2003] Johann Cigler introduces ”abstract Fibonacci poly-
nomials” - interpreted in terms of Morse coding sequences monoid with con-
catenation (monominos and dominos tiling then). Cigler’s abstract Fibonacci
polynomial sare monoid algebra over reals valued polynomials with straightfor-
ward Morse sequences i.e. tiling recurrence originated (1.6) ”addition formula”

Fm+n(a, b) = Fm+1(a, b) · Fm(a, b) + b · Fn−1(a, b) · Fn(a, b),

which is attractive and seductive to deal with within the context of this paper
Theorem 1. The combinatorial tiling interpretation of the model is its con-
struction framed in the Morse coding sequences monoid with concatenation
(monominos and dominos tiling then).

Listing. 11. In [127, 2010] Johann Cigler considers special Ward-Horadam
polynomials sequences and reveals the tiling combinatorial interpretation of
these special Ward-Horadam polynomials sequences in the spirit of Morse with
monomino, domino alphabet monoid as here above in 10.. Namely:
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1. the q-Fibonacci polynomial Fn(x, s, q) =
∑

c∈Φn
w(c) ≡ w(Φn) is the weight

function of the set Φn of all words (coverings) c of length n − 1 in Morse
(tiling) alphabet {a, b} i.e. corresponding generation function for number of
linear tilings as Φn clearly with the set of may be identified with the set of all
linear tilings of (n− 1)× 1 rectangle or equivalently with Morse code sequences
of length n− 1.
Polynomials Fn(x, s, q) satify this paper recursion (3) with H0(x) = 0 , H1(x) =
1 ; s(x) = x and t(x) = s.
The Fn(x, s, q)-binomial array

{

n
k

}

Fn(x,s,q)
is not considered in [127]. Similarily:

2. the q-Lucas polynomial Ln(x, s, q) =
∑

c∈Λn
w(c) ≡ w(Λ) is the weight

function of the set Λn of all coverings c with arc monominos and dominos of
the circle whose circumference has length n. Hence Ln(x, s, q) is corresponding
generation function for number of tilings of the circle whose circumference has
length n. It may be then combinatorially seen that w(Λn) = w(Φn+1) + s ·
w(Φn−1)) hence Ln(x, s, q) = Fn+1(x, s, q) + s · Fn−1(x, s, q).
Polynomials Ln(x, s, q) satify this paper recursion (3) with H0(x) = 2 , H1(x) =
x ; s(x) = x and t(x) = s.
The Ln(x, s, q)-binomial array

{

n
k

}

Ln(x,s,q)
is not considered in [127].

Listing. 12. In [43, 2010] by Bruce E. Sagan and Carla D. Savage the symbol
{n} ≡ Un denotes the n − th element of the fundamental Lucas sequence U
satisfying this paper recurrence (2) with initial conditions {0} = 0, {1} = 1.
Naturally {n} is a polynomial in parameters s, t. So is also the U -binomial
coefficient

{

n
k

}

U
≡
{

n
k

}

p,q
.

Similarly - the symbol 〈n〉 ≡ Vn denotes the n − th element of the primordial
Lucas sequence V satisfying this paper recurrence (2) with initial conditions
〈0〉 = 2 , 〈1〉 = s . Naturally 〈n〉 is a polynomial in parameters s, t. So is also
the V -binomial coefficient

{

n
k

}

V
≡
〈

n
k

〉

p,q
. V -binomials are not considered

in [43, 2010]. Both fundamental and primordial sequences are interpreted via
tilings similarly to the above in 11. Johann Cigler attitude rooted in already
text-books tradition.

An so: {n} is generation function for number of linear tilings of (n − 1) × 1
rectangle or equivalently of number of Morse code sequences of length n− 1.

〈n〉 is generation function for number of circular tilings of the circle whose
circumference has length n. Using naturally proved (just seen) relations Bruce
E. Sagan and Carla D. Savage derive two combinatorial interpretations of the

the same
{

m+n
m,n

}

p,q
via Theorem 3.1. from which we infer the following.

