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FAST AND ACCURATE CON-EIGENVALUE ALGORITHM FOR OPTIMAL

RATIONAL APPROXIMATIONS

T. S. HAUT AND G. BEYLKIN

Abstract. The need to compute small con-eigenvalues and the associated con-eigenvectors of
positive-definite Cauchy matrices naturally arises when constructing rational approximations with
an optimally small L∞ error. Specifically, given a rational function with n poles in the unit disk,
a rational approximation with m ≪ n poles in the unit disk may be obtained from the mth
con-eigenvector of an n × n Cauchy matrix, where the associated con-eigenvalue λm > 0 gives
the approximation error in the L∞ norm. Unfortunately, standard algorithms do not accurately
compute small con-eigenvalues (and the associated con-eigenvectors) and, in particular, yield few
or no correct digits for con-eigenvalues smaller than the machine roundoff.

We develop a fast and accurate algorithm for computing con-eigenvalues and con-eigenvectors

of positive-definite Cauchy matrices, yielding even the tiniest con-eigenvalues with high relative
accuracy. The algorithm computes the mth con-eigenvalue in O

(

m2n
)

operations and, since the
con-eigenvalues of positive-definite Cauchy matrices decay exponentially fast, we obtain (near)

optimal rational approximations in O

(

n
(

log δ−1
)

2
)

operations, where δ is the approximation

error in the L∞ norm. We derive error bounds demonstrating high relative accuracy of the
computed con-eigenvalues and the high accuracy of the unit con-eigenvectors. Finally, numerical
tests on random (complex-valued) Cauchy matrices show that the algorithm computes all the
con-eigenvalues and con-eigenvectors with nearly full precision.

1. Introduction

We present an algorithm for computing with high relative accuracy the con-eigenvalue decompo-
sition of positive-definite Cauchy matrices,

(1.1) Cum = λmum, Cij =
αiαj

1− γiγj
, i, j = 1, . . . , n,

where γi and αi are complex numbers and |γi| < 1. Although the con-eigenvalue decomposition (see
e.g. [21]) is less well-known than the eigenvalue decomposition or the singular value decomposition,
it arises naturally in constructing optimal approximations using exponentials or rational functions
[1, 2, 3, 10, 28, 5, 6]. For example, for a rational function f(z),

f(z) =

n∑

i=1

αi
z − γi

+

n∑

i=1

αiz

1− γiz
+ α0,

we may construct a rational approximation g(z) with m poles and with an error,

max
x∈[0,1]

∣∣f
(
e2πix

)
− g

(
e2πix

)∣∣ ≈ λm,

by solving the con-eigenvalue problem (1.1) (see Section 2.1 for more detail). Ordering the con-
eigenvalues, λ1 ≥ . . . ≥ λn > 0 (they may all be chosen positive), the number of poles m of the
approximant g(z) corresponds to the index of the con-eigenvalue λm and leads to a near optimal
approximation in the L∞-norm with the error close to λm.

Unfortunately, current algorithms compute an approximate con-eigenvalue λ̂m with an error no

better than
∣∣∣λm − λ̂m

∣∣∣ / |λ1| = O (ǫ), and an approximate unit con-eigenvector ûm with an error no
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better than

‖um − ûm‖2 = O (ǫ) /absgapm, absgapm ≡ min
p6=m
|λm − λp| / |λ1| ,

where ǫ denotes the machine roundoff. This implies that a computed con-eigenvalue smaller than
|λ1| ǫ will generally have few or no correct digits. Hence, in order to obtain a rational approximation
with accuracy λm . 10−7, we are forced to use at least quadruple precision. Since quadruple precision
is typically not supported by the hardware, it slows down the computation by an unpleasant factor
(between 30 and 100). Another undesirable feature of current algorithms to solve (1.1) is the O

(
n3
)

complexity for finding the m≪ n poles of g(z), where n is the original number of poles of f(z).
Although the construction of optimal rational approximations in the L∞-norm has a long history

(starting with the seminal papers [1, 2, 3]), the difficulties mentioned above limit practical appli-
cations of such approximations to situations where the problem size is relatively small and a low
accuracy is acceptable. In this regard, we view our results as a stepping stone toward a wider use
of optimal L∞-approximations in numerical analysis.

We develop a fast and accurate algorithm for con-eigenvalue/con-eigenvector computations of
positive-definite Cauchy matrices that addresses both of the difficulties mentioned above. Our
algorithm computes the mth con-eigenvalue/con-eigenvector in O

(
m2n

)
operations (see Section 5).

Since the con-eigenvalues of positive definite Cauchy matrices decay exponentially fast, for a given
desired accuracy ‖f

(
e2πix

)
− g

(
e2πix

)
‖∞ ≈ δ, the number of poles m in the approximant g(z) is

O
(
log δ−1

)
. Therefore, the complexity of our algorithm is O

(
n
(
log δ−1

)2)
, i.e., it is essentially

linear in the number of original poles n and, thus, is mostly controlled by the number of poles of
the final optimal approximation.

