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BURNIAT SURFACES III: DEFORMATIONS OF
AUTOMORPHISMS AND EXTENDED BURNIAT

SURFACES

I. BAUER, F. CATANESE

Dedicated to David Mumford.

Introduction

In the present article we continue our investigation, begun in [BC09b]
and [BC10], of the connected components of the moduli space (of min-
imal surfaces S of general type) which contain the Burniat surfaces.
We also correct an error in [BC10].

The main goals that we achieve in this paper are the following:

(1) We define the family of extended Burniat surfaces for K2
S =

3, resp. 4, and prove that they are a deformation of the family
of nodal Burniat surfaces with K2

S = 3, resp. 4.
(2) We show that the extended Burniat surfaces with K2

S = 4,
together with the nodal Burniat surfaces with K2

S = 4, form a
set NEB4 which is a connected component of the moduli space:
thereby we correct theorem 1.1 of [BC10].

(3) We show that the extended Burniat surfaces with K2
S = 3,

together with the nodal Burniat surfaces with K2
S = 3 form an

irreducible open set NEB3 of the moduli space, whose closure
NEB3 consists of bidouble covers of normal cubic surfaces in P3

and is shown in section 7 to be strictly larger than NEB3.
(4) We answer a question posed on page 562 of [BC10], namely, the

integer m ≥ 2 in Theorem 1.1 is indeed = +∞, and the local
moduli space of nodal Burniat surfaces is smooth.

(5) We point out a truly interesting pathology of the moduli space
of varieties with a group G of automorphisms, which is the
reason of our mistake mentioned above (Murphy’s law applies
then, but in a different way than foreseen).

It is the fact that for nodal Burniat surfaces S, we have a
group G ∼= (Z/2Z)2 of automorphisms, which is also the group
of automorphisms of the canonical model X . But whereas
Def(X) = Def(X,G), Def(S) 6= Def(S,G): thus even if all de-
formations of S have aG-action, the local moduli space Def(S,G)
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for the pairs yields a proper subvariety in the smooth germ
Def(S).

We refer to [BC09b] and [BC10] for more details concerning the in-
vestigation of the connected components of the moduli space containing
the Burniat surfaces with K2

S = 6, 5, 4, 2.
After the results in the present article what remains to be done in

order to finish this investigation is to decide, in the case K2
S = 3 of ter-

tiary Burniat surfaces, whether the irreducible component mentioned
above is also a connected component, describing in detail all the sur-
faces which are in the closure and their local deformations.

In [BC10] we proved that 3 of the 4 irreducible families of Burniat
surfaces with K2

S ≥ 4, i.e., of primary and secondary Burniat surfaces,
are a connected component of the moduli space of surfaces of general
type.

In this paper we consider only nodal Burniat surfaces withK2
S = 4, 3,

showing that a general deformation of a nodal Burniat surface with
K2

S = 4, resp. with K2
S = 3, is an extended Burniat surface, still a

bidouble cover (through the bicanonical map) of a normal Del Pezzo
surface of degree 4 with one ordinary double point, resp. of a cubic
surface with three nodes.

The main results of the present paper are the following:

Theorem 0.1. 1) The subset NEB4 of the moduli space of canoni-
cal surfaces of general type M

can
1,4 given by the union of the open set

corresponding to extended Burniat surfaces with K2
S = 4 with the irre-

ducible closed set parametrizing nodal Burniat surfaces with K2
S = 4 is

an irreducible connected component, normal, unirational of dimension
3.

Moreover the base of the Kuranishi family of deformations of any
such a minimal model S is smooth.
2) The subset NEB3 of the moduli space of canonical surfaces of general
type M

can
1,3 corresponding to extended and nodal Burniat surfaces with

K2
S = 3 is an irreducible open set, normal, unirational of dimension 4.
Moreover the base of the Kuranishi family of S is smooth.

A very surprising and new phenomenon occurs for nodal surfaces,
confirming Vakil’s ‘Murphy’s law’ philosophy ([Va06]).

To explain what happens for the moduli spaces of extended and
nodal Burniat surfaces, let us recall again an old result due to Burns
and Wahl (cf. [BW74]).

Let S be a minimal surface of general type and let X be its canonical
model. Denote by Def(S), resp. Def(X), the base of the Kuranishi
family of S, resp. of X .

Their result explains the relation between Def(S) and Def(X).
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Theorem (Burns - Wahl). Assume that KS is not ample and let
p : S → X be the canonical morphism.

Denote by LX the space of local deformations of the singularities
of X and by LS the space of deformations of a neighbourhood of the
exceptional curves of p. Then Def(S) is realized as the fibre product
associated to the Cartesian diagram

Def(S)

��

// LS
∼= Cν ,

λ

��

Def(X) // LX
∼= Cν ,

where ν is the number of rational (−2)-curves in S, and λ is a Galois
covering with Galois group W := ⊕r

i=1Wi, the direct sum of the Weyl
groups Wi of the singular points of X.

An immediate consequence is the following

Corollary (Burns - Wahl). 1) ψ : Def(S) → Def(X) is a finite
morphism, in particular, ψ is surjective.
2) If Def(X) → LX is not surjective (i.e., the singularities of X cannot
be smoothened independently by deformations of X), then Def(S) is
singular.

Assume now that we have 1 6= G ≤ Aut(S) = Aut(X).
Then we can consider the space of G-invariant local deformations

of S, Def(S,G), resp. Def(X,G) of X , and we have a natural map
Def(S,G) → Def(X,G).

We indeed show here that, unlike the case for the corresponding
morphism of local deformation spaces, this map needs not to be surjec-
tive; and, as far as we know, the following result gives the first global
example of such a phenomenon.

Theorem 0.2. The deformations of nodal Burniat surfaces with K2
S =

4, 3 to extended Burniat surfaces with K2
S = 4, 3 yield examples where

Def(S, (Z/2Z)2) → Def(X, (Z/2Z)2) is not surjective.
Moreover, Def(S, (Z/2Z)2) ( Def(S), whereas for the canonical model

we have: Def(X, (Z/2Z)2) = Def(X).
Set G := (Z/2Z)2. Then the pairs (S,G), where S is the minimal

model of an extended or nodal Burniat surface, and one gives an ef-
fective action of G on S (up to automorphisms of G) belong to two
distinct deformation types for K2

S = 4 and to four distinct deformation
types for K2

S = 3.
Instead the pairs (X,G), where X is the canonical model of an ex-

tended or nodal Burniat surface, and one gives an effective action of G
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on X (up to automorphisms of G) belong to only one deformation type
for K2

X = 4, and similarly for K2
X = 3.

The above phenomenon can already be seen locally around a node,
as it will be explained in section 2. Our results show that the local
pathology does indeed globalize.

Our paper is organized as follows: in section 1 we give the defini-
tion of extended Burniat surfaces and describe the different branch
loci of the bidouble covers for nodal Burniat surfaces, respectively for
extended Burniat surfaces.

In the second chapter we analyse bidouble covers of a nodal singu-
larity, explaining the phenomenon of theorem 0.2 locally.

In the third section we show that nodal Burniat surfaces with K2
S =

4, 3 deform to extended Burniat surfaces with K2
S = 4, 3.

Sections 4 and 5 are instead devoted to the calculation of H1(S,ΘS)
for nodal and extended Burniat surfaces, and its eigenspaces for the
G = (Z/2Z)2 action.

In the course of doing this we amend a small mistake in [BC10],
lemma 2.10 and actually generalize this lemma substantially in order
to make it appropriate for our present purposes and also applicable in
other situations.

In the end we succeed to prove that the subset NEB4 of the moduli
space of canonical surfaces of general type Mcan

1,4 corresponding to nodal

and extended Burniat surfaces with K2
S = 4 is an irreducible open set,

normal, unirational of dimension 3 (resp. the subset NEB3 of the
moduli space of canonical surfaces of general type M

can
1,3 corresponding

to nodal and extended Burniat surfaces with K2
S = 3 is an irreducible

open set, normal, unirational of dimension 4).
Section 6 is dedicated to the study of one-parameter limits of ex-

tended Burniat surfaces with K2
S = 4, showing that the subset of the

moduli space of canonical surfaces of general type M
can
1,4 corresponding

to nodal and extended Burniat surfaces with K2
S = 4 is closed.

In section 7 we give examples of other surfaces which lie in the closure
of the family of extended Burniat surfaces with K2

S = 3.
In the appendix we give an alternative proof of 3 of the 4 assertions

of proposition 5.5, by other methods which could be of independent
interest.

1. Definition of extended and nodal Burniat surfaces

Burniat surfaces are minimal surfaces of general type with K2 =
6, 5, 4, 3, 2 and pg = 0, which were constructed in [Bu66] as mini-
mal resolutions of singular bidouble covers (=Galois covers with group
(Z/2Z)2) of the projective plane branched on 9 lines.

We refer the reader to [BC10] for their construction, and we shall
adhere to the notation introduced there.
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Let P1, P2, P3 ∈ P2 be three non collinear points (which we assume
to be the points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1)), and let
P4, . . . , P3+m, m = 2, 3, be further (distinct) points not lying on the
sides of the triangle with vertices P1, P2, P3.

Assume moreover that, for m = 2, the points P1, P4, P5 are collinear,
while, for m = 3, we shall moreover assume that also P2, P4, P6 and
P3, P5, P6 are collinear (in particular, no four points are collinear).

Let’s denote by Ỹ := P̂2(P1, P2, . . . , P3+m) the weak Del Pezzo sur-
face of degree 6−m, obtained blowing up P2 in the points P1, P2, . . . , P3+m.

Saying that Ỹ is a weak Del Pezzo surface means that the anticanon-
ical divisor −KỸ is nef and big; in our case it is not ample, because of
the existence of (-2)-curves, i.e. curves Ni

∼= P1, with Ni ·KỸ = 0.
Contracting the (-2)-curves Ni we obtain a normal singular Del Pezzo

surface Y ′ with −KY ′ very ample.
We denote by L the divisor on Ỹ which is the total transform of a

general line in P2, by Ei the exceptional curve lying over Pi, and by Di,1

the unique effective divisor in |L−Ei−Ei+1|, i.e., the proper transform
of the line yi−1 = 0, side of the triangle joining the points Pi, Pi+1.

For m = 2 we have only one (-2)-curve N1, such that {N1} = |L −
E1 − E4 − E5|, while for m = 3 we also have the curves N2, N3 such
that {N2} = |L−E2 − E4 −E6|, {N3} = |L−E3 − E5 −E6|.

Therefore the anticanonical image of Ỹ is a normal surface Y ′ ⊂ P6−m

of degree 6−m, whose singularities are one node ν1 (an A1 singularity)
in the case m = 2, and three nodes ν1, ν2, ν3 in the case m = 3 (the
(-2)-curve Ni is the total transform of the point νi).

Definition 1.1. 1) Define the Burniat divisors for m = 2 as follows:

D1 ∈ |L− E1|+ |L− E1 − E2|+ |L− E1 −E4 − E5|+ E3,

i.e., D1 = D1,1 + N1 + C1, where C1 ∈ |L − E1| is assumed to be
irreducible, whereas D2, D3 are divisors such that

{D2} = |L−E2 − E3|+ |L− E2 −E4|+ |L− E2 −E5|+ E1,

{D3} = |L−E3 − E1|+ |L− E3 −E4|+ |L− E3 −E5|+ E2.

2) The Burniat divisors for m = 3 are defined to be the divisors
D1, D2, D3 such that:

{D1} = |L− E1 − E2|+ |L−E1 − E4 −E5|+ |L−E1 − E6|+ E3,

{D2} = |L− E2 − E3|+ |L−E2 − E4 −E6|+ |L−E2 − E5|+ E1,

{D3} = |L− E3 − E1|+ |L−E3 − E5 −E6|+ |L−E3 − E4|+ E2.

3) The extended Burniat divisors for m = 2 are given as follows:

∆1 ∈ |L− E1|+ |L−E1 − E2|+ E3,

∆2 ∈ |L− E2 −E4|+ |L− E2 −E5|+ |2L−E2 − E3 − E4 −E5|,



6 I. BAUER, F. CATANESE

where we assume the divisor Γ2 ∈ |2L − E2 − E3 − E4 − E5| to be
irreducible; and ∆3 is the divisor such that

{∆3} = |L−E3−E1|+|L−E3−E4|+|L−E3−E5|+|L−E1−E4−E5|+E2.

4) The strictly extended Burniat divisors for m = 3 are defined as
follows:

∆1 ∈ |L−E1 −E6|+ |2L−E1 −E2 −E5 −E6|+ |L−E2 −E4 −E6|,

∆2 ∈ |L−E2 −E5|+ |2L−E2 −E3 −E4 −E5|+ |L−E3 −E5 −E6|,

∆3 ∈ |L−E3 −E4|+ |2L−E1 −E3 −E4 −E6|+ |L−E1 −E4 −E5|.

We make the similar assumption, for each ∆i, that the strict transform
of the conic passing through four of the five points is irreducible (e.g.,
we require the irreducibility of Γ1 ∈ |2L−E1 − E2 − E5 − E6|).