1.
{

m+n
m,n

}

p,q
is the weight of all linear tilings of all integer partitions λ inside

the m · n rectangle

hence
{

m+n
m,n

}

p,q
is the generating function for numbers of such tilings of
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partitions.

2. 2m+n ·
{

m+n
m,n

}

p,q
is the weight of all circular tilings of all integer partitions

λ inside the m · n rectangle

hence
{

m+n
m,n

}

p,q
is the generating function for numbers of such tilings of

partitions.

Explanation. from [43, 2010]. A linear tiling of a partition λ is a covering of
its Ferrers diagram with disjoint dominos and monominos obtained by linearly
tiling each λi part. In circular tiling of a partition λ one performs circular tiling
of each λi part

The above list is open and far from complete.

4.2.
Nevertheless, to this end let us discern in part- via indicative information - a
part of Arthur T. Benjamin’s recent contribution to the domain . Namely; in
[123, 2003] by Arthur T. Benjamin and Jennifer J. Quinn track the tilings’
Combinatorial Theorem 5, p.36. There for Hn = Un the number s from the
recurrence (2) is interpreted as equal to the number of colors of squares and
t from this very recurrence (2) equals to the number of colors of dominos
while Hn = Un+1 counts colored tilings of length n with squares and dominos.
Similarly, also in [123, 2003] see the tilings’ Combinatorial Theorem 6 , p.36.
Here for Hn = Vn the number s from the recurrence (2) should equal to the
number of colors of a square and t from this very recurrence (2) equals to the
number of colors of a domino while Hn = Vn counts colored bracelets of length
n tiled with squares and dominos. Bruce E. Sagan and Carla D. Savage in [43,
2010] refer to well known recurrences: Identity 73 on p. 38 in [123] - for (4) in
[43] and Identity 94 p. 46 in [123] for (5) in [43]. Both (4) and (5) recurrences
in [43, 2010] by Bruce E. Sagan and Carla D. Savage have been evoked in the
illustrative Example 3. Section 3. above.

Partially based on [123, 2003] by Arthur T. Benjamin and Jennifer J. Quinn the
paper [124, 2009] by Arthur T. Benjamin and Sean S. Plott should be notified
and as being nominated by Arthur T. Benjamin and Sean S. Plott in errata
[124, 2010] the present author feels entitled to remark on this errata.

4.2. According to errata [124, 2010] by Arthur T. Benjamin and Sean S. Plott
[quote] ” The formula for

(

n
k

)

F
should be multiplied by a factor of Fn−xk

,
which accounts for the one remaining tiling that follows the f0 tiling. Likewise,
the formula for

(

n
k

)

F
should be multiplied by Un−xk

.” Our remark is that this
errata is unsuccessful. If we follow this errata then (xk−1 < xk) we would have:

(44)

(

n

k

)

errata

=
∑

1≤x1<x2<···<xk−1≤n−1

k−1
∏

i=1

F
xi−xi−1−1
k−i Fn−xi−(k−i)+1Fn−xk

,
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where F0 = 0 and x0 = 0. But the formula (44) implies for example

15 =

(

5

3

)

F

6=

(

5

3

)

errata

= 11.

The task of finding the correct formula - due to the present author became a
month ago an errand - exercise for Maciej Dziemiańczuk, a doctoral student
from Gdańsk University in Poland. The result - to be quoted below as MD
formula (46) - is his discovery, first announced in the form of a feedback private
communication to the present author: (M. Dziemiańczuk on Mon, Oct 18, 2010
at 6:26 PM) however still not announced in public.