We also prove that the con-eigenvalue algorithm achieves high relative accuracy, i.e., the computed

con-eigenvalue λ̂m satisfies
∣∣∣λm − λ̂m

∣∣∣ / |λm| = O (ǫ), and the computed unit con-eigenvector ûm

satisfies

‖um − ûm‖2 = O (ǫ) /relgapm, relgapm ≡ min
l 6=m
|λm − λl| / (λl + λm) ,

(see Theorems 6 and 7 for the exact statement). In contrast to the usual perturbation theory for
general matrices, we show that small perturbations of the poles γm and residues αm (determining
the Cauchy matrix C = C(α, γ) in (1.1)) lead to correspondingly small perturbations in the con-
eigenvalues and con-eigenvectors, as long as the poles are well separated in a relative sense and
are not too close to the unit circle. Thus, constructing optimal rational approximations using our
con-eigenvalue algorithm is a fast and robust procedure.

Our approach is inspired by papers [15, 13, 17, 11, 19], which develop algorithms and theory for
highly accurate SVDs of certain structured matrices. Generally speaking, high relative accuracy
is achieved when it is possible to avoid catastrophic cancellation resulting from subtracting two
close floating point numbers (see [12] for a comprehensive analysis of when efficient and accurate
algorithms are possible using floating point arithmetic). Classes of matrices for which highly ac-
curate SVD or eigenvalue algorithms exist include bi-diagonal matrices [14, 9, 18], acyclic matrices
[16], graded positive-definite matrices [15], scaled diagonally dominant matrices [4], totally positive
matrices [22], symmetric indefinite matrices [27], and Cauchy matrices (as well as, more generally,
matrices with displacement rank one) [11].

The con-eigenvalue algorithm considered here is based on computing the eigenvalue decomposition
of the product, CC, of positive-definite Cauchy matrices C and C, and is similar to the algorithm
in [13] for the generalized eigenvalue decomposition, as well as the algorithm in [17] for the product
SVD decomposition. We also rely on the algorithm in [11] for computing, with high relative accu-
racy, the Cholesky decomposition (with complete pivoting) C = (PL)D2 (PL)∗ of a positive-definite
Cauchy matrix C. However, since we are interested in computing only con-eigenvalues of some ap-
proximate size δ, we stop Demmel’s Cholesky algorithm once the diagonal elements Dii are small
with respect to δ and the desired precision. Since the diagonal elements Dii decay exponentially fast,
this allows us to accurately compute con-eigenvalues of size δ (and the associated con-eigenvectors)
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in O
(
n
(
log δ−1

)2)
operations. We also note that the error bounds developed in [17] are not ap-

plicable to our problem (the condition number of a Cauchy matrix cannot be appreciably reduced
by scaling the rows and columns). In contrast, the error bounds developed in this paper yield high
relative accuracy for all the computed con-eigenvalues larger than δ (and high accuracy for the
con-eigenvectors), as long as the unit triangular matrix, L, is well-conditioned, and the relative gap
between the con-eigenvalues is not too small (we have always observed this to hold in practice).
In particular, if δ is chosen small enough, the full con-eigenvalue decomposition is obtained with
high relative accuracy. The derivation of our error bounds makes crucial use of the component-wise
perturbation theory developed in [15] for the singular vectors of graded matrices (see also [24]), as
well as the component-wise error analysis in [15] and [23] for the one-sided Jacobi method. We also
use the error analysis given in [19] for the Householder QR method with complete pivoting.

It has been an established practice, in both numerical analysis and signal processing, to use L2-
type methods for representing functions. On the other hand, it has been understood for some time
that nonlinear approximations may be far superior in achieving high accuracy with a minimal num-
ber of terms (see e.g., [25]). However, in spite of many interesting theoretical results, the widespread
use of nonlinear approximations has been limited by a lack of efficient and accurate algorithms for
computing them. Our algorithms provide the necessary tools for computing optimal nonlinear ap-
proximations via rational functions, and come with guaranteed accuracy bounds. We believe that
these new accurate algorithms may greatly extend the practical use of L∞ approximations in nu-
merical analysis and signal processing. We note that we have already developed several applications
of these algorithms in numerical problems (to be published elsewhere).