Remark 1.2. 1) Observe that (D1+D2+D3) ∈ |−3KỸ | is a reduced
normal crossing divisor.

2) Similarly, (∆1 +∆2+∆3) ∈ |− 3KỸ +
∑

Ni| is a reduced normal
crossing divisor.

3-2) On the normal Del Pezzo surface Y ′, for m = 2,

• D1 yields a conic plus two lines, the same does ∆1, and indeed
D1 = ∆1 +N1

• D2 yields four lines, ∆2 yields a conic plus two lines, and indeed
∆2 ≡ D2 +N1

• D3 yields four lines, the same does ∆3, and indeed ∆3 = D3+N1

In particular, if the conic corresponding to ∆2 specializes to contain
the line corresponding to E1, we obtain then D2 subtracting the divisor
N1 ≡ L−E1 − E4 −E5.

Finally, the four lines of ∆3 divide into two groups, i.e., we can
write ∆3 = ∆3,1 + ∆3,2 + N1 so that, setting Γ1 := C1 and writing
∆i = Γi +∆′

i, for i = 1, 2, then

(∗) : ∆′
i +∆3,i ≡ −KỸ

(∗∗) : Γ1 + Γ2 ≡ −KỸ .

3-3) On the normal Del Pezzo surface Y ′, for m = 3,
∆j yields a conic and one line, Dj yields three lines, and indeed

∆j ≡ Dj −Nj +Nj−1 +Nj+1.
In particular, if the conic corresponding to ∆j specializes to con-

tain the line corresponding to Ej−1 (here j ∈ Z/3Z), we obtain D2

subtracting the divisor Nj−1 +Nj+1 and adding the divisor Nj .
4) The divisors Di enjoy the property (cf. [BC10]) that there are

divisor classes Li such that Di−1 +Di+1 ≡ 2Li.
Hence, in particular, ∆i−1 + ∆i+1 ≡ 2Λi, where, for m = 3, Λi :=

Li +Ni. Instead, for m = 2, this formula holds only for i = 1, and we
set Λj := Lj for j = 2, 3.
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5-2) Assume now m = 2, and that the conic corresponding to Γ2

becomes reducible: if the conic passes through P1, then necessarily Γ2

splits as N1 + E1 + |L− E2 − E3|, hence the conic is the union of two
lines. If the conic is the union of two lines in another fashion, then
necessarily either |L−E2 −E5| or |L−E2 −E4| is a component of Γ2,
hence ∆2 is not reduced.

5-3) Assume m = 3 and that one or more of these conics become
reducible. E.g., assume that the conic corresponding to Γ2 becomes
reducible, and observe that this will be the case if the conic passes
through P1 or P6. We disregard this degeneration if the corresponding
divisor ∆2 will be non reduced. The only possibility left over is that
Γ2 splits as before, N1 +E1 + |L−E2 −E3|. This degeneration will be
considered admissible.

Definition 1.3. Assumem = 3 and that one or more of these conics Γj

become reducible in the admissible way Γj = Nj−1+Ej−1+|L−Ej−Ej+1|
(here, as usual, j ∈ Z/3Z).

In this case we define the extended Burniat divisors by subtracting
to Γj the nodal divisor Nj−1 it contains, by subtracting again the nodal
divisor Nj−1 to ∆j+1 and adding it to ∆j−1.

We can now consider (cf. [Cat84b], [Cat99]) the associated bidouble
covers S → Ỹ with branching divisors the Burniat divisors, respectively
the extended Burniat divisors.

Definition 1.4. A secondary nodal Burniat surface is obtained, for
m = 2, as a bidouble cover S → Ỹ with branch divisors the three
Burniat divisors.

In the case m = 3 we obtain a tertiary nodal Burniat surface S.
S is then a minimal surface of general type with pg(S) = q(S) = 0,

K2
S = 6−m (cf. [BC10]).
If we let the three branch divisors be extended Burniat divisors, then

we obtain a non minimal surface S ′ whose minimal model S is called
a secondary extended Burniat surface, respectively a tertiary extended
Burniat surface.

Remark 1.5. 1) In the nodal Burniat case the surface S does not
have an ample canonical divisor KS, due to the existence of (-2)-curves,

which are exactly the inverse images of the (-2)-curves Ni ⊂ Ỹ .
For this reason we call the above Burniat surfaces of nodal type. We

denote their canonical model by X , and observe that X is a finite
bidouble cover of the normal Del Pezzo surface Y ′.

For m = 2 X has precisely one node (an A1-singularity, correspond-
ing to the contraction of the (-2)-curve) as singularity. While, for
m = 3, X has exactly three nodes as singularities.

2) In the extended Burniat case S ′ is not minimal. In the strictly
extended Burniat case the inverse image of each Ni splits as the union
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of two disjoint (-1)-curves. In this latter case S has ample canonical
divisor, hence S = X .

3) In all cases, the morphism X → Y ′ is exactly the bicanonical map
of X (see [BC10]).

4) Nodal Burniat surfaces are parametrized by a family with smooth
base of dimension 2 for m = 2, of dimension 1 for m = 3.

Strictly extended Burniat surfaces are parametrized by a family with
smooth base of dimension 3 for m = 2, of dimension 4 for m = 3.

The key feature is that, both for nodal Burniat surfaces, and for
extended Burniat surfaces, the canonical model X is a finite bidouble
cover of a singular Del Pezzo surface Y ′, which has one node in the
case m = 2, and three nodes for m = 3 (in the latter case Y ′ is a cubic
surface in P3).

In both cases the direct image p∗(OX) splits as a direct sum of four
reflexive character sheaves of generic rank 1.

In the next section we shall describe how the covering behaves in the
neighbourhood of a node in the two respective cases, and how these
local coverings deform to each other (the Burniat case deforms to the
extended Burniat case).

2. Local calculations around the nodes

In this section we consider finite bidouble covers of a node of Du Val
type, i.e., yielding singularities which are at worst RDP ’s (rational
double points).

We obtain a classification which is a subset of the one made in
[Cat87], classifying quotients of RDP’s by actions of Z/2Z or of G =
(Z/2Z)2.

We only need to look at Table 2, page 90, and Table 3, page 93, ibi-
dem, to see which quotients of a rational double point by an involution,
or by a pair of commuting involutions, yield an A1-singularity, i.e., a
node.

There are six cases for such coverings of Du Val type of a node Y ,
which in local holomorphic coordinates is given by

xy − z2 = 0.

In order to be more informative in our description, we denote by Ỹ the
resolution of Y , which is the total space of a line bundle on N ∼= P1 of
degree −2 (hence N2 = −2). Denoting the bidouble cover of Y by X ,
we shall obtain, through the normalization of the fibre product, a finite
bidouble cover of Ỹ , for which we shall give the three corresponding
branch divisors.

In the case where X is not irreducible, we shall describe a connected
component X ′ of X .

(1) X ′ = Y (the covering is étale).
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(2) X ′ = C2, X has two components and the covering morphism is
given by

(u, v) 7→ (x = u2, y = v2, z = uv).

The branch divisor on Ỹ is just the (-2)-curve N .
(3) X ′ = {w4 = xy}, X has two components and the covering

morphism is given by

(x, y, w) 7→ (x, y, z = w2).

The branch divisor on Ỹ consists of the (-2)-curve N plus two

fibres; the double cover of Ỹ has two nodes and resolving them
we get the minimal resolution of the A3 singularity X ′.

(4) X = {w2 = uv} and the covering morphism is given by

(u, v) 7→ (x = u2, y = v2, z = w2).

The three intermediate Z/2Z covers are the two double covers
(2), (3) described above, plus the intermediate cover (here a :=
uw, b := vw)

{(x, y, z, a, b)|Rank

(

x, a, z, b
a, z, b, y

)

= 1},

which is the cone over a rational normal quartic (set x = t40, a =
t30t1, z = t20t

2
1, z = t0t

3
1, z = t41).

The branch divisors on Ỹ are two: the (-2)-curve N and the
divisor D formed by two fibres. The three intermediate double
covers depend on the choice of the branch locus: N , respectively
N +D, respectively D.

(5) X ′ = {z2 = (w2 + yk+1) · y}, X has two components having a
singularity of type Dk+3, and the covering morphism is given
by

(y, z, w) 7→ (x = w2 + yk+1, y, z).

The branch divisor on Ỹ is the total transform of the divisor
C := {x = yk+1, z2 = yk+2} which is irreducible with a cusp for
k odd, else it is reducible with a k

2
-tacnode for k even.

In particular, N is part of the branch locus.
(6) X = {w2 = (u− vk+1)(u+ vk+1)} = {w2 = u2 − v2k+2} and the

covering morphism is given by

(u, v, w) 7→ (x = u2, y = v2, z = uv).

X is a singularity of type A2k+1 and, in order to treat a new
case, we make the assumption k ≥ 1.

The three intermediate Z/2Z covers are the smooth double
cover (2), the double cover (5) {w2 = x − yk+1}, and a third
singularity which we omit to describe.

The branch divisors on Ỹ are two: the (-2)-curve N and the
the total transform of the divisor C above.
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The three intermediate covers depend on the choice of the
branch locus: N , or N +C ′, or C ′, where C ′ is the strict trans-
form of C.

Letting p : X → Y be the finite bidouble cover, the direct image
sheaf p∗OX splits as

OY

⊕

(⊕i=1,2,3Li),

where in the first case the reflexive sheaves Li are locally free.
To describe the other cases we use the reflexive sheaf F generated

by u, v as OY -module, with relations

yu− zv = 0, zu− xv = 0.

We get

(2) X ′ = C2, (u, v) 7→ (x = u2, y = v2, z = uv),

p∗OX = (OY ⊕F)⊕2

(3) X ′ = {w4 = xy}, (x, y, w) 7→ (x, y, z = w2)

p∗OX = (OY ⊕OY )
⊕2

(4) X = {w2 = uv} , (u, v) 7→ (x = u2, y = v2, z = w2)

p∗OX = (OY ⊕ F)⊕2,

with generators 1, {u, v}, w, {a = wu, b = vw}.
(5) X ′ = {w2 = x− yk+1}, (y, z, w) 7→ (x = w2 + yk+1, y, z),

p∗OX = (OY ⊕OY )
⊕2.

(6) X = {w2 = u2 − v2k+2}, (u, v, w) 7→ (x = u2, y = v2, z = uv)

p∗OX = (OY ⊕ F)⊕2.

Remark 2.1. Cases 1, 3 and 5 are the case where we have a flat
bidouble cover, i.e., p∗OX is locally free. In cases 2, 4 and 6 we have
non-flat bidouble covers, but with the same character sheaves. We shall
soon show how case 4 (resp. : case 6)) deforms to case 2.

Proposition 2.2. In case 2) X = Spec((OY ⊕F)⊕ (OY ⊕F)), where
the two addenda are orthogonal, and the algebra structure is determined
by the nondegenerate pairing F ×F → OY .

In case 4) X = Spec((OY ⊕ F) ⊕ w(OY ⊕ F)), and the algebra
structure is determined by the nondegenerate pairing F × F → OY ,
together with the assignment w2 = z.

In case 6) X = Spec((OY ⊕ F) ⊕ w(OY ⊕ F)), and the algebra
structure is determined by the nondegenerate pairing F × F → OY ,
together with the assignment w2 = x− yk+1.
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We omit the simple proof.
Case 4) deforms now to case 2) by changing the assignment w2 = z

to w2 = z + t, t 6= 0, so that w becomes then a local unit at the origin.
Similarly case 6) deforms to case 2).

We can relate the resulting picture with the local semiuniversal de-
formation of a node.

Proposition 2.3. Let t ∈ C , and consider the action of G := (Z/2Z)2

on C3 generated by σ1(u, v, w) = (u, v,−w), σ2(u, v, w) = (−u,−v, w).
Then the hypersurfaces Xt = {(u, v, w)|w2 = uv + t} are G-invariant,
and the quotient Xt/G is the hypersurface

Yt = Y0 = {(x, y, z)|z2 = xy},

which has a nodal singularity at the point x = y = z = 0.
Xt → Yt is a bidouble covering of type 2 for t 6= 0, and of type 4 for

t = 0. We get in this way a flat family of (non flat) bidouble covers.

Proof. The invariants for the action of G on C3 × C are:

x := u2, y := v2, z := uv, s := w2, t.

Hence the family X of the hypersurfaces Xt is the inverse image of
the family of hypersurfaces s = z + t on the product

Y ′ × C2 = {x, y, z, s, t)|xy = z2}.

Hence the quotient of Xt is isomorphic to Y ′.
The rest was already explained before. �

Remark 2.4. i) The simplest way to view Xt is to see C2 as a double
cover of Y ′ branched only at the origin, and then Xt as a family of
double covers of C2 branched on the curve uv + t = 0, which acquires
a double point for t = 0.

ii) The involution σ3(u, v, w) = (−u,−v,−w) has only the origin as
fixed point, which lies on X0. Whereas σ3 acts freely on Xt, for t 6= 0.
Fix(σ1) = {w = 0}, and {w = 0} ∩Xt = {uv + t = w = 0}.