The source of an error in errata is that
(

n
k

)

F
should be multiplied not by the

factor of Fn−xk
but by the factor Fn−xk+1 ≡ fn−xk

. Then we have

(

n

k

)

now

=
∑

1≤x1<x2<···<xk−1≤n−1

k−1
∏

i=1

F
xi−xi−1−1
k−i Fn−xi−(k−i)+1Fn−xk+1,

Due to xk−1 < xk the above formula is equivalent to

(45)

(

n

k

)

now

=
∑

1≤x1<x2<···<xk−1<xk
≤n

k−1
∏

i=1

F
xi−xi−1−1
k−i Fn−xi−(k−i)+1Fn−xk

,

and this in turn is evidently equivalent to the MD-formula (46) below i.e. (45) is
equivalent to the corrected by Maciej Dziemiańczuk Benjamin and Plott formula
from The Fibonacci Quarterly 46/47.1 (2008/2009), 7-9.

Finally here now MD-formula follows:

(46)

(

n

k

)

F

=
∑

1≤x1<x2<···<xk≤n

k
∏

i=1

F
xi−xi−1−1
k−i Fn−xi−(k−i)+1,

where F0 = 0 and x0 = 0.

Collaterally Maciej Dziemiańczuk supplies correspondingly correct formula for
Lucas U - binomial coefficients

(

n
k

)

U
:

(

n

k

)

U

=
∑

1≤x1<x2<···<xk−1≤n

xk=xk−1+1

sxk−k

(

k−1
∏

i=1

U
xi−xi−1−1
k−i Un−xi−(k−i)+1

)

Un−xk+1(47)

=
∑

1≤x1<x2<···<xk≤n

sxk−k
k
∏

i=1

U
xi−xi−1−1
k−i Un−xi−(k−i)+1,(48)
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where U t
0 = 0t = δt,0.

4.3. p, q-binomials versus q∗-binomials combinatorial interpretation, where
q∗ = p

q
if q 6= 0.

In the first instance let us once for all switch off the uninspired p · q = 0 case.
Then obligatorily either q 6= 0 or q 6= 0. Let then q∗ = p

q
. In this nontrivial case

(49)

(

n

k

)

p,q

= qk(n−k) ·

(

n

k

)

q∗

.

Referring to the factor qk(n−k) as a kind of weight, one may transfer com-
binatorial interpretation statements on q∗ binomials

(

n
k

)

q∗
onto combinatorial

interpretation statements on p, q binomials
(

n
k

)

p,q
through the agency of (49).

Thence , apart from specific combinatorial interpretations uncovered for the
class or subclasses of p, q-binomials there might be admitted and respected the
”q∗-overall” combinatorial interpretations transfered from 1, q∗-binomials i.e.
from q∗-binomials onto p, q-binomials.

By no means pretending to be the complete list here comes the skeletonized list
of [Ex. q* ; k] examples, k ≥ 1.

[Ex. q* ; 1] The q∗-binomial coefficient
(

m+n
m,n

)

q∗
may be interpreted as a poly-

nomial in q∗ whose q∗k-th coefficient counts the number of distinct partitions
of k elements which fit inside an m× n rectangle - see [129, 1976] by George
Eyre Andrews.

On lattice path techniques - Historical Remark. It seams to be desirable
now to quote here information from [133, 2010] by Katherine Humphreys based
on [134, 1878] by William Allen Whitworth:

Quotation 2 We find lattice path techniques as early as 1878 in Whitworth to
help picture a combinatorial problem, but it is not until the early 1960’s that
we find lattice path enumeration presented as a mathematical topic on its own.
The number of papers pertaining to lattice path enumeration has more than
doubled each decade since 1960.

[Ex. q* ; 2] The [Ex. q* ; 2] may be now compiled with [Ex. q* ; 1] above. For
that to do recall that zigzag path is the shortest path that starts at A = (0, 0)
and ends in B = (n, n− k) of the n× k rectangle; see: [130, 1962] by György
Pólya [pp. 68-75], [130, 1969] by György Pólya and [132] by György Pólya and
G. L. Alexanderson.