We start in Section 2.1 by describing in some detail the reduction problem for rational functions,
and connect its solution to a con-eigenvalue problem for positive definite Cauchy matrices. In
Section 2.2, we review the results in [15, 13, 17, 11, 19] needed in our derivations (those familiar
with highly accurate SVD/eigenvalue algorithms may refer to this section only as needed). Next, in
Section 3.1, we formulate the con-eigenvalue problem in terms of an associated eigenvalue problem,
and provide an informal description of the algorithms of this paper (we defer proofs of accuracy
of these algorithms to Section 5). We then verify the accuracy of the con-eigenvalue algorithm
by comparing the con-eigenvalue decomposition of randomly generated Cauchy matrices with that
obtained via standard algorithms in extended precision. Finally, in Section 5, we prove that the
con-eigenvalue algorithm achieves high relative accuracy and that the con-eigenvalue decomposition
is stable with respect to small perturbations of the parameters defining the Cauchy matrix.

2. Preliminaries

We now provide the necessary background for the con-eigenvalue algorithm. In Section 2.1,
we explain how the accurate computation of small con-eigenvalues and associated con-eigenvectors
allows us to construct optimal rational approximations. Section 2.1 provides important motivation
for our algorithm, but is not needed to understand the rest of the paper. In Sections 2.2 - 2.4,
we provide necessary background on computing highly accurate SVDs, as well some error bounds
that are needed for the analysis of the con-eigenvalue algorithm. Although the results we need in
[15, 23, 13, 24, 11, 19] are only stated there for real-valued matrices, they carry over to complex-
valued matrices with minor modifications and are formulated as such.

2.1. Reduction procedure. We start with a rational function f(z),

(2.1) f(z) =

n∑

i=1

αi
z − γi

+

n∑

i=1

αiz

1− γiz
+ α0,

where the residues αj and poles γj are complex, and |γj | < 1. We consider an algorithm to find
a rational approximation r(e2πix) to f(e2πix) with a specified number of poles and with a (nearly)
optimally small error in the L∞-norm. The algorithm is based on a theorem of Adamyan, Arov,
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and Krein (referred to below as the AAK Theorem) [3]. We note that the formulation given below
in terms of a con-eigenvalue problem is similar to the approach taken in [10] and [5].

Given a target accuracy δ for the error in the L∞-norm, the steps for computing the rational
approximant r(z),

r(z) =
m∑

i=1

βi
z − ηi

+
m∑

i=1

βiz

1− ηiz
+ α0,

are as follows:

(1) Compute a con-eigenvalue 0 < λm ≤ δ and corresponding con-eigenvector u of the Cauchy
matrix Cij = Cij(γi, αj),

(2.2) Cu = λmu, where u =




u1
u2
...
un


 , Cij =

aibj
xi + yj

, i, j = 1, . . . , n,

and ai =
√
αi/γi, bj =

√
αj , xi = γ−1

i , yj = −γj . The con-eigenvalues of C are labeled in
non-increasing order, λ1 ≥ λ2 ≥ · · · ≥ λn.

(2) Find the (exactly) m zeros ηj in the unit disk of the function

(2.3) v(z) =
1

λm

n∑

i=1

√
αi ui

1− γiz
.

The fact that there are exactly m zeros in the unit disk, corresponding to the index m of
the con-eigenvalue λm, is a consequence of the AAK theorem. The poles of r(z) are given
by the zeros ηj of v(z).

(3) Find the residues βm of r(z) by solving the m×m linear system

(2.4)

m∑

i=1

1

1− ηiηj
βi =

n∑

i=1

αi
1− γiηj

.

The L∞-error of the resulting rational approximation r(e2πix) satisfies ‖f − r‖∞ ≈ λm, and is close
to the best error in the L∞-norm achievable by rational functions with no more than m poles in
the unit disk. Hence, we are led to the problem of computing, to high relative accuracy, small
con-eigenvalues and the associated con-eigenvectors of positive-definite Cauchy matrices.

Remark 1. In practice, finding the new poles ηi using the formula for v(z) in (2.3) is ill-advised, since
evaluating v(z) in this form could result in loss of significant digits through catastrophic cancellation.
It turns out that the con-eigenvector components satisfy ui =

√
αiv (γi), i = 1, . . . , n, which, along

with the n poles 1/γi of v(z), completely determines (2.3). Since the poles γi of f(z) are often close
to the poles ηi of r(z), we have observed that evaluating v(z) by using rational interpolation via
continued fractions with the known values v (γi) allows us to obtain the new poles ηi with nearly
full precision.

2.2. Accurate SVDs of matrices with rank-revealing decompositions. According to the
usual perturbation theory for the SVD (see e.g. [8]), perturbations δA of a matrix A change the ith
singular value σi by δσi and corresponding unit eigenvector ui by δui, where (assuming for simplicity
that σi is simple),

(2.5) |δσi| /σ1 ≤ ‖δA‖ , ‖δui‖ ≤
‖δA‖

absgapi
, absgapi = min

i6=j
|σi − σj | /σ1.