Finally, Fix(σ2) = {u = v = 0}, and {u = v = 0} ∩ Xt = {u = v =
0, w2 = t}, which consists of two points for t 6= 0, one for t = 0.

The corresponding branch loci are the origin, for t = 0, the divisor
z = 0, and the point x = y = z − t = 0.

iii) If we pull back the bidouble cover Xt to Ỹ , and we normalize it,
we can see that

• D3 is, for t = 0, the nodal curve N , and is the empty divisor
for t 6= 0;

• D1 is, for t 6= 0, the inverse image of the curve z + t = 0;
while, for t = 0, it is only its strict transform, i.e. the divisor
D considered previously, made up of two fibres;

• D2 is an empty divisor for t = 0, and the nodal curve N for
t 6= 0.
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Remark 2.5. Part iii) of the previous remark shows that, as t → 0,
one subtracts the nodal divisor N to D2, and adds it to D3; while for
D1, it specializes to D +N , and then we subtract N .

This is precisely the algorithm which applies when passing from ex-
tended Burniat to Burniat divisors.

The really interesting part of the story comes now: the family Xt

admits a simultaneous resolution only after that we perform a base
change

t = τ 2 ⇒ w2 − τ 2 = uv.

Definition 2.6. Let X → T ′ be the family where

X = {(u, v, w, τ)|w2 − τ 2 = uv}

and T ′ is the affine line with coordinate τ .
Define S ⊂ X×P1 to be one of the small resolutions of X, and S ′ to

be the other one, namely:

S : {(u, v, w, τ)(ξ) ∈ X× P1|
w − τ

u
=

v

w + τ
= ξ}

S ′ : {(u, v, w, τ)(η) ∈ X× P1|
w + τ

u
=

v

w − τ
= η}.

Let G be the group G ∼= (Z/2Z)2 acting on X trivially on the variable
τ , and else as in proposition 2.3. Let further σ4 act by σ4(u, v, w, τ) =
(u, v, w,−τ), let G′ ∼= (Z/2Z)3 be the group generated by G and σ4,
and let H ∼= (Z/2Z)2 be the subgroup {Id, σ2, σ1σ4, σ3σ4}.

The following is a rephrasing and a generalization of a discovery of
Atiyah in our context: we omit the simple proof.

Lemma 2.7. The biregular action of G′ on X lifts only to a birational
action on S, respectively S ′. The subgroup H acts on S, respectively
S ′, as a group of biregular automorphisms.

The elements of G′ \ H = {σ1, σ3, σ4, σ2σ4} yield isomorphisms be-
tween S and S ′.

The group G acts on the punctured family S \S0, in particular it acts
on each fibre Sτ .

Since σ4 acts trivially on S0, the group G′ acts on S0 through its
direct summand G.

The biregular actions of G on S \S0 and on S0 do not patch together
to a biregular action on S, in particular σ1 and σ3 yield birational maps
which are not biregular: they are called Atiyah flops (cf. [At58]).

3. Nodal Burniat surfaces deform to extended Burniat
surfaces

In this section we shall show, for each value of m = 2, 3, that the
canonical models X of nodal Burniat surfaces with K2

X = 6 − m,
together with the extended Burniat surfaces with K2

X = 6 − m are



BURNIAT SURFACES III 13

parametrized by a family with smooth connected base of respective di-
mension 1+m, which maps to the moduli space via a finite morphism.

We shall treat first the easier case m = 2.

Proposition 3.1. There exists a family, with connected base

B ⊂ {(C1,Γ2)|C1 ∈ |L−E1|,Γ2 ∈ |2L−E2 − E3 − E4 −E5|}

where C1,Γ2 are as in Definition 1.1 (C1 is irreducible and either Γ2

is irreducible, or splits as N1 + E1 + |L − E2 − E3|), parametrizing a
flat family of canonical models, including exactly all the nodal Burniat
surfaces and the extended Burniat surfaces with K2

X = 4.

Proof. Recall that in this case D1 + D3 = ∆1 + ∆3, and that N1 is a
connected component of the above divisor D1 +D3 = ∆1 +∆3.

We can therefore construct a family of double covers

W̃b → Ỹ

such that the inverse image of N1 is a (-1)-curve. Blowing down this
(-1)-curve we get a family of finite double covers W ′

b → Y ′, which are
nodal and equisingular.

Consider the pull back of the divisors ∆2 in the case where Γ2 is
irreducible, and of the divisors D2 in the case where Γ2 is reducible.

Since ∆2 ≡ D2+N1, and the divisor N1 becomes trivial on W ′
b, since

it contracts to a smooth point, it follows that all these divisors are
linearly equivalent, and we have a family of divisors on the family W ′

b

We consider then the family of double covers Xb → W ′
b branched on

these divisors, and on the nodes of W ′
b. �

Proposition 3.2. There exists a family, with connected base

T ⊂ {(Γ1,Γ2,Γ3)}

where Γ1,Γ2,Γ3 are as in Definitions 1.1 and 1.3, parametrizing a flat
family of canonical models, including exactly all the nodal Burniat sur-
faces and the extended Burniat surfaces with K2

X = 3.

Proof. Given a triple (Γ1,Γ2,Γ3), according to the reducibility of each
Γi, there corresponds either a Burniat divisor, or an extended Burniat
divisor. We take the corresponding bidouble cover of Ỹ , hence we
construct four families of smooth surfaces, which are not necessarily
minimal. We take now the corresponding canonical models, which are
finite bidouble covers of the normal Del Pezzo surface Y ′.

Observe that, given p′ : S̃ → Ỹ , and π : Ỹ → Y ′,

X = Spec(π∗(p
′)∗OS̃) = Spec(OY ′

⊕

(⊕3
i=1Fi)).

Now the reflexive sheaves Fi correspond to Weil divisors on Y ′, and
they are independent of t ∈ T by virtue of 4) of remark 1.2.

The multiplication maps correspond to a family of Weil divisors on
Y ′: whence we get a flat family on Y ′ \ Sing(Y ′). Locally around the
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nodes the structure of the deformation is as described in the previous
section, therefore the family is flat everywhere.

�

Observe that the latter proof works also in the case m = 2.

4. A corrigendum to Burniat surfaces II

Parts 1), 2) and 3 ) of the following lemma were contained in Lemma
2.10 of [BC10], while 4) corrects a wrongly stated assertion of 2) of loc.
cit.

We also amend the proof for the correct assertions.

Lemma 4.1. Consider a finite set of distinct linear forms

lα := y − cαx, α ∈ A

vanishing at the origin in C2.
Let p : Z → C2 be the blow up of the origin, let Dα be the strict

transform of the line Lα := {lα = 0}, and let E be the exceptional
divisor.

Let Ω1
C2((dlog lα)α∈A) be the sheaf of rational 1-forms η generated by

Ω1
C2 and by the differential forms d log lα as an OC2-module and define

similarly Ω1
Z((logDα)α∈A). Then:

(1) p∗Ω
1
Z(logE)(−E) = Ω1

C2,
(2) p∗Ω

1
Z(logE, (logDα)α∈A) = Ω1

C2((dlog lα)α∈A),
(3) p∗Ω

1
Z((logDα)α∈A) = {η ∈ Ω1

C2((dlog lα)α∈A)|η =
=

∑

α gα dlog lα + ω, ω ∈ Ω1
C2 ,

∑

α gα(0) = 0}.
(4) p∗Ω

1
Z((logDα)α∈A)(E) ⊃ Ω1

C2((dlog lα)α∈A) and

dimC[p∗Ω
1
Z((logDα)α∈A)(E)/Ω

1
C2((dlog lα)α∈A)] = d− 2

is supported at the origin, where d := |A|. More precisely, we
have an exact sequence

0 → Ω1
C2 → p∗Ω

1
Z((logDα)α∈A)(E) →

d
⊕

α=1

ODα
(0) → C2

0 → 0.

(5) Assume w.l.o.g. c1 = 0 in the following formulae: then
p∗Ω

1
Z(logD1)(−E) ⊂ Ω1

C2(dlog l1) is the subsheaf of forms

{ω = αdx+ β
dy

y
|β(0) = 0,

∂β

∂y
(0) = 0,

∂β

∂x
(0) + α(0) = 0}.

(6) p∗Ω
1
Z(−E) = M0Ω

1
C2.

(7) p∗Ω
1
Z(logD1, logD2)(−E) ⊂ Ω1

C2(dlog l1, dlog l2) is the subsheaf
of forms

{ω = α
dx

x
+β

dy

y
|α(0) = 0, β(0) = 0,

∂(α + β)

∂x
(0) = 0,

∂(α + β)

∂y
(0) = 0}.
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Proof. We show 2), 3), 4), 5) and 7).
Observe that

p∗Ω
1
Z((logDα)α∈A)(mE)

consists of rational differential 1-forms ω which, when restricted to
C2 \ {0}, yield sections of Ω1

C2((dlog lα)α∈A).
Therefore in particular ω

∏

α∈A lα is a regular holomorphic 1-form on
C2. Hence ω, modulo holomorphic 1-forms, can be written as

ω =
f

∏

α∈A lα
dx+

g
∏

α∈A lα
dy,

where f, g are pseudopolynomials of degree in y strictly less than d :=
card(A).

Since dy = dlα + cαdx, the condition that ω restricted to C2 \ {0}
yields a section of Ω1

C2((dlog lα)α∈A) implies that lα|(f + cαg).
Whence lα divides fx + yg, and we conclude, since

∏

α∈A lα is a
pseudo polynomial of degree d, that

fx+ yg = c(x)
∏

α∈A

lα.

This allows us to write, modulo holomorphic 1-forms,

ω =
g(dy − y

x
dx)

∏

α∈A lα
+
c

x
dx,

where now c ∈ C.
Let us pull back ω to Z, using local coordinates (x, t) such that

y = xt, and where we make the assumption cα 6= 0, ∀α.

p∗ω =
x−dg(x, xt)(xdt)
∏

α∈A(t− cα)
+
c

x
dx.

The pull back form has logarithmic poles along E iff g(x, y) has
multiplicity at least d− 1 at the origin, and poles of order at most one
along E iff g(x, y) has multiplicity at least d− 2 at the origin.

Observe that the d polynomials Pβ :=
∏

α∈A,α6=β lα are linearly in-
dependent and homogeneous of degree d − 1, hence they generate the
vector space of homogeneous polynomials of degree d − 1, hence they
generate the ideal of holomorphic functions vanishing at the origin of
multiplicity at least d− 1.

Hence g(x, y) has multiplicity at least d− 1 iff we can write

g =
∑

α∈A

gαPα.

And since g is a pseudo polynomial of degree ≤ d − 1, the gα’s are
just functions of x.

In this case we can write
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ω =
c

x
dx+

∑

α∈A

gα
lα
(dy −

y

x
dx) =

1

x
[cdx+

∑

α∈A

gα
lα
(xdy − ydx)].

=
1

x
[cdx+

∑

α∈A

gα
lα
(xdlα + xcαdx− ydx)] =

∑

α∈A

gα
lα
dlα +

1

x
dx[c−

∑

α∈A

gα].

The above form ω does not have poles on the line x = 0 if and only
if c = (

∑

α∈A gα(0)).
Observing that the strict transform of the line x = 0 is not among

the divisors Dα, we establish claim (2), while (3) follows since c = 0 iff
there are no poles along E.

The very first assertion of (4) follows by (2), so let’s proceed to verify
the other assertions.

Assume now that p∗ω has poles of order 1 along E; equivalently,
assume that g(x, y) has multiplicity at least d − 2 at the origin. Since
we already dealt with the case where this multiplicity is at least d− 1,
we may assume that g(x, y) is homogeneous of degree d − 2, and that
c = 0.

Argueing as done before, the space of homogeneous polynomials of
degree d− 2 has as basis the d− 1 polynomials (β = 1, . . . , d− 1)

Qβ :=
∏

α∈A,α6=β,α6=d

lα.

Whence g =
∑

α∈A,α6=d gαQα, where gα ∈ C, and we may write:

ω =

d−1
∑

α=1

gα
lαld

(dy −
y

x
dx).

Since we want no poles on the line x = 0, we must have

d−1
∑

α=1

gαy

y2
= 0 ⇔

d−1
∑

α=1

gα = 0.

Under this condition we may then write

ω =
d−1
∑

α=1

gα
lαld

(dlα),

which has logarithmic poles along lα = 0.
Logarithmic poles along ld = 0 follow by writing

ω =
d−1
∑

α=1

gα
lαld

(dld) +
d−1
∑

α=1

gα(cd − cα)

lαld
dx,

and observing that
∑d−1

α=1
gα(cd−cα)
y−cαx

vanishes for ld = 0 since on {ld =

0} we have y = cdx.
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Applying the residue sequence, we see that each such form ω has as
residue on Dα a function with a single pole at most at the origin O,
and with coefficient of 1

x
respectively equal to rd :=

∑d−1
α=1

gα
(cd−cα)

in the

case of Dd, and rα := − gα
(cd−cα)

in the case of Dα.