Let then An,k,α = the number of those (0, 0) −→ (k, n − k) zigzag paths the
area under which is α.
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In [131, 1969] György Pólya using recursion for q∗-binomial coefficients proved
that

(

n

k

)

q∗

=

k(n−k)
∑

α=0

An,k,α · q ∗α .

from where György Pólya infers the following Lemma ([131, 1969], p.105) which
is named Theorem (p. 104) in more detailed paper [132, 1971] by György Pólya
and G. L. Alexanderson.

Quotation 3 The number of those zigzag paths the area under which is α
equals An,k,α.

[Ex. q* ; 3] The [Ex. q* ; 3] may be now compared with [Ex. q* ; 1]. The
combinatorial interpretation of

(

r+s
r,s

)

q∗
from [Ex. q* ; 1] had been derived (pp.

106-107) in [132, 1971] by György Pólya and G. L. Alexanderson, from where -
with advocacy from [135, 1971] by Donald Ervin Knuth - we quote the result.

(1971):
(

r+s
r,s

)

q∗
= ordinary generating function in α powers of q∗ for partitions

of α into exactly r non-negative integers none of which exceeds s ,

as derived in [132, 1971] by György Pólya and G. L. Alexanderson - see formula
(6.9) in [132].

(1882):
(

n
k

)

q∗
= ordinary generating function in α powers of q for partitions of

α into at most k parts not exceeding (n− k) ,

as recalled in [135, 1971] by Donald Ervin Knuth and proved combinatorially in
[136, 1882] by James Joseph Sylvester.

Let nonce : r + s = n, r = k then (1971) ≡ (1882) are equal due to

(50)

(

n

k

)

q∗

=

k(n−k)
∑

α=0

An,k,α · q∗α =

r·s
∑

α=0

Ar+s,r,α · q∗α =

(

r + s

r, s

)

q∗

.

where for commodity of comparison formulas in two notations from two papers
- we have been using contractually for a while: r+ s = n, r = k identifications.

[Ex. q* ; 4] The following was proved in [137, 1961] by Maurice George Kendall
and Alan Stuart (see p.479 and p.964) and n [132, 1971] by György Pólya and
G. L. Alexanderson (p.106).

The area under the zigzag path = The number of inversions in the very zigzag
path coding sequence.
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The possible extension of the above combinatorial interpretation onto three
dimensional zigzag paths via ”three-nomials” was briefly mentioned in [132] -
see p.108.

[Ex. q* ; 5] The well known (in consequence - finite geometries’) interpretation
of
(

n
k

)

q∗
coefficient due to Jay Goldman and Gian-Carlo Rota from [138, 1970]

is now worthy of being recalled; see also [135, 1971] by Donald Ervin Knuth.

Let Vn be an n-dimensional vector space over a finite field of q∗ elements. Then
(

n
k

)

q∗
= the number of k-dimensional subspaces of Vn .

[Ex. q* ; 6]
This example = the short substantial note [135, 1971] by Donald Ervin Knuth.
Compile this example with the example [Ex. q* ; 5] above.
The essence of a coding of combinatorial interpretations via bijection between
lattices is the construction of this coding bijection in [135]. Namely, let GF (q∗)
be the Galois field of order q∗ and let Vn ≡ V = GF (q∗)n be the n-dimensional
vector space over GF (q∗). Let [n] = {1, 2, ..., n}. Let ℓ(V ) be the lattice of all
subspaces of V = GF (q∗)n while ℓ([n]) ≡ 2[n] denotes the lattice of all subsets
of [n].
In [135] Donald Ervin Knuth constructs this natural order and rank preserving
map Φ from the lattice ℓ(V ) of subspaces onto the lattice ℓ([n]) ≡ 2[n] of
subsets of [n].

ℓ(V )
Φ
→ ℓ([n]).

We bethink with some reason whether this Φ bijection coding might be an
answer to the subset-subspace problem from subset-subspace problem from [120,
1998] by John Konvalina ?