Therefore, small perturbations in the elements of A may lead to large relative changes in the small
singular values and the associated singular vectors. Moreover, since standard algorithms compute an
SVD of some nearby matrix A+ δA, where ‖δA‖ / ‖A‖ = O (ǫ), the perturbation bound (2.5) shows
that the computed small singular values and corresponding singular vectors will be inaccurate.
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In contrast, the authors in [13] show that, for many structured matrices, the ith singular value
σi ≪ σ1 and the associated singular vector are robust with respect to small perturbations of the
matrix that preserve its underlying structure. The sensitivity is instead governed by the ith relative
gap

relgapi = min
i6=j

|σi − σj |
σi + σj

.

More precisely, let us consider the class of matrices for which a rank-revealing decomposition A =
XDY ∗ is available and may be computed accurately. Here X and Y are n×m well-conditioned ma-
trices andD is anm×m diagonal matrix that contains any possible ill-conditioning of A. As is shown
in [13], a perturbation of A = XDY ∗ that is of the form A+ δA = (X + δX) (D + δD) (Y + δY )

∗
,

where

(2.6)
‖δX‖
‖X‖ = O (ǫ) ,

‖δY ‖
‖Y ‖ = O (ǫ) ,

|δDii|
|Dii|

= O (ǫ) ,

changes the ith singular value σi and associated left (or right) singular vector ui by amounts δσi
and δui bounded by

(2.7)
|δσi|
σi
≤ max (κ (X) , κ (Y ))O (ǫ) , ‖δui‖ ≤

max (κ (X) , κ (Y ))

relgapi
O (ǫ) ,

where κ(X) = ‖X‖
∥∥X†

∥∥ and X† denotes the pseudo-inverse of A. One reason this class of matrices
is so useful is that Gaussian elimination with complete pivoting (GECP) (or simple modifications)
computes accurate rank-revealing decompositions of many types of structured matrices (see [13] and
[11]). Moreover, small perturbations of such matrices that preserve their underlying structure lead
to small perturbations in the rank-revealing factors and, therefore, small relative perturbations of
the singular values.

Given the decomposition A = XDY ∗, it is shown in [13] (see Algorithm 3.1) that an SVD ofAmay
be computed with high relative accuracy, and with about the same cost as standard, less accurate
SVD algorithms for dense matrices. The key to this algorithm is the one-sided Jacobi algorithm
(briefly reviewed in Section 2.4), which, with an appropriate stopping criterion, accurately computes
the SVD of matrices of the form DB, where D is diagonal (and typically highly ill-conditioned)
and B is well-conditioned (see [15] and [23]). In the application we are considering, X = Y and D
has positive decreasing diagonal elements, and the following simplified version of this algorithm (see
[23]) suffices.

Algorithm 1 SVD_RRD (X,D) computes an accurate SVD of A = XDX∗. Input: RRD factors
X (n×m) and D (m×m). Output: SVD factors U and Σ (XDX∗ = UΣ2U∗).

(U,Σ, V )← SVD_RRD (X,D)

1. Compute QR factors (Q,R)← Householder_QR(XD)
using Householder reflections (may use optional column pivoting)

2. Compute SVD factors (U,Σ, V )← Jacobi_SVD(R) (RD =
UΣV *) using the

one-sided Jacobi algorithm in [15]

4. Output QU and Σ

Algorithm 1 yields computed singular values σ̂i and left (or right) singular vectors ûi that satisfy

(2.8)
|σi − σ̂i|

σi
≤ κ (X)O (ǫ) ,

(2.9) ‖wi − ŵi‖ ≤
κ (X)

relgapi
O (ǫ) ,
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2.3. Computing rank-revealing decompositions. In this section we review how a modification
of GECP computes accurate rank-revealing decompositions of Cauchy matrices [11]. We also review
how a variant of the QR Householder algorithm with complete pivoting computes accurate rank-
revealing decompositions of graded matrices [19].

2.3.1. LDU factorization of Cauchy matrices. We describe Demmel’s algorithm (see Algorithms 3 and 4
in [11] and Algorithm 2.5 in [7]) for computing an accurate rank-revealing decomposition of a
n × n positive-definite Cauchy matrix Cij = aibj/ (xi + yj). The algorithm is based on a mod-
ification of Gaussian elimination for computing, in O

(
n2
)

operations, the Cholesky factorization

C = (PL)D (PD)∗ of a positive-definite Cauchy matrix (more generally, the algorithm computes
an LDU factorization for an arbitrary Cauchy matrix in O

(
n3
)

operations). Here P is a permuta-
tion matrix, L is a unit lower triangular matrix, and D is a diagonal matrix with positive diagonal

elements. It is shown in [11] that, remarkably, the components of the LDU factors L̂, Û , and D̂ are
computed to high relative accuracy,

(2.10)
∣∣∣L̂ij − Lij

∣∣∣ ≤ |Lij | cnǫ,
∣∣∣Ûij − Uij

∣∣∣ ≤ cn |Uij | ǫ,
∣∣∣D̂ii −Dii

∣∣∣ ≤ cn |Dii| ǫ,

where cn is a modest-sized function of n. The basic reason the algorithm achieves high relative
accuracy is that the only operations involved are multiplication and division of floating point numbers
(additions and subtractions in the algorithm involve only xi and yj , which are assumed to be exact).

We now review the basic idea behind the algorithm in [11]. First, ignoring pivoting for a moment,
we assume that, after k steps of Gaussian elimination, the Cauchy matrix is transformed to the
matrix G(k),

G(k) =

(
G

(k)
11 G

(k)
12

0 G
(k)
22

)
.

The elements of the Schur complement G
(k+1)
22 may be computed from those of G

(k)
22 by using the

recursion

G
(k)
ij =

(
xi − xk
xi + yk

)(
yj − yk
yj + xk

)
G

(k−1)
ij , i, j = k + 1, . . . , n.(2.11)

Introducing pivoting, we observe that the matrix G(k) may be obtained by applying Gaussian elim-
ination to a Cauchy matrix C(k) = C(k)

(
a(k), b(k), x(k), y(k)

)
, where a(k), b(k), x(k) and y(k) are

permutations of a, b, x and y corresponding to the row and column pivoting of C. As long as the
vectors a, b, x and y are permuted according to the pivoting of G(k), the recursive formula (2.11)
still holds.

It is observed in [11] that if C is positive-definite (and, therefore, only diagonal pivoting is needed),
then the pivot order may be determined in advance in O

(
n2
)

operations by computing diag
(
G(k)

)

from formula (2.11). Once the correct pivot order is known, we do not need to compute the entire
Schur complement G(k) to extract the components of L and U , but only its kth row and kth column.
Indeed, we may use Algorithm 2.5 in [7], which uses the displacement structure of C, to compute an
accurate Cholesky decomposition in O

(
n2
)

operations. To see how, note that it easily follows from
(2.11) that the Schur complement of a Cauchy matrix is a Cauchy matrix,

G(k) (i, j) =
α
(k)
i β

(k)
j

xi + yj
, i, j = k + 1, . . . , n,

where the parameters α
(k)
i and β

(k)
i satisfy the recursion

α
(k)
i =

xi − xk
xi + yk

α
(k−1)
i , β

(k)
i =

yi − yk
yi + xk

β
(k−1)
i , i = k + 1, . . . , n.

Since the kth column L (:, k) may be extracted from G(k) (:, k), we therefore only require O (n) oper-

ations at each step of Gaussian elimination to compute L (:, k). Updating α
(k)
i and β

(k)
i also requires
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only O (n) operations. In Section 3.2 (see Algorithms 3 and 4), we present an O
(
n
(
log δ−1

)2)

algorithm to compute con-eigenvalues greater than a user specified cutoff δ and, as a result, yielding
a fast algorithm for obtaining nearly optimal rational approximations.

Once an accurate LDU factorization C ≈
(
PL̂
)
D̂
(
PD̂

)∗
is available, an accurate SVD of C

may be obtained using Algorithm 1.

2.3.2. Rank-revealing decompositions of graded matrices. It is shown in [19] that the Householder
QR algorithm with complete pivoting may be used to compute a rank-revealing decomposition of a
graded matrix of the form A = D1BD2. Here D1 and D2 are diagonal matrices that account for
the ill-conditioning of A. Recall that the Householder QR algorithm uses repeated applications of
orthogonal matrices to reduce A to an upper-triangular matrix R. On the first step, the parameter
β1 and the vector v1 of the Householder reflection matrix Q(1) = I − β1v1v∗1 are chosen so that

Q(1)




a11
a21
...
an1


 =




a
(1)
11

0
...
0


 .

Consequently, the first application of Q(1) to A results in a matrix of the form

A(1) = Q(1)A =




a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(1)
22 . . . a

(1)
2n

...
...

. . .
...

0 a
(1)
n2 . . . a

(1)
nn



.

This process is repeated on the (n− 1) × (n− 1) lower block
[
a
(1)
ij

]
2≤i,j≤n

and, after n − 1 such

steps, A(n−1) = Q(n−1) . . . Q(1)A = R, where R is upper triangular. In the version considered in
[19], the rows of A are first pre-sorted so that so that ‖A (1, :)‖∞ ≥ · · · ≥ ‖A (n, :)‖∞. The algorithm
then proceeds as above, except that at each step, k, column pivoting is performed to ensure that∥∥A(k) (k : n, k)

∥∥
2
≥ · · · ≥

∥∥A(k) (k : n, n)
∥∥
2
. Letting P1 denote the row permutation matrix that

pre-sorts the rows of A, and letting P2 denote the column permutation matrix corresponding to the
column pivoting, the QR Householder algorithm produces the QR factorization P1AP2 = QR.

Following [19], we consider the error analysis of the Householder algorithm (without pivoting)
applied to P1AP2, where P1 and P2 are chosen so that no column or row exchanges are necessary (e.g.
the matrix A is pre-pivoted). Assume that the matrix P1AP2 may be factored as P1AP2 = D1BD2,
where D1 and D2 are diagonal matrices, and that the Householder algorithm, applied to the row-

scaled matrix C = D1B, produces intermediate matrices C(k) with columns c
(k)
j . Finally, define the

quantities ρ, µ, and ψ by

(2.12) ρ = max
i

maxj,k

∣∣∣c(k)ij
∣∣∣

maxj |cij |
, µ = max

k
max
j≥k

∥∥∥c(k)j (k : m)
∥∥∥

∥∥∥c(k)k (k : m)
∥∥∥
, ψ = max

1≤i≤n

i≤k≤n

maxj |ckj |
maxj |cij |

.

The above quantities measure the extent to which the Householder algorithm preserves the scaling
in the intermediate matrices A(k), and are almost always small (this is analogous to the pivot growth
factor in Gaussian elimination with row pivoting). It is shown in [19] that

Theorem 2. Suppose that A is pre-pivoted, and the Householder algorithm is used to compute the

upper triangular matrix R̂ of the QR decomposition. Then there is an orthogonal matrix Q such that

QR̂ = D1 (B + δB)D2, where δB satisfies

‖δB‖ ≤ ρψµ ‖B‖O (ǫ) ,
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and ρ, µ, and ψ are defined in (2.12).

In [19] Theorem 2 is combined with the theory developed in [13] (e.g., see Theorems 4.1 and 4.2
in [13]) to show that the QR algorithm with complete pivoting produces accurate rank revealing
decompositions of graded matrices of the form A = D1BD2, as long as the principal minors of B are
well-conditioned and the diagonal elements ofD1 andD2 are approximately decreasing in magnitude.
In our specific application, we are able to obtain stronger error bounds (see Proposition 10).

Remark. Instead of pre-sorting the rows of A and applying the Householder algorithm with column
pivoting, one may also use a version of the Householder algorithm in which both row and column
pivoting is employed (see [19] for more details). Gaussian elimination with complete pivoting may
also be used to obtain accurate rank-revealing decompositions of graded matrices [13].

2.4. Modified one-sided Jacobi algorithm . The heart of Algorithm 1 is the modified one-sided
Jacobi algorithm, which accurately computes the SVD of matrices of the form DB and BD, where
D is diagonal and typically highly graded, and B is well-conditioned (see [15] and [23]). Although
we focus on the one-sided Jacobi algorithm as applied to G = BD, analogous considerations apply
to G = DB by replacing G by G∗. The one-sided Jacobi algorithm works by applying a sequence of
Jacobi matrices J1, . . . , JM to G from the right (i.e., the same side as the scaling, which ensures that
components of the right singular vectors are computed with high relative accuracy). Each Jacobi
matrix J is chosen to orthogonalize two selected columns, and one sweep consists of orthogonalizing
columns in the order (1, 1), (1, 2), . . . , (1, n), followed by columns (2, 3), (2, 4), . . . , (2, n), and so on.
Sweeps are repeated until all the columns are orthogonal to each other to within the bound

G (J1 · · · JM ) =W,
|w∗
iwj |

|w∗
iwi|

1/2 |w∗
iwi|

1/2
≤ nǫ, if i 6= j.

This stopping criterion is used to ensure that even the smallest singular values are computed with
high relative accuracy. The SVD of G = UΣV ∗ immediately follows by taking Σii = W (:, i),
V =W/Σ, and U = (J1J2 · · · JM )

∗
.

It will be crucial for the error bounds developed in this paper that the components of the right
singular vectors of DB (or the left singular vectors of BD) scale in a way similar to D, and are
computed accurately relative to this scaling. At each step m of the Jacobi algorithm, we write
(J0 · · · Jm)G = BmDm, where the columns of Bm have unit l2-norm and the matrix Dm is diagonal.

Defining ν = max1≤m≤M κ2 (Bm)2, we then have the following result from [23] (an improvement on
results in [15]).

Theorem 3. Let G = DB be a n×n full-rank, complex-valued matrix, where the diagonal matrix D
is chosen so that the l2-norm of each column of B is unity. Suppose that one-sided Jacobi algorithm
is used to compute an approximation v̂i to the ith left singular vector vi of G (normalized so that
vi (i) = 1), and the iteration converges after M sweeps. Then the following error bound holds on the
computed components of vi:

(2.13) |vi (j)− v̂i (j)| ≤ min

(∣∣∣∣
Dii

Djj

∣∣∣∣ ,
∣∣∣∣
Djj

Dii

∣∣∣∣
)(

ρ (M,n) ν

relgapi
ǫ +O

(
ǫ2
))

,

where

relgapi =
|σi − σj |
σi + σj

,

and ρ (M,n) is proportional to M · n3/2 .

3. Accurate con-eigenvalue decomposition (an informal derivation)

3.1. Accurate con-eigenvalue decompositions of positive-definite matrices with RRDs.
Since in the con-eigenvalues are determined only up to an arbitrary phase factor eiφ, we may assume
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they are real without loss of generality. Moreover, the con-eigenvalue problem for a positive-definite
Cauchy matrix Cij = aibj/ (xi + yj) reduces to an eigenvalue problem,

(3.1) CCu = λCū = |λ|2 u.
Remark 4. For applications to computing optional rational approximations (see Section 2.1), we
need to compute the con-eigenvalues/con-eigenvectors of Cauchy matrices of the slightly different
form, Cij = αiαj/ (1− γiγj), i.e., with ai =

√
αi/γi, bj =

√
αj , xi = γ−1

i , and yj = −γj . The same
reasoning as in [11] shows that the Cholesky computation of C (see Section 2.3.1) is performed with
high relative accuracy, as long as the differences γ−1

j −γi are computed with high relative accurately.

As noted in [11], γ−1
j − γi may be accurately computed using techniques from [26]. Alternatively, if

needed, we may compute some of these differences using extended precision without impacting the
overall speed of the algorithm.

We now discuss how to compute accurate eigenvectors and eigenvalues of matrices AA, where
A is of the form A = XD2X∗, with X a (well-conditioned) n × m matrix (m ≤ n) and D an
m × m diagonal matrix with positive diagonal entries. To do so, let us define the m × m matrix
G = D

(
XTX

)
D, and consider its SVD, G = WΛV ∗. Then G∗G = V Λ2V ∗, and the ith right

singular vector (1 ≤ i ≤ m), vi = V (:, i), satisfies
(
DX∗XD

) (
DXTXD

)
vi = λ2i vi. It then follows

that zi = XDvi is an eigenvector of AA with eigenvalue λ2i , since

AAzi =
(
XD2X∗

) (
XD2XT

)
zi =

= XD
(
DX∗XD

) (
DXTXD

)
vi = λ2iXDvi = λ2i zi.

and, thus, zi = XDvi is an eigenvector of AA. To summarize: given the decomposition A = XD2X∗,
an eigenvector zi (i ≤ m) of AA is given by zi = XDvi/Dii, where vi is the ith right singular vector
of the m×m matrix G = D

(
XTX

)
D.

To compute eigenvectors and eigenvalues of AA, we first use the Householder QR algorithm from
Section 2.3.2 to obtain an accurate rank-revealing decomposition of G = QR. Algorithm 1 then
computes an accurate SVD G =WΛ2V ∗ (see Section 2.2), where the diagonal elements of Λ contain
m con-eigenvalues of A, and the columns of the matrix T = X

(
DVD−1

)
containm con-eigenvectors.

The main steps are shown in Algorithm 2.

Algorithm 2 ConEig_RRD (X,D) computes accurate con-eigenvalue decomposition of XDX∗.
Input: rank-revealing factors X and D (of dimensions n × m and m × m). Output: m con-
eigenvalues/con-eigenvectors of XDX∗, contained in Λ and T .

(Λ, T )← ConEig_RRD (X,D)

1. Form G = D (XTX)D
2. Compute QR factors (Q,R, P1, P2)← Householder_QR of G (G =
P1QRP2), using complete pivoting (see Section 2.3.2)

3. Compute the SVD factors (W,Λ, V )← Jacobi (RP2) of RP2 (RP2 =
WΛ2V ∗), using one-sided Jacobi, applied from the right (see Section 2.4)

4. Form matrix of con-eigenvectors T =
XDV /D−1, and output con-eigenvalues Λ and con-eigenvectors T

In our application, the elements ofD decay exponentially fast and it would appear that computing
the con-eigenvectors zi = XDvi/Dii might lead to wildly inaccurate results even if vi is computed
accurately. The basic reason Algorithm 2 achieves high accuracy is that the matrix containing the
right singular vectors scales like |Vij | ≤ cV min (Dii/Djj , Djj/Dii), and the computed components

V̂ij are also accurate relative to the scaling in D, i.e.,
∣∣∣Vij − V̂ij

∣∣∣ ≤ min (Dii/Djj , Djj/Dii)O (ǫ) .
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3.2. Accurate con-eigenvalue decompositions of positive-definite Cauchy matrices. If
A = C is a positive-definite Cauchy matrix, then we know from Section 2.2 that the modified
GECP algorithm in [11] computes the Cholesky decomposition C = (PL)D2 (PL)∗ with high
relative accuracy. Therefore, Algorithm 2 for the eigenvalue problem of CC may be used, with
X = PL, to compute all the eigenvalues and eigenvectors (and, therefore, the con-eigenvectors and
con-eigenvalues of C). Alternatively, from the decomposition C = (PL)D2 (PL)

∗
, we may first use

the one-sided Jacobi algorithm of Section 2.4 to compute an SVD of PLD = UΣ (U ′) ∗ (where U and
U ′ are unitary matrices), yielding C = UΣ2U∗. Then, with X = U and D = Σ, Algorithm 2 com-
putes the eigenvalues and eigenvectors of CC. In our analysis of this version of the con-eigenvalue
algorithm, the error bounds for the computed con-eigenvectors are better but, in practice, we have
not observed a significant difference in accuracy between the two.

For our purposes, we are only interested in computing a single con-eigenvector with associated
con-eigenvalue of approximate size δ (see Section 2.1). However, the diagonal elements of D may
be many orders of magnitude smaller than δ, and it is then natural to expect that, by computing
a partial Cholesky decomposition of C, we may obtain the ith con-eigenvector in much fewer than
O
(
n3
)

operations. In this case, we stop Demmel’s algorithm for the Cholesky decomposition of C
once the diagonal elements Dii are small with respect to the product of δ and the machine round-off

ǫ, that is, as soon as Dmm ≤ δǫ for some m. We then obtain C ≈ C̃ =
(
P̃ L̃
)
D̃2
(
P̃ L̃
)∗

, where L̃

is an n×m matrix and D̃ is a diagonal m×m matrix. Algorithms 3 and 4 contain pseudo-code for

computing L̃, D̃, and P̃ . In the pseudo-code I (n,m) denotes the first m ≤ n columns of the n× n
identity matrix.

Algorithm 3 Pivot_Order (a, b, x, y, δ) pre-computes pivot order for Cholesky factorization of n×
n positive-definite Cauchy matrix Cij = aibj/ (xi + yj) . Input: a, b, x, and y defining Cij =
aibj/ (xi + yj), and target size δ of con-eigenvalue. Output: correctly pivoted vectors a, b, x, and y,

truncation size m, and m× n permutation matrix P̃(
a, b, x, y, P̃ ,m

)
← Pivot_Order (a, b, x, y, δ)

Form vector gi := aibi/(xi + yi), i = 1, . . . , n
Set cutoff for GECP termination: η := ǫδ

Initialize permutation matrix (n× n identity): P̃ = I (n, n)
Compute correctly pivoted vectors:

m := 1
while |g (m)| ≥ η or m = n− 1

Find m ≤ l ≤ n such that |g(l)| = max |g (m : n)|
Swap elements:

g(l)↔ g(m), x(l)↔ x(m) , y(l)↔ y(m)
a(l)↔ a(m),b(l)↔ b(m)

Swap rows of permutation matrix:

P̃ (l, :)↔ P̃ (m, :)
Update diagonal of Schur complement:

g(m+ 1 : n) :=
(x (m+ 1 : n)− x(m)) / (y (m+ 1 : n)− y(m)) g(m+ 1 : n)
Increment iteration count:

m := m+ 1
Output a, b, x, y, P̃ (1 : m,n) ,m
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Algorithm 4 Cholesky_Cauchy (x, y, a, b, δ) computes partial Cholesky factorization of positive-
definite Cauchy matrix Cij = aibj/ (xi + yj). Input: a, b, x, and y defining Cij = aibj/ (xi + yj),

and target size δ of con-eigenvalue. Output: n ×m matrix L̃, m ×m matrix D̃, and permutation
m× n matrix P in partial Cholesky factorization.

(L,D, P )← Cholesky_Cauchy (a, b, x, y, δ)

Compute pivoted vectors and matrix size m (Algorithm 3):(
a, b, x, y, P̃ ,m

)
← Pivot_Order(a, b, x, y, δ)

Initialize generators:

α := a, β := b
Compute first column of Schur complement:

G (:, 1) := α ∗ β/ (x+ y)
for k = 2,m

Update generators:

α (k : n) := α (k : n) ∗ (x (k : n)− x (k − 1)) / (x (k : n) + y (k − 1))
β (k : n) := β (k : n) ∗ (y (k : n)− y (k − 1)) / (y (k : n) + x (k − 1))

Extract kth column for Cholesky factors:

G (k : n, k) := α (k : n) ∗ β (k : n) / (x (k : n) + y (k : n))
Output partial Cholesky factors:

D̃ = diag (G(1 : n, 1 : m)1/2, L̃ = tril (G(1 : n, 1 : m)) D̃−2 + I (n,m), P̃

Once the partial Cholesky decomposition C ≈ C̃ =
(
P̃ L̃
)
D̃2
(
P̃ L̃
)∗

is computed, Algorithm 2

for the eigenvalue problem of C̃