In other words, the sum of the ‘double’ residues is 0, and the other
condition

∑d−1
α=1 gα = 0 can be also written down as

∑d

α=1 cαrα = 0.
To show 5), observe that

p∗Ω
1
Z(logD1)(−E) ⊂ p∗Ω

1
Z(logD1) ⊂ Ω1

C2(dlog l1).

Take coordinates x, y such that l1 = y, and write ω = αdx+ β dy

y
.

We just pull back ω on the blow up Z in the chart where we have
y = tx, and impose that it lies in the span of

x
dt

t
, xdx.

We have

ω = α(x, tx)dx+ β(x, tx)(
dt

t
+
dx

x
)

and we must clearly have β(0) = 0.
Then β(x, tx)dt

t
is a multiple of xdt

t
, and it suffices to require that

α(x, tx) + 1
x
β(x, tx) be divisible by x.

Writing β(x, y) = β1x + β2y + . . . , our condition boils down to the
divisibility by x of

α(0) + β1 + β2t⇔ β2 = 0, α(0) + β1 = 0.

Finally, let us show 7). Write

ω = α
dx

x
+ β

dy

y

and pull back to the blow up in the chart where y = tx: we get

(α + β)
dx

x
+ β

dt

t
,

which must be divisible by x, hence in particular β(0) = 0. Looking at
the other chart we get symmetrically α(0) = 0.

Now, α + β must vanish of order two, in order that its pull back be
divisible by x2.

�

Corollary 2.11 of [BC10] has also to be modified, as we shall show in
proposition 5.5 of the next section: the only non vanishing cohomology
group

H0(Ω1
Ỹ
(log(Di))(KỸ + Li)) = H0(Ω1

Ỹ
(log(Di))(Ei − Ei+2))

occurs for i = 3 (not for i = 1), and it has dimension equal to 1.
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5. Local deformations of the extended Burniat surfaces

We begin with an easy but useful observation

Lemma 5.1. Assume that N is a connected component of a smooth
divisor D ⊂ Y , where Y is a smooth projective surface.

Moreover, let M be a divisor on Y . Then

H0(Ω1
Y (log(D −N))(N +M)) = H0(Ω1

Y (log(D))(M))

provided (KY + 2N +M) ·N < 0.

Proof. The cokernel of Ω1
Y (log(D))(M) → Ω1

Y (log(D−N))(N +M) is
supported on N and equal to Ω1

N (N +M) = ON (KY + 2N +M).
�

The lemma will be applied several times in the case where N ∼= P1

and N2 < 0.
Another useful lemma which will be crucial in some calculation is

the following

Lemma 5.2. Assume that we have three linearly independent linear
forms on P2, l1 := x1, l2 := x2, l3 := x3. Then

(1)
H0(Ω1

P2(2))

has as basis the 3 1-forms, for j < i,

ηji := xjdxi − xidxj = −ηij .

(2)
H0(Ω1

P2(dlog l1, dlog l2, dlog l3)(1))

has as basis the 6 1-forms

ωij :=
xjdxi − xidxj

xi
.

(3)
H0(Ω1

P2(dlog l1, dlog l2, dlog l3)(2))

has as basis the 3 1-forms ηji, for j < i, plus the 6 1-forms
xjωij and the 3 1-forms x1ω23, x2ω31, x3ω12.

Proof. 1) is well known and follows from the Euler sequence.
2) Take the chart xi 6= 0 ⇔ xi = 1: then in this chart ωij := −dxj is

a regular 1-form.
In the chart xj = 1 we have ωij :=

dxi

xi
, while in the chart xh = 1 we

have ωij := xj
dxi

xi
− dxj .

Hence ωij has logarithmic poles on xi = 0, and the coefficient of
the logarithmic term vanishes for xi = xj = 0, and is equal to 1 in
xi = xh = 0.

The above observation shows the linear independence of the above 6
forms.
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Moreover, ωij is an eigenvector with character λ for the C∗-action
xi 7→ λxi, hence ωij ∈ H0(Ω1

P2(dlog l1, dlog l2, dlog l3)(1)).
It suffices to show that this space has vector dimension equal to 6.
This follows however from the exact sequence

0 → Ω1
P2(1) → Ω1

P2(dlog l1, dlog l2, dlog l3)(1) → ⊕3
i=1Oli(1) → 0

and the vanishing of Hj(Ω1
P2(1)) for j = 0, 1.

3) Observe that ωij =
1
xi
ηji, so that xiωij = ηji = −ηij = xjωji.

Moreover, if h 6= i, j, xhωij − xjωih = ηjh, so that the products xrωij

generate a subspace of dimension at most 12.
By the exact sequence

0 → Ω1
P2(2) → Ω1

P2(dlog l1, dlog l2, dlog l3)(2) → ⊕3
i=1Oli(2) → 0

and since H1(Ω1
P2(2)) = 0, h0(Oli(2)) = 3 we infer that the dimension

is indeed 12.
Since H0(Oli(2)) is generated by H0(OP2(1))⊗CH

0(Oli(1)) we con-
clude that the 12 1-forms are a basis. �

Lemma 5.3. Assume that we have two linearly independent linear
forms on P2, l1 := x1, l2 := x2.

(1) H0(Ω1
P2(dlog l1, dlog l2)(1)) has as basis the 4 forms

ωij :=
xjdxi − xidxj

xi
, 1 ≤ i, j ≤ 3, i 6= 3.

(2) H0(Ω1
P2(dlog l1, dlog l2)(2)) has as basis the 3 forms ηji, for j <

i, plus the 6 forms x2ω12, x1ω21, x3ω13, x3ω23, x2ω12, x1ω23.

Proof. Follows from lemma 5.2 observing thatH0(Ω1
P2(dlog l1, dlog l2)(i))

is a subspace of H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(i)). The above two sets

of vectors are linearly independent and the dimensions are 4, resp.
9. �

Corollary 5.4. 1) Let ω ∈ H0(Ω1
P2(dlog l1, dlog l2)(1)).

Then there are complex numbers aij such that:

ω = a12ω12 + a21ω21 + a13ω13 + a23ω23 =
dx1
x1

(a12x2 − a21x1 + a13x3)+

+
dx2
x2

(−a12x2 + a21x1 + a23x3) + dx3(−a13 − a23).

2) Let ω ∈ H0(Ω1
P2(dlog l1, dlog l2)(2)): then we can write

ω = a12η12 + a13η13 + a23η23 + a212x2ω12 + a121x1ω21 + a313x3ω13+

+ a323x3ω23 + a213x2ω13 + a123x1ω23 =
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=
dx1
x1

(−a12x1x2 − a13x3x1 + a212x
2
2 − a121x

2
1 + a313x

2
3 + a213x2x3)+

+
dx2
x2

(a12x1x2 − a23x3x2 − a212x
2
2 + a121x

2
1 + a323x

2
3 + a123x1x3)+

+ dx3(a13x1 + a23x2 − a313x3 − a323x3 − a213x2 − a123x1).

3)Any ω ∈ H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(1)) can be written as:

ω = a12ω12 + a13ω13 + a23ω23 + a21ω21 + a31ω31 + a32ω32 =

=
dx1
x1

(a12x2 − a21x1 + a13x3 − a31x1)+

+
dx2
x2

(−a12x2 + a21x1 + a23x3 − a32x2)+

+
dx3
x3

(−a13x3 + a31x1 + a32x2 − a23x3).

4) Any ω ∈ H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(2)) can be written as:

ω = a12η12 + a13η13 + a23η23 + a212x2ω12 + a313x3ω13 + a323x3ω23+

+a121x1ω21+a131x1ω31+a232x2ω32+a123x1ω23+a231x2ω31+a312x3ω12 =

=
dx1
x1

(−a12x1x2 − a13x3x1 + a212x
2
2 + a313x

2
3−

− a121x
2
1 − a131x

2
1 − a231x2x1 + a312x3x2)+

+
dx2
x2

(a12x1x2 − a23x3x2 − a212x
2
2 + a121x

2
1 + a323x

2
3+

+ a123x1x3 − a232x
2
2 − a312x3x2)+

+
dx3
x3

(a13x1x3 + a23x2x3 − a313x
2
3 − a323x

2
3 + a131x

2
1+

+ a232x
2
2 − a123x1x3 + a231x1x2).

Proof. This is an easy verification. �

Proposition 5.5. 1) Assume that S is a nodal Burniat surface with
K2

S = 4 (m = 2). Then the dimension of the vector space

H0(Ω1
Ỹ
(log(Di))(KỸ + Li)) = H0(Ω1

Ỹ
(log(Di))(Ei − Ei+2))

is 1 for i = 3, else it is 0.
2) Consider instead extended Burniat divisors for m = 2, and the

corresponding vector spaces

H0(Ω1
Ỹ
(log(∆i))(KỸ + Λi)).

Then their dimensions are the same as in the Burniat case, namely, 1
for i = 3, else 0.

3) Assume that S is a Burniat surface with K2
S = 3 (m=3).
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Then each vector space

H0(Ω1
Ỹ
(log(Di))(KỸ + Li)) = H0(Ω1

Ỹ
(log(Di))(Ei − Ei+2))

is equal to 0.
4) In the case of (strictly or not strictly) extended Burniat divisors

for m = 3 we have ∀i:

H0(Ω1
Ỹ
(log(∆i))(KỸ + Λi)) = 0.

Proof. We can prove 1) and 2) simultaneously for i = 1.
Observe that D1 = ∆1 +N1, that Λ1 = L1 +N1, and apply Lemma

5.1 (observing that (KỸ + 2N1 + (E1 −E3))N1 = −4 + 1 < 0) in order
to conclude that

H0(Ω1
Ỹ
(log(∆1))(E1 −E3 +N1)) ∼= H0(Ω1

Ỹ
(log(D1))(E1 − E3)).

Moreover we observe that, again by lemma 5.1,

H0(Ω1
Ỹ
(log(D1))(E1 − E3)) = H0(Ω1

Ỹ
(log(D1 − (L− E1)))(L− E3)).

Let f : Ỹ → P2 be the blow down of E1, . . . , E5. Then f∗(D1−(L−E1))
splits as the sum of two lines l1, l2 in P2 intersecting in P1.

W.l.o.g. we can assume that P1 = (0 : 0 : 1), P2 = (0 : 1 : 0),
P4 = (1 : 0 : 0) and P5 = (1 : 0 : λ), with λ 6= 0.

Applying proposition 4.1 several times for each blow down we get
that

H0(Ω1
Ỹ
(log(D1−(L−E1)))(L−E3)) = H0(f∗Ω

1
Ỹ
(log(D1−(L−E1)))(L−E3))

is the subspace V1 of H0(Ω1
P2(dlog l1, dlog l2)(1)) consisting of sections

satisfying several linear conditions.
We write these conditions using the basis provided by lemma 5.3 and

its corollary, in order to show that V1 = 0. By prop. 4.1, 3) we get for
P1:

a13 + a23 = 0;

for P2, P4 and P5 the three equations

a12 = a21 = a21 + λa23 = 0.

This shows that V1 = 0.
We continue with the proof of 1).
For i = 2, again by lemma 5.1 we have to calculate

V2 = H0(Ω1
Ỹ
(log(L−E2 − E5), log(L−E2 − E4))(L−E3)),

which after blowing down E1, . . . , E5 corresponds to a subspace of
H0(Ω1

P2(dlog l1, dlog l2)(1)).
W.l.o.g. we can assume that P2 = (0 : 0 : 1), P5 = (0 : 1 : 0),

P4 = (1 : 0 : 0) and P3 = (1 : 1 : 1).
By prop. 4.1, 3), we get for P2,P4, P5 the three linear equations:

a13 + a23 = 0, a21 = 0, a12 = 0.
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We evaluate ω in P3, and get (using the above equalities)

ω(P3) = a13dx1 + a23dx2,

whence by proposition 4.1, 6) a13 = a23 = 0 and therefore we have
verified that V2 = 0.

For i = 3, using lemma 5.1, we have to calculate:

V3 := H0(Ω1
Ỹ
(log(L− E3 −E4), log(L− E3 −E5))(L− E1)),

which, after blowing down E1, . . . , E5, becomes a linear subspace of
H0(Ω1

P2(dlog l1, dlog l2)(1)).
W.l.o.g. we can assume that P3 = (0 : 0 : 1), P4 = (0 : 1 : 0),

P5 = (1 : 0 : 0), P1 = (1 : 1 : 0).
By prop. 4.1, 3), we get for P3,P4, P5 the three linear equations:

a13 + a23 = 0, a12 = 0, a21 = 0.

Setting the evaluation of ω in P1 equal to zero is easily seen to give no
new conditions, hence V3 ∼= C.

Let’s proceed to prove 2) for i = 2, 3.
For i = 2, 3, by 4) of remark 1.2,

H0(Ω1
Ỹ
(log∆i)(KỸ + Λi)) = H0(Ω1

Ỹ
(log∆i)(Ei − Ei+2)).

For i = 2, using again lemma 5.1, observing that

(KỸ + 2Γ2 + (E2 − E1))Γ2 < 0,

we see that we have to calculate

V2 := H0(Ω1
Ỹ
(log(L−E2−E4), log(L−E2−E5))(2L−E1−E3−E4−E5)),

which, after blowing down E1, . . . , E5, becomes a linear subspace of
H0(Ω1

P2(dlog l1, dlog l2)(2)).
W.l.o.g. we can assume that P2 = (0 : 0 : 1), P4 = (0 : 1 : 0),

P5 = (1 : 0 : 0), P3 = (1 : 1 : 1), and then P1 = (1 : λ : 0), where
λ 6= 0, 1.

Using cor. 5.4, we get by prop. 4.1, 3) for P2 the linear equation

a313 + a323 = 0.

By prop. 4.1, 5) the conditions for P4 are

a212 = 0, a12 = 0, a23 = 0;

whereas the conditions for P5 are

a121 = 0, a12 = 0, a13 = 0.

Imposing that ω vanishes in P3, we get

ω(P3) = dx1(a313 + 2a213 + a123) + dx2(a323 + 2a123 + a213) = 0.

The above conditions yield:

a123 = a313 = −a213 = −a323.
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Finally, imposing that ω vanishes in P1 we obtain:

ω(P1) = −dx3(λa213 + a123) = 0,

whence (λ − 1)a213 = 0. Since λ 6= 0, 1 this implies a213 = 0, and we
have shown that V2 = 0.

We are left with the case i = 3. Using repeatedly lemma 5.1 and
proposition 4.1, we see that we have to calculate

V3 := H0(Ω1
Ỹ
(log∆3)(E3 −E2)) =

= H0(Ω1
Ỹ
(log(L−E1−E3), log(L−E1−E4−E5))(2L−E3−E4−E5)).

After blowing down E1, . . . , E5, we can assume w.l.o.g. that P1 = (0 :
0 : 1), P4 = (0 : 1 : 0), P3 = (1 : 0 : 0), P5 = (0 : 1 : 1), and V3 becomes
a linear subspace of H0(Ω1

P2(dlog l1, dlog l2)(2)).
Using cor. 5.4, we get by prop. 4.1, 3) for P1 the linear equation

a313 + a323 = 0.

By prop. 4.1, 5) the conditions for P4 are

a212 = 0, a12 = 0, a23 = 0;

whereas the conditions for P3 are

a121 = 0, a12 = 0, a13 = 0.

For P5, we get instead (again by prop. 4.1, 5)), the two linear equations
(the third is trivial):

a213 + a313 = 0, 2a313 = 0.

This implies that a313 = a213 = a323 = 0, but a123 is arbitrary. This
shows that V3 ∼= C.

Thus 2) is proven.
To prove 3), by symmetry, we may assume without loss of generality

that i = 1.
We have to calculate V1 := H0(Ω1

Ỹ
(log(D1)(E1 − E3)), which by

lemma 5.1 is equal to

H0(Ω1
Ỹ
(log(L− E1 −E2), log(L− E1 −E4 − E5))(L−E6)),

which, after blowing down E1, . . . , E5, becomes a linear subspace of
H0(Ω1

P2(dlog l1, dlog l2)(1)).
W.l.o.g. we can assume that P1 = (0 : 0 : 1), P5 = (0 : 1 : 0),

P2 = (1 : 0 : 0), P4 = (0 : 1 : 1). Since P2, P4, P6 are collinear,
P6 = (1 : µ : µ), where µ 6= 0.

By prop. 4.1, 3), we get for P1,P2, P4 and P5 the linear equations:

a13 + a23 = 0, a21 = 0, a12 + a13 = 0, a12 = 0.

This already shows that V1 = 0.
Thus 3) is proven.
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Let us treat the subcase of 4) where we have strictly extended Bur-
niat divisors: the situation is here symmetric in the indices i, hence it
suffices to show the vanishing of

H0(Ω1
Ỹ
(log(∆1))(KỸ + Λ1)).

Recall that we have the decomposition in irreducible connected com-
ponents ∆1 = G1 + Γ1 + N2, where G1 is the del Pezzo line G1 ≡
L− E1 −E6.

By lemma 5.1 we get:

H0(Ω1
Ỹ
(log(∆1))(KỸ + Λ1)) = H0(Ω1

Ỹ
(log(∆1 +N1))(E1 − E3)),

since (KỸ +2N1 + (E1 −E3))N1 < 0. Using again lemma 5.1 we see
that

H0(Ω1
Ỹ
(log(∆1 +N1))(E1 − E3)) =

= H0(Ω1
Ỹ
(log(∆1 +N1 − Γ1))((E1 − E3) + Γ1)) =

= H0(Ω1
Ỹ
(log(G1 +N1 +N2))(2L− E2 −E3 − E5 − E6)),

because (KỸ + 2Γ1 + (E1 − E3))Γ1 < 0.

Let f : Ỹ → P2 be the blow down of E1, . . . , E6. Then f∗(G1 +N1 +
N2) splits as the sum of three lines l1, l2, l3 in P2 forming a triangle.
W.l.o.g. we can assume that P6 = (1 : 0 : 0), P1 = (0 : 1 : 0),
P4 = (0 : 0 : 1) and P3 = (1 : 1 : 1). Then P5 = (0 : 1 : 1), whereas P2

is collinear with P6, P4, whence P2 = (1 : 0 : λ), with λ 6= 0, 1.
Then

H0(Ω1
Ỹ
(log(G1 +N1 +N2))(2L−E2 − E3 −E5 − E6)) =

H0(f∗Ω
1
Ỹ
(log(G1 +N1 +N2))(2L− E2 −E3 − E5 −E6))

is a subspace of

H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(2)),

where li = xi, whence P1, P4, P5 ∈ {l1 = 0}, P6, P4, P2 ∈ {l2 = 0},
P1, P6 ∈ {l3 = 0}, consisting of sections satisfying fourteen linear con-
ditions described in proposition 4.1.

We explicitly write these conditions using lemma 5.2 and lemma 5.4
in order to show that this subspace must be trivial.

Let ω ∈ H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(2)) and we write ω in the

basis of lemma 5.2:

ω = a12η12 + a13η13 + a23η23 + a212x2ω12 + a313x3ω13 + a323x3ω23+

+a121x1ω21+a131x1ω31+a232x2ω32+a123x1ω23+a231x2ω31+a312x3ω12.

Then by prop. 4.1, 3) the condition for P1 = (0 : 1 : 0) is

(1) a212 + a232 = 0.
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The same argument shows that the linear condition for P4 = (0 : 0 : 1)
is

(2) a313 + a323 = 0.

Next we work out the conditions for P5, P2 using prop. 4.1, 5). For
P5 := (0 : 1 : 1) we work in the chart x3 = 1 and write ω locally around
(0, 1) as α(x1, x2)dx2 + β(x1, x2)

dx1

x1
. Then we get (using lemma 5.4):

(3) β(0, 1) = a212 + a313 + a312 = 0;

(4)
∂β

∂x1
(0, 1) = −a12 − a13 − a231 = 0;

(5)
∂β

∂x2
(0, 1) + α(0, 1) = −a23 + 2a212 + a323 = 0.

The same argument for P2 = (1 : 0 : λ) (working in the chart x1 = 1
and writing ω locally around (0, λ) as α(x2, x3)dx3+β(x2, x3)

dx2

x2
) gives

the following three linear equations (λ 6= 0, 1):

(6) β(0, λ) = a323λ
2 + a121 + a123λ = 0;

(7)
∂β

∂x2
(0, λ) = a12 − λa23 − λa312 = 0;

(8)
∂β

∂x3
(0, λ) + α(0, λ) = a13 +

1

λ
a131 + λa323 − λa313 =

= a13 +
1

λ
a131 + 2λa323 = 0.

There are four linear conditions coming from P6 = (1 : 0 : 0), given in
prop. 4.1, 7). We work in the chart x1 = 1 and write ω = α(x2, x3)

dx2

x2

+

β(x2, x3)
dx3

x3
. Then we get:

(9) α(0, 0) = a121 = 0;

(10) β(0, 0) = a131 = 0;

(11)
∂(α + β)

∂x2
(0, 0) = a12 + a231 = 0;

(12)
∂(α + β)

∂x3
(0, 0) = a13 = 0.

From equation (11) we get: a12 = −a231.
Since a13 = a131 = 0, equation (8) implies a323 = 0, whence by (2)

also a313 = 0. Moreover, by (6), we get a123 = 0.
We write finally the conditions coming from P3 = (1 : 1 : 1) (using

again that certain coefficients are zero).
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We evaluate ω in P3 and work in the affine chart x2 = 1 to obtain

(13) ω(P3) = (−a12 + a212 − a231 + a312)dx1+

(a23 + a232 + a231)dx3 = 0.

Since:

ω(P3) = (a212 + a312)dx1 + ((a23 + a232 + a231)dx3

we get the last two linear equations:

(14) a231 + a23 + a232 = 0;

(15) a212 + a312 = 0.

These immediately imply that

a312 = a232 = −a212.

By (14) a23 = −a232 − a231, and using (5), we see that a23 = 2a212.
Again by (14) we get then that a212 = −a231. Therefore, we have:

a212 = −a231 = −a312 = −a232 =
a23
2
.

By (7):
0 = a12 − λa23 − λa231 = a12 + λa231,

whence by (4) λ = 1, which gives a contradiction, or a12 = a231 = 0.
Hence the claim for strictly extended Burniat surfaces with K2

S = 3
is established.

Next we come to the case of (non strictly) extended Burniat surfaces.
Here we have to consider two cases:

a) only one of the three conics Γi degenerates to two lines;
b) exactly two of the three conics Γi degenerate to two lines.

a) W.l.o.g. and by remark 1.2 5-3 we may assume that Γ1 splits as

Γ1 ≡ (L−E1 − E2) +N3 + E3.

Then we get the extended Burniat divisors:

{D′
1} = |L− E1 −E6|+ |L− E1 − E2|+ E3 +N2,

D′
2 ∈ |L−E2 − E5|+ |2L− E2 −E3 − E4 − E5|,

D′
3 ∈ |L− E3 − E4|+ |2L− E1 −E3 − E4 −E6|+N1 +N3.

We make the assumption, for each D′
i, i = 2, 3 that the strict trans-

form of the conic Γi is irreducible.
Then we have

KỸ + L′
1 ≡ L− E3 − E4 − E5 ≡ KỸ + Λ1,

KỸ + L′
2 ≡ L− E1 − E4 − E6 ≡ KỸ + Λ2,

KỸ + L′
3 ≡ E3 −E2 ≡ KỸ + Λ3 −N3,

where the Λi are as for the strictly extended Burniat divisors.
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Observe that D′
2 +N3 = ∆2, whence

H0(Ω1
Ỹ
(logD′

2)(KỸ + L′
2)) ⊂ H0(Ω1

Ỹ
(logD′

2)(KỸ + L′
2 +N3)) =

H0(Ω1
Ỹ
(log(D′

2 +N3))(KỸ + L′
2)) = H0(Ω1

Ỹ
(log∆2)(KỸ + Λ2)) = 0,

where the first equality holds by lemma 5.1 and the last holds by our
previous computations for strictly extended Burniat surfaces.

Moreover, D′
3 = ∆3 + N3, L′

3 = Λ3 − N3, whence the vanishing
of H0(Ω1

Ỹ
(logD′

3)(KỸ + L′
3)) follows again using lemma 5.1 from the

analogous vanishing for strictly extended Burniat surfaces. It remains
to prove the following

Claim 5.6. H0(Ω1
Ỹ
(logD′

1)(KỸ + L′
1)) = 0

Proof of the claim. By lemma 5.1 we see that

H0(Ω1
Ỹ
(logD′

1)(KỸ + L′
1)) = H0(Ω1

Ỹ
(log(D′

1 − E3))(L−E4 − E5)).

Let f : Ỹ → P2 be the blow down of E1, . . . , E6.
Then f∗(D

′
1−E3) splits as the sum of three lines l1, l2, l3 in P2 forming

a triangle. W.l.o.g. we can assume that P1 = (1 : 0 : 0), P2 = (0 : 1 : 0),
P6 = (0 : 0 : 1) and P5 = (1 : 1 : 1). Then P4 = (0 : 1 : 1).

We conclude thatH0(Ω1
Ỹ
(log(D′

1−E3))(L−E4−E5)) = H0(f∗Ω
1
Ỹ
(log(D′

1−

E3))(L−E4−E5)) is the subspace ofH
0(Ω1

P2(dlog l1, dlog l2, dlog l3)(1))
consisting of sections satisfying one linear condition for P1, P2, P6 each,
two linear conditions for P5 and three linear conditions for P4, described
in proposition 4.1.

We write these conditions using lemma 5.2 in order to show that this
subspace must be trivial.

By lemma 5.2 we write ω ∈ H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(1) as

ω =
∑

i 6=j

aijωij.

Then the three equations for P1, P2, P6 (cf. prop. 4.1, 3)) are

a21 + a31 = 0, a12 + a32 = 0, a13 + a23 = 0.

By prop. 4.1, 5), we get for P4 the linear equations:

a12 + a13 = 0, −a21 − a31 = 0, a23 − a32 = 0.

The above conditions already imply:

a13 = a12 = a23 = a32 = 0, a21 = −a31.

We impose the vanishing of ω in P5 = (1 : 1 : 1) working in the affine
chart x3 = 1 and obtain

ω(1 : 1 : 1) = (−a21 − a31)dx1 + (a21)dx2 = 0,

whence a21 = a31 = 0. �
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b) W.l.o.g. we can assume that each of the two conics Γ1 and Γ2

degenerate to two lines. Then we get the extended Burniat divisors:

{D′′
1} = |L− E1 −E6|+ |L− E1 − E2|+ E3 +N1 +N2,

{D′′
2} = |L− E2 − E5|+ |L−E2 − E3|+ E1,

D′′
3 ∈ |L−E3 − E4|+ |2L− E1 −E3 − E4 − E6|+N3.

We make the assumption for D′′
3 that the strict transform of the conic

Γ3 passing through P1, P3, P4, P6 is irreducible.
Then we have

KỸ + L′′
1 ≡ E1 −E3 = KỸ + L′

1 −N1, D
′′
1 = D′

1 +N1;

KỸ + L′′
2 ≡ L− E1 − E4 −E6 ≡ KỸ + L2 +N2, D

′′
2 = D2 −N2;

KỸ + L′′
3 ≡ E3 − E2 ≡ KỸ + Λ′

3, D
′′
3 = D′

3 −N3.

Therefore for i = 1, 2, 3 the vanishing of H0(Ω1
Ỹ
(logD′′

i )(KỸ + L′′
i ))

can be reduced via lemma 5.1 to the analogous vanishing for extended
Burniat surfaces of case a) (i = 1, 3) and to the analogous vanishing
for Burniat divisors (for i = 2), which was already proved in part 3).

�

Now that the proof of proposition 5.5 is finally accomplished, we
can explicitly determine the several character spaces for H i(S,ΘS) and
their dimensions.

In the following, given a G-space V , V i, for i ∈ 1, 2, 3, denotes
the eigenspace corresponding to the character whose kernel consists of
{1, gi}.

Proposition 5.7. 1) Let S be the minimal model of a Burniat surface.
Then the dimensions of the eigenspaces of the cohomology groups of

the tangent sheaf ΘS (for the natural (Z/2Z)2-action) are as follows.

(1) K2 = 4 of nodal type:
h1(S,ΘS)

inv = 2, h2(S,ΘS)
inv = 0,

h1(S,ΘS)
3 = 1 = h2(S,ΘS)

3,
hj(S,ΘS)

i = 0, for i ∈ {1, 2};
(2) K2 = 3:

h1(S,ΘS)
inv = 1, h2(S,ΘS)

inv = 0,
h1(S,ΘS)

i = 1, h2(S,ΘS)
i = 0, for i ∈ {1, 2, 3}.

2) Let S be a minimal model of an extended Burniat surface with K2
S =

4.
Then the dimensions of the eigenspaces of the cohomology groups of

the tangent sheaf ΘS (for the natural (Z/2Z)2-action) are as follows.

• h1(S,ΘS)
inv = 3, h2(S,ΘS)

inv = 0,
• h1(S,ΘS)

i = 0 = h2(S,ΘS)
i, for i ∈ {1, 2},

• h1(S,ΘS)
3 = 1 = h2(S,ΘS)

3.
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3) Let S be the minimal model of an extended Burniat surface with
K2

S = 3.
Then the dimensions of the eigenspaces of the cohomology groups of

the tangent sheaf ΘS (for the natural (Z/2Z)2-action) are as follows:

(1) strictly extended:
h1(S,ΘS)

inv = 4, h2(S,ΘS)
inv = 0,

hj(S,ΘS)
i = 0, for i ∈ {1, 2, 3};

(2) the conic Γ1 degenerates to two lines:
h1(S,ΘS)

inv = 3, h2(S,ΘS)
inv = 0,

h1(S,ΘS)
i = 0 = h2(S,ΘS)

i, for i ∈ {1, 3},
h1(S,ΘS)

2 = 1, h2(S,ΘS)
2 = 0;

(3) the conics Γ1, Γ2 degenerate to two lines each:
h1(S,ΘS)

inv = 2, h2(S,ΘS)
inv = 0,

h1(S,ΘS)
1 = 0 = h2(S,ΘS)

1,
h1(S,ΘS)

i = 1, h2(S,ΘS)
i = 0, for i ∈ {1, 3}.

Proof. For the invariant part, the calculation goes exactly as the proof
of lemma 2.9. of [BC10], using that hi(ΘS̃)

inv = hi(ΘS)
inv.

For the other character spaces, we use the same argument as in
lemma 2.12. in [BC10] to calculate χ(Ω1

Ỹ
(logDi)(KỸ + Li)) (resp.

χ(Ω1
Ỹ
(log∆i)(KỸ + Λi)) for extended Burniat surfaces).

We first observe that

χ(Ω1
Ỹ
(logDi)(KỸ +Li)) = χ(Ω1

Ỹ
(KỸ +Li))+χ(ODi

(logDi)(KỸ +Li)),

(and analogously for χ(Ω1
Ỹ
(log∆i)(KỸ +Λi)) for extended Burniat sur-

faces).
Moreover, note that with the same calculation as in lemma 2.12. of

[BC10], we see that χ(Ω1
Ỹ
(KỸ + Li)) = K2

Ỹ
− 12.

Each Di (resp. ∆i) consists of ki irreducible connected components,
each of them being a smooth rational curve. WriteDi = Di,1+. . .+Di,ki

as disjoint union of smooth rational curves and let nj := Di,j ·(KỸ +Li).
Then

χ(ODi
(logDi)(KỸ + Li)) =

kj
∑

j=1

max(0, nj + 1).

Therefore

χ(Ω1
Ỹ
(logDi)(KỸ + Li)) = K2

Ỹ
− 12 +

kj
∑

j=1

max(0, nj + 1).

We summarize the calculations in the following table (note that we
write χi for χ(Ω

1
Ỹ
(logDi)(KỸ +Li))). The values for h

2(ΘS̃)
i have been

calculated in prop. 5.5. The notation: extended case (2), resp. (3),
refers to proposition 5.7.
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Moreover, we use lemma 9.22 of [Cat88] to compare h1(ΘS̃) and
h1(ΘS): it asserts that for a single blow up of a point P

π∗ΘS̃ = MPΘS, R1π∗ΘS̃ = 0.

K2
S i (n1, . . . , nki) χi h2(ΘS̃)

i h1(ΘS̃)
i h2(ΘS)

i h1(ΘS)
i

0 −2 0 2 0 2
4 1 (1, 1, 1, 1) 0 0 0 0 0

n.B. 2 (1, 1, 1, 1) 0 0 0 0 0
3 (1, 1, 1, 1) 0 1 1 1 1
0 −3 0 3 0 3

4 1 (1, 1, 1) −2 0 2 0 0
ext. 2 (1, 1, 1) −2 0 2 0 0

3 (1, 1, 1, 0, 1) 1 1 0 1 0
0 −1 0 1 0 1

3 1 (1, 1, 1, 1) −1 0 1 0 1
B. 2 (1, 1, 1, 1) −1 0 1 0 1

3 (1, 1, 1, 1) −1 0 1 0 1

0 −4 0 4 0 4
3 1, 2, 3 (1, 1, 0) −4 0 4 0 0

str.ext.

0 −3 0 3 0 3
3 1 (1, 1, 0, 1) −2 0 2 0 0

ext. (2) 2 (1, 1) −5 0 5 0 1
3 (1, 1, 0, 1) −2 0 2 0 0

0 −2 0 2 0 2
3 1 (1, 1, 1, 1, 0) 0 0 0 0 0

ext. (3). 2 (1, 1, 1) −3 0 3 0 1
3 (1, 1, 1) −3 0 3 0 1

�

From the above calculations and from propositions 3.1, 3.2 follow
all the statements of our first main theorem, with the exception of the
statement that NEB4 is a connected component. It follows that NEB4

is open, while the statement that NEB4 is closed will be shown in the
forthcoming section.

Theorem 0.1 1) The subset NEB4 of the moduli space of canon-
ical surfaces of general type M

can
1,4 given by the union of the open set

corresponding to extended Burniat surfaces with K2
S = 4 with the irre-

ducible closed set parametrizing nodal Burniat surfaces with K2
S = 4 is

an irreducible connected component, normal, unirational of dimension
3.

Moreover the base of the Kuranishi family of deformations of such a
minimal model S is smooth.
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2) The subset NEB3 of the moduli space of canonical surfaces of general
type M

can
1,3 corresponding to extended and nodal Burniat surfaces with

K2
S = 3 is an irreducible open set, normal, unirational of dimension 4.
Moreover the base of the Kuranishi family of S is smooth.

We are also almost done with the proof of our second main theorem

Theorem 0.2 The deformations of nodal Burniat surfaces with K2
S =

4, 3 to extended Burniat surfaces with K2
S = 4, 3

yield examples where Def(S, (Z/2Z)2) → Def(X, (Z/2Z)2) is not sur-
jective.

Moreover, Def(S, (Z/2Z)2) ( Def(S), whereas for the canonical model
we have: Def(X, (Z/2Z)2) = Def(X).

The moduli space of pairs, of an extended (or nodal) Burniat surface
with K2

S = 4, 3 and a (Z/2Z)2-action, is disconnected; but its image in
the moduli space is a connected open set.

Proof. By propositions 3.1 and 3.2 we have two families with smooth
connected rational base of dimension 3, resp. 4, parametrizing all the
canonical models X of the surfaces in NEB4, resp. NEB3.

In the previous theorem 0.1 we showed that the base of the Kuranishi
family of S is smooth, hence base change of these families yield the
Kuranishi family of S.

The above families of canonical models X yield the Kuranishi family
of X e.g. by the theorem of Burns and Wahl.

Propositions 3.1 and 3.2, exhibiting all the canonical models as
bidouble covers of normal Del Pezzo surfaces,

immediately show that Def(X, (Z/2Z)2) = Def(X).
Let now S be a nodal Burniat surface.
Since, by (7.1), page 23, of [Cat88] Def(S, (Z/2Z)2) ( Def(S) is the

intersection with H1(ΘS)
0, which is the smooth subvariety correspond-

ing to the nodal Burniat surfaces, we obtain that Def(S, (Z/2Z)2) (
Def(S).

On the other hand, for instance in the case K2
S = 4, we explicitly see

that NEB4 is the union of two families of bidouble covers, the family
of nodal Burniat surfaces, respectively the family of extended Burniat
surfaces: hence the moduli space of pairs (S, (Z/2Z)2) has exactly two
connected components.

�

6. One parameter limits of extended Burniat surfaces
with K2

S = 4

In this section we shall prove the following:

Theorem 6.1. The family of extended Burniat surfaces with K2
S = 4

yields, together with the family of nodal Burniat surfaces with K2
S = 4,

a closed subset NEB4 of the moduli space.
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This will be accomplished through the
study of limits of one parameter families of such extended Burniat

surfaces: we shall indeed show that only nodal Burniat surfaces (or
extended Burniat surfaces) occur.

Let Y ′ be a normal Q- Gorenstein surface and denote the dualizing
sheaf of Y ′ by ωY ′ .

Then there is a minimal natural number m such that ω⊗m
Y ′ is an in-

vertible sheaf and it makes sense to define ωY ′ to be ample, respectively
anti-ample; Y ′ is Gorenstein iff m = 1.

We recall the following results which were shown in [BC10].

Proposition 6.2. Let Y ′ be a normal Q-Gorenstein Del Pezzo surface
(i.e., ωY ′ is anti-ample) with K2

Y ′ ≥ 4. Then Y ′ is in fact Gorenstein.

Proposition 6.3. Let T be a smooth affine curve, t0 ∈ T , and let
f : X → T be a flat family of canonical surfaces. Suppose that Xt is
the canonical model of a Burniat surface with 4 ≤ K2

Xt
for t 6= t0 ∈ T .

Then there is a biregular action of G := (Z/2Z)2 on X yielding a one
parameter family of finite (Z/2Z)2-covers

X

f
��

@@
@@

@@
@

// Y

����
��

��
�

T ,

(i.e., Xt → Yt is a finite (Z/2Z)2-cover), such that Yt is a Gorenstein
Del Pezzo surface for each t ∈ T .

Observe that the above result remains true if we replace “Burniat
surface” by “extended Burniat surface”.

This implies immediately the following:

Corollary 6.4. Consider a one parameter family of bidouble covers
X → Y as in prop. 6.3. Then the branch locus of Xt0 → Yt0 is the
limit of the branch locus of Xt → Yt, and it is reduced.

Note that the limit of a line on the del Pezzo surfaces Yt is a line on
the del Pezzo surface Yt0 , and, as a consequence of the above assertion,

two lines in the branch locus in Yt cannot tend to the same line in
Yt0 .

Remark 6.5. Let X be the canonical model of an extended Burniat
surface with K2

X = 4. Recall that X is smooth for a general member of
the family of extended Burniat surfaces, whereas X has one ordinary
node if X is the canonical model of a nodal Burniat surface with K2 =
4.

In the extended case the branch locus consists of the union of 3
hyperplane sections, containing 8 lines, 2 conics and the node. In the
nodal Burniat case one of the conics degenerates to two lines, hence
the branch locus consists instead of 10 lines and one conic.
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The first step towards proving theorem 6.1 is the following:

Proposition 6.6. Consider a one parameter family of bidouble covers
X → Y as in prop. 6.3 except that Xt is an extended Burniat surface
with K2

Xt
= 4 for t 6= 0.

Then Y0 is a normal Del Pezzo surface with exactly one node as
singularity.

Lemma 6.7. A normal singular Del Pezzo surface with K2
Y0

= 4 con-
taining at least 8 lines has as singularities either

(1) one node, and then it contains 12 lines, or
(2) two nodes, and then it contains 9 lines, or
(3) an A2 singularity, and then it contains 8 lines, 4 of which pass

through the singular point.

Proof. The assertion is a generalization of Proposition 3.6 of [BC10],
page 581, see especially the proof in the appendix ibidem, pages 585-
587.

We blow up r = 5 points in the plane.
By the estimate about the loss of number of lines when one has a

chain of k infinitely near points, we see that k ≥ 4 implies that the
number of lines is less than 16− 11 = 5.

If there is a chain with k = 3, the same estimate gives a loss of 8,
and we cannot then have other (-2)-curves, else the number would be
strictly smaller than 16− 8 = 8.

In this case we get an A2 singularity and 8 lines.
In fact, in the chosen plane model we have 5 points lying on an

irreducible conic C, of which P2 infinitely near to P1, and P3 infinitely
near to P2. The lines are given by

E3, E4, E5, |L−E1−E4|, |L−E1−E5|, |L−E1−E2|, |L−E4−E5|, C
′,

where C ′ is the strict transform of C.
In this case the 4 lines passing through the singular point are

E3, |L− E1 −E4|, |L− E1 −E5|, |L−E1 − E2|.

In the case where there is no chain of three infinitely near points
by a standard Cremona transformation as in [BC10], ibidem, we may
reduce to the case where there are no infinitely near points and then
we have

that the weak Del Pezzo surface is Ŷ0 := P̂2(P1, . . . , P5), where
P1, P2, P3 and P1, P4, P5 are collinear.

Then Ŷ0 contains nine lines. In fact, the set of lines of Ŷ0 is:

L := {E1, . . . , E5, L−E2−E4, L−E2−E5, L−E3−E4, L−E3−E5}.

�

Proof of prop. 6.6. Since the branch locus of Xt → Yt contains eight
lines for t 6= 0, also the branch locus of X0 → Y0 contains eight lines.
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We want to show that cases (2) and (3) of the previous lemma cannot
occur.

We start by eliminating case (3).
Here, the A2 singularity must be a limit ofthe node of Yt, hence the

bidouble cover is branched at the singular point.
The bidouble cover is a RDP, hence, looking at table 2, page 90 of

[Cat87], and table 3, page 93 ibidem, we see that the branch locus is
analytically isomorphic to

• an ordinary cusp {y = 0 = z2+x3 = 0} for E6 = {z2+x3+t4 =
0} → A2 = {z2 + x3 + y2 = 0},

• two lines {x = 0 = z2 + y2 = 0} for A5 = {z2+w6+ y2 = 0} →
A2 = {z2 + x3 + y2 = 0},

• two lines {x = 0 = z2+y2 = 0} for the composition of A2 → A5

(ramified only at the singular point) with the previous A5 =
{z2 + w6 + y2 = 0} → A2 = {z2 + x3 + y2 = 0}.

We observe however that by our previous arguments the branch lo-
cus contains the 8 lines, 4 of which pass through the A2 singularity,
contradicting the above local description of the branch locus.

Assume now by contradiction that we have case (2), i.e., Y0 has two
nodes. Then

Claim 6.8. E1 is not a component of the total branch locus ∆ of X̂0 →
Ŷ0 , i.e.,

E2, . . . , E5, L−E2 − E4, L−E2 − E5, L− E3 −E4, L− E3 −E5

are exactly the 8 lines contained in ∆.

Proof of the claim. Assume that E1 is contained in the total branch
locus ∆ of the bidouble cover X̂0 → Ŷ0. Then ∆ contains three lines
intersecting one of the two (−2) curves. But a bidouble cover of a node
branched in at least three lines does not give a rational double point, as
shown by the classification recalled in section 2. A contradiction. �

Since for each node ν1, ν2 there are two lines in the total branch di-
visor passing through νi, it follows by the classification given in section
2, that N1, N2 ≤ ∆ and that (∆−Ni)Ni = 2.

Denote by π : Ŷ0 → Y ′ be the desingularization map.
Then π∗(∆) ≡ −3KY ′, whence

∆ ≡ −3KŶ0
+ n1N1 + n2N2.

Then 2 = (∆−Ni)Ni = (ni − 1)N2
i = 2(1− ni) ⇔ ni = 0.

We conclude that

∆ ≡ −3KŶ0
.
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Observe that

−3KŶ0
−

∑

l∈L\{E1}

l −N1 −N2 ≡ 3L− E1 − E2 − . . .− E5.

Since no other component of ∆ can intersect the (−2)-curves, we see
immediately that the remaining two components of ∆ are:

L− E1, 2L− E2 −E3 − E4 −E5.

We write now

∆1 = λ1L− E1 − a2E2 − a3E3 − a4E4 − a5E5,

∆2 = λ2L− E1 − b2E2 − b3E3 − b4E4 − b5E5,

∆3 = λ3L−E1 − c2E2 − c3E3 − c4E4 − c5E5.

Here we have used that, since E1 is not a component of ∆ and since
∆i +∆j has to be divisible by two, the only possibility is

E1 · (∆1,∆2,∆3) = (1, 1, 1).

Note that, since λ1+λ2+λ3 = 9 (and again since ∆i+∆j is divisible
by two) we have:

(λ1, λ2, λ3) ∈ {(3, 3, 3), (1, 3, 5), (1, 1, 7)}.

Moreover, since the branch divisor is reduced, for each i it happens
that, among the three numbers ai, bi, ci, there cannot be two which are
negative, and if one such a number is negative, then it is = −1; hence
the only possibilities are:

{ai, bi, ci} = {1, 1, 1} or {−1, 1, 3}, for i ∈ {2, . . . , 5}.

(λ1, λ2, λ3) = (3, 3, 3) : then we get for the character sheaves:

L1 = O(3L−E1 −
b2 + c2

2
E2 −

b3 + c3
2

E3 −
b4 + c4

2
E4 −

b5 + c5
2

E5),

L2 = O(3L− E1 −
a2 + c2

2
E2 −

a3 + c3
2

E3 −
a4 + c4

2
E4 −

a5 + c5
2

E5),

L3 = O(3L− E1 −
a2 + b2

2
E2 −

a3 + b3
2

E3 −
a4 + b4

2
E4 −

a5 + b5
2

E5).

Note that (ai, bi, ci) = (1, 1, 1) for all i ∈ {2, . . . , 5} implies that
pg(X0) 6= 0, whence w.l.o.g.

(a2, b2, c2) = (−1, 1, 3).

Then E2 ≤ ∆1, and by the local calculations in section 2 this implies
that also E3 ≤ ∆1 (since the two lines of the branch locus intersecting
a (−2)-curve belong to the same ∆i). Therefore

(a3, b3, c3) ∈ {(−1, ∗, ∗), (1, 1, 1)}.

Again using pg(X0) = 0, we conclude (looking at L3) that (up to
exchanging P4 with P5)

(a4, b4, c4) ∈ {(3, 1,−1), (1, 3,−1)},
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and again this implies that

(a5, b5, c5) ∈ {(∗, ∗,−1), (1, 1, 1)}.

But in all of these cases we have
ai + ci

2
∈ {0, 1} ∀ ∈ {2, . . . , 5},

contradicting pg = 0.

(λ1, λ2, λ3) = (1, 3, 5) : here we have

L1 = O(4L−E1 −
b2 + c2

2
E2 −

b3 + c3
2

E3 −
b4 + c4

2
E4 −

b5 + c5
2

E5),

L2 = O(3L− E1 −
a2 + c2

2
E2 −

a3 + c3
2

E3 −
a4 + c4

2
E4 −

a5 + c5
2

E5),

L3 = O(2L− E1 −
a2 + b2

2
E2 −

a3 + b3
2

E3 −
a4 + b4

2
E4 −

a5 + b5
2

E5).

Again, pg = 0 implies that there is an i ∈ {2, . . . , 5} such that ai+ci
2

= 2.
W.l.o.g. we can assume that a2+c2

2
= 2. Therefore

(a2, b2, c2) ∈ {(3,−1, 1), (1,−1, 3)},

whence

(a3, b3, c3) ∈ {(3,−1, 1), (1,−1, 3), (1, 1, 1)}.

Then b2+c2
2
, b3+c3

2
≤ 1 and b4+c4

2
, b5+c5

2
≤ 2, which implies that O(L−

E2 −E4) ⊂ O(KŶ0
)⊗ L1, contradicting pg(X0) = 0.

(λ1, λ2, λ3) = (1, 1, 7) : this case can be excluded since

4 = ∆3 · (−KŶ0
) = 3λ3 − 1−

5
∑

i=2

ci ⇒ 12 ≥
5

∑

i=2

ci = 16,

a contradiction.
This proves the proposition. �

Consider a one parameter family of bidouble covers X → Y as in
prop. 6.6. Then Y ′ := Y0 is a normal Del Pezzo surface with exactly
one node.

Let Ỹ be the blow up of Y ′ in the node and denote the exceptional
(−2)-curve of Ỹ over the node by A.

The following result concludes the proof of theorem 6.1.

Proposition 6.9. For the limit of a one parameter family of extended
Burniat surfaces with K2

S = 4 we have:

(1) if A does not intersect ∆ − A, then X0 is an extended Burniat
surface with K2

S = 4 ;
(2) if A intersects ∆− A, then X0 is a nodal Burniat surface with

K2
S = 4 .
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Proof. We can assume that Ỹ = P̂2(P1, . . . , P5), and w.l.o.g. P1, P4, P5

collinear, i.e., A ≡ L− E1 − E4 −E5.
Recall that we have shown that in both cases A is contained in the

branch locus, hence the two alternatives are that A is a connected
component of the branch locus, or not.

1) In the first case, argueing as in proposition 6.6, we get that the
total branch locus is ∆ ≡ −3KỸ + A.

It is easy to see that Ỹ contains exactly 8 lines l1, . . . , l8 which do
not intersect A. Then these 8 lines have to be contained in ∆.

Then ∆−A−
∑8

i=1 li ≡ 3L−
∑

Ei, which has to split into two Del

Pezzo conics, which then have to be L−E1 and 2L−
∑5

i=2Ei. Hence
we get an extended Burniat surface.
2) Here L− E1 − E4 −E5 ≡ A ≤ ∆ ≡ −KỸ .

Observe that Ỹ contains exactly 4 lines intersecting A: E1, E4, E5, L−
E2 − E3. By our local calculations in section 2 two of these four lines
are components of the total branch divisor and the two other not.

W.l.o.g. we can assume E1, L− E2 − E3 ≤ ∆. Since E4 and E5 are
not contained in the branch divisor, we see (writing ∆i as in the proof
of proposition 6.6) that(a4, b4, c4) = (a5, b5, c5) = (1, 1, 1).

Now it is straightforward that (λ1, λ2, λ3) = (3, 3, 3) (use the same
argument as in the proof of prop. 6.6 to exclude the cases (1, 3, 5) and
(1, 1, 7)).

Since pg = 0, we have (up to a permutation of {1,2,3})

b1 + c1
2

=
a2 + c2

2
=
a3 + b3

2
= 2.

W.l.o.g. we can assume (a1, b1, c1) = (−1, 1, 3); then E1, L − E2 −
E3 ≤ ∆1.

Therefore

(a2, b2, c2) ∈ {(3,−1, 1), (1,−1, 3)}

and

(a3, b3, c3) ∈ {(3, 1,−1), (1, 3,−1)}.

But only (a2, b2, c2) = (3,−1, 1) and (a3, b3, c3) = (1, 3,−1) is possi-
ble (since a cubic cannot have two triple points, i.e., this would con-
tradict the effectivity of ∆i for some i).

Therefore we get a nodal Burniat surface. �

7. Nodal and extended Burniat surfaces do not form a
closed set for K2

S = 3

We are going to exhibit surfaces which are in the closure of the family
of nodal and extended Burniat surfaces, but for which the image of the
bicanonical map is a normal cubic with other singularities than 3 nodes.

In our first example we exhibit a 3 -dimensional family with a 4-nodal
cubic as image.
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Consider a specialization of the 6 points P1, . . . , P6 in P2 so that
P1, P2, P3 become collinear, and, more precisely, the point P2 moves in
the line joining P4 and P6 till it reaches the line joining P1 and P3.

Then P1, . . . , P6 are the vertices of a complete quadrilateral with
sides N1, N2, N3, N4: here we identify N4 to the (-2) curve N4 ≡ L −
E1 − E2 − E3 on the weak Del Pezzo Ỹ of degree 3 obtained blowing
up the 6 points. Our notation for N1, N2, N3 remains the same, and Ỹ
is the minimal resolution of the 4-nodal cubic surface Y ′ := Σ.

We consider exactly the same divisors as the strictly extended Bur-
niat divisors in 4) of definition 1.1. We obtain a three dimensional
family of bidouble covers X of Σ, with total branch locus consisting of
9 connected components, namely:

N1, N2, N3; Γ1,Γ2,Γ3; G1, G2, G3.

G1, G2, G3 correspond to the three diagonals of the quadrilateral, and
are the 3 lines of Σ not passing through the nodes, whereas Γ1,Γ2,Γ3

are conics as in definition 1.1. The canonical models X have therefore
4 nodes lying over the node of Σ corresponding to N4.

We have therefore proven:

Proposition 7.1. The closure of the (4-dimensional) open set corre-
sponding to nodal and extended Burniat surfaces with K2

X = 3 contains
a 3-dimensional family of canonical models which are bidouble covers
of a 4-nodal cubic surface Σ.

Each such surface X has 4 nodes, lying over one fixed node of Σ,
and where the bicanonical map Φ2 : X → Σ is unramified.

In our second example we obtain a 3-dimensional family of bidouble
covers of a cubic surface Y ′ with a singularity of type D4.

We give this example using the different planar realization which
was indeed the way we found our first description of the deformation
of nodal Burniat surfaces with K2

S = 3 to extended Burniat surfaces.
To do this, we relabel the 6 points in the plane as follows:

P ′
3 := P4, P

′
2 := P5, P

′
1 := P6.

We have therefore irreducible rational curves

Di,1 := L−Ei − Ei+1, Di,2 := Ni = L−Ei − E ′
i+1 − E ′

i+2,

Di,3 := Gi = L−Ei −E ′
i

on the weak Del Pezzo Ŷ of degree 3.
Blowing down the 3 (-1) curves Di,1 (i = 1, 2, 3) first, and then the

strict transform of the 3 (-2) curves Di,2 ( i = 1, 2, 3) we obtain another
copy of the projective plane where one has blown up three points Qi

(i = 1, 2, 3) and three points Q′
i (i = 1, 2, 3), where Q′

i is infinitely near
to Qi.
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We denote by slight abuse of notation by Qi the full transform of the
point Qi, namely, the divisor Di,1+Di−1,2, and by Q′

i the full transform
of the point Q′

i,namely, the divisor Di,1.
The pull back of the system of lines in the new P2 is, by the Hurwitz

formula, the linear system

L := 4L− 2
∑

i

Ei −
∑

i

E ′
i.

And the curve Di,3 is linearly equivalent to

Di,3 ≡ L− 2Di+1,1 −Di,2 = L −Qi+1 −Q′
i+1.

Hence Di−1,2 = Qi − Q′
i, and we can write the branch loci for the

extended Burniat surfaces as:

∆i ∈ Di,3+Di+1,2+|Di,3+Di+1,3| = Di,3+|Qi−1−Q
′
i−1|+|Di,3+Di+1,3| =

= |L−Qi+1−Q
′
i+1|+ |Qi−1−Q

′
i−1|+ |2L−Qi+1−Q

′
i+1−Qi−1−Q

′
i−1| =

= |L −Qi+1 −Q′
i+1|+Ni−1 + |2L−Qi+1 −Q′

i+1 −Qi−1 −Q′
i−1|.

Now, we simply let the three points Q1, Q2, Q3 become collinear, but
we let the tangent directions Q′

i remain general.
The blow up of the plane in the 6 points possesses now 4 (-2) curves,

the three curves N1, N2, N3 and the strict transform N of the line
through Q1, Q2, Q3. Since N intersects each Ni and these are disjoint,
the corresponding normal Del Pezzo surface Y ′ has a singularity of type
D4.

Letting the branch divisor be as before (namely, take pull backs of
general conics in |2L−Qi+1 −Q′

i+1 −Qi−1 −Q′
i−1|), we obtain

Proposition 7.2. The closure of the (4-dimensional) open set corre-
sponding to nodal and extended Burniat surfaces with K2

X = 3 contains
a 3-dimensional family of canonical models which are bidouble covers
of a normal cubic surface Y ′ with a singularity of type D4.

The branch locus on Y ′ has the singular point as an isolated point,
and the local covering is determined by the epimorphismD4 → (Z/2Z)2 =
(D4)

ab of the local fundamental group of the singularity to its abelian-
ization.

Proof. The inverse image of the (-2) curves in the bidouble cover are:
the inverse image N ′ of N , which is a (-8) curve, and, for each Ni, there
is a pair of (-1) curves meeting N ′. After contracting the 6 (-1) curves
we obtain a (-2) curves.

�

Acknowledgements: Thanks to Stephen Coughlan for writing a MAGMA
script in order to verify the calculations of proposition 5.5.
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8. Appendix: an alternative proof of statements 1), 2), 3)
of proposition 5.5

In this appendix we present other methods to calculate the space
of sections of twisted logarithmic sheaves, in particular a fibration
method.

Assume that we have d smooth rational curves Cα ⊂ Y contained
in a smooth algebraic surface Y , meeting with distinct tangents in a
point O, a divisor Bα on Cα of degree 0, 1 or 2, and disjoint from O,
and let Z be the blow up of Y in the point O. Denote by Dα the strict
transform of Cα, and denote by Ω1

Y ((logCα(−Bα))α∈A) the sheaf which
is the inverse image, under the residue sequence, of ⊕α∈AOCα

(−Bα).
Then by 4) of proposition 4.1 we have an exact sequence

0 → Ω1
Y ((logCα(−Bα))α∈A) →

→ p∗Ω
1
Z((logDα(−Bα))α∈A)(E) → Cd−2

O → 0

which is exact on global sections if

h := dimCH
1(Ω1

Y ((logCα(−Bα))α∈A)) = 0.

Or, more generally, iff h = h′, where

h′ := dimCH
1(Ω1

Z((logDα(−Bα))α∈A)).

Consider the exact sequence

0 → Ω1
Y → Ω1

Y ((logCα(−Bα))α∈A) →
d

⊕

α=1

OCα
(−Bα) → 0,

and assume that H2(Ω1
Y ) = 0.

Then h = a+b, where a is the number of α’s such that Bα has degree
2, while b is the difference of the dimensions between H1(Ω1

Y ) and the
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subspace generated by the Chern classes of the Cα’s such that Bα has
degree 0. If we choose Y = P2 then h = 0 as soon as no Bα has degree
2, and some Bα has degree 0.

Otherwise, one can calculate h′ in a similar way. We assume for
simplicity that Y = P2. We have a similar exact sequence

0 → Ω1
Z(E) → Ω1

Z((logDα(−Bα))α∈A)(E) →
d

⊕

α=1

OCα
(O − Bα) → 0,

and since H1(OCα
(O − Bα)) = 0 by our assumption, we get that h′ is

the dimension of the cokernel of
d

⊕

α=1

H0(OCα
(O − Bα)) → H1(Ω1

Z(E)).

To calculate the last space, observe that

Ω1
Z ⊗OE = OE(−2)⊕OE(1)

whence h1(Ω1
Z(E)) = h1(Ω1

Z) + 1 = 3.
These criteria can now be used in order to prove statements 1), 2),

3) of proposition 5.5.
We can prove 1) and 2) simultaneously for i = 1.
Observe that D1 = ∆1 +N1, that Λ1 = L1 +N1, and apply Lemma

5.1 in order to conclude that

H0(Ω1
Ỹ
(log(∆1))(E1 −E3 +N1)) ∼= H0(Ω1

Ỹ
(log(D1))(E1 − E3)).

By Lemma 4.1 we can blow down E3 and obtainH0(Ω1
Ỹ ′
(log(D′

1))(E1)).
In this case the respective degrees of the divisors Bα are 0, 1, 2 hence
h = 1. We have to decide whether h′ is 0 or 1. We contract E3, E4, E5,
and we let Z be the blow up of the plane in P1. We must calculate
h0(Ω1

Z(log(Cα(−Bα)))(E1)). Here the curves Cα are fibres of the ruling
of Z, f : Z → P1. Using the exact sequence

(∗∗) 0 → f ∗Ω1
P1 → Ω1

Z → ωZ|P1 = OZ(−F − 2E1) → 0

we obtain the analogous sequence

0 → f ∗OP1(1)(E1) → Ω1
Z(log(Cα)(E1) → OZ(−F − E1) → 0

to infer that

H0(f ∗OP1(1)(E1)) = H0(Ω1
Z(log(Cα))(E1)).

We are imposing some vanishing on three points lying in two fibres,
hence we get the sections ofH0(OZ(F+E1)) = p∗H0(OP2(1)) vanishing
in the three points P4, P5, P2, whence we conclude that this space has
dimension = 0.

This argument shows 1) also for i = 2, 3.
For a nodal Burniat with m = 2 the space H0(Ω1

Ỹ
(log(Di))(Ei −

Ei+2)), vanishes for i = 2, but it has dimension equal to 1 for i = 3,
since then the three points P4, P5, P1 are collinear.
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Let’s proceed with 2).
For i = 2, 3

H0(Ω1
Ỹ
(log∆i)(KỸ + Λi)) = H0(Ω1

Ỹ
(log∆i)(Ei − Ei+2)).

By applying again Lemma 4.1 for i = 3 we can blow down the curve
E2 and the curve E3 and apply the residue sequence to the sheaf
Ω1

Ỹ ′
(log∆′

3). Since each component is smooth and rational, we find

that H0(Ω1
Ỹ ′
(log∆′

3)) = ker(C4 → H1(Ω1
Ỹ ′
)), while H1(Ω1

Ỹ ′
(log∆′

3)) =

Coker(C4 → H1(Ω1
Ỹ ′
)).

The map is given by the Chern classes of L−E1, L−E4, L−E5, L−
E1 − E4 − E5. These generate a rank 4 subspace of the 4-dimensional
space H1(Ω1

Ỹ ′
) (we are blowing up 3 points in the plane), whence

h0(Ω1
Ỹ ′
(log∆′

3)) = 0, h1(Ω1
Ỹ ′
(log∆′

3)) = 0.
We conclude, by the exact cohomology sequence associated to

0 → Ω1
Ỹ ′
(log∆′

3) → f∗(Ω
1
Ỹ
(log∆3)(KỸ + Λ3)) → CP3

→ 0,

that h0(Ω1
Ỹ
(log∆3)(KỸ + Λ3)) = 1 + h0(Ω1

Ỹ ′
(log∆′

3)) = 1.

For the case i = 2 recall that ∆2 ∈ |L−E2−E4|+|L−E2−E5|+|2L−
E2 −E3 − E4 −E5| consists of three smooth connected components.

Blow down E1, E3, E4, E5 and obtain the ruled surface Z equal to
the blow up of the plane in P2. Denote by f : Z → P1 the standard
fibration.

The direct image ∆′
2 := f∗∆2 decomposes as the union of two fibres

F4 and F5 and a section C with C · E2 = 1.
We have to calculate the space of global sections of

F := MP1
Ω1

Z(logF4, logF5, logC(−P3))(E2)

satisfying two linear conditions imposed by the points P4, P5.
Using the exact sequence (**) we get the exact sequence

0 → MP1
OZ(E2) → F → MP3

MP1
OZ(−F − E2 + C) → 0.

Observe that OZ(−F−E2+C) has degree 0 on each fibre and degree
1 on E2. If D ≡ −F −E2 + C ≡ L−E2 is effective, then D is a fibre.
Since no fibre contains both P1, P3, we obtain

H0(MP3
MP1

OZ(−F −E2 + C)) = 0.

Since |E2| consists of the curve E2, which does not contain P1, we
conclude that H0(MP1

OZ(E2)) = H0(F) = 0.
To prove 3), by symmetry, we may assume without loss of generality

that i = 1.
Blow down all the curves Ej excet E1, so that , as usual, we have

the blow up Z of the plane in a point (P1) and the standard fibration
f : Z → P1.

By Lemma 4.1 and since E3 is a connected component of D1, the
direct image F of Ω1

Ỹ
(log(D1)(E1 − E3) is contained in Ω1

Z(log(F2 +
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F6+F4,5))(E1) where Fj denotes the unique fibre of f passing through
the point Pj.

More precisely, we have an exact sequence

0 → MP2
MP4

MP5
MP6

OZ(F + E1) → F → OZ(−F −E1) → 0.

Clearly H0(OZ(−F −E1)) = 0 since F · (F +E1) = 1. On the other
hand H0(OZ(F + E1)) = H0(OP2(1)), hence the fact that the points
P2, P4, P5, P6 are not collinear implies the desired vanishing

H0(MP2
MP4

MP5
MP6

OZ(F + E1)) = 0.

Thus 3) is proven.