Quotation 4 ...the subset-subspace problem (see 6 , 9 , and 3) . The tradi-
tional approach to the subset-subspace problem has been to draw the following
analogy: the binomial

(

n
k

)

F
coefficient counts k-subsets of an n-set, while the

analogous Gaussian
(

n
k

)

q
coefficient counts the number of k-dimensional sub-

spaces of an n-dimensional finite vector space over the field of q elements. The
implication from this analogy is that the Gaussian coefficients and related iden-
tities tend to the analogous identities for the ordinary binomial coefficients as
q approaches 1. The proofs are often algebraic or mimic subset proofs. But
what is the combinatorial reason for the striking parallels between the Gaussian
coefficients and the binomial coefficients?

According to Joshef P. S. Kung [139, 1995] the Knuth’s note is not the expla-
nation:

Quotation 5 ... observation of Knuth yields an order preserving map from
L(Vn(q) to Boolean algebra of subsets, but it does not yield a solution to the
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still unresolved problem of finding a combinatorial interpretation of taking the
limit q −→ 1.

Well, perhaps this limit being performed by q-deformed Quantum Mechanics
physicists might be of some help? There the so called q-quantum plain of q-
commuting variables x · y − q · y · x = 0 becomes a plane F× F (F = R,C,...
p-adic fields included) of two commuting variables in the limit q −→ 1. For see
[140, 1953] by Marcel-Paul Schützenberger. For quantum plains - see also [141,
1995] by Christian Kassel. It may deserve notifying that q - extension of of the
”classical plane” of commuting variables (q = 1) seems in a sense ultimate as
discussed in [142, 2001] by A.K. Kwaśniewski

[Ex. q* ; 7] Let us continue the above by further quotation from [120, 1998]
on generalized binomial coefficients and the subset-subspace problem.

Quotation 6 We will show that interpreting the Gaussian coefficients as gen-
eralized binomial coefficients of the second kind combinations with repetition
reveals the combinatorial connections between not only the binomial coefficients
and the Gaussian coefficients, but the Stirling numbers as well. Thus, the ordi-
nary Gaussian coefficient tends to be an algebraic generalization of the binomial
coefficient of the first kind, and a combinatorial generalization of the binomial
coefficient of the second kind.

Now in order to get more oriented go back to the begining of subsection 4.1.
and consult : Listing. 1., Listing. 2., Listing. 3. which are earlier works and
end up with [121, 2000] by John Konvalina on an unified simultaneous inter-
pretation of binomial coefficients of both kinds, Stirling numbers of both kinds
and Gaussian binomial coefficients of both kinds. Compare it then afterwards
with Listing. 8..
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[119] Kálmán Györy and Chris Smith , The Divisibility of an − bn by Powers
of n , Integers 10, 319-334 (2010).

[120] John Konvalina, Generalized binomial coefficients and the subset-
subspace problem , Adv. in Appl. Math. Vol. 21 (1998): 228-240.

[121] John Konvalina, A Unified Interpretation of the Binomial Coefficients, the
Stirling Numbers and the Gaussian Coefficients,The American Mathemat-
ical Monthly vol. 107, No 10 , (2000):901-910.

[122] Ottavio M. D’Antona and Emanuele Munarini, A combinatorial inter-
pretation of the connection constants for persistent sequences of poly-
nomials, European Journal of Combinatorics, Volume 26, Issue 7, October
2005, Pages 1105-1118.

[123] Arthur T. Benjamin, Jennifer J. Quinn, Proofs that really count: the
art of combinatorial proof , Washington DC, Mathematical Association of
America , 2003

[124] Arthur T. Benjamin, Sean S. Plott, A Combinatorial Approach to Fi-
bonomial Coefficients , The Fibonacci Quarterly, Vol.46/47 No.1 pp.7-9,
February 2008/2009. Errata: Vol 48 No.3 pp.276, August 2010.

[125] Johann Cigler, Einige q-Analoga der Lucas - und Fibonacci-Polynome,
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[130] Pólya György, Mathematical discovery (Viley 1962) v.1 .

34
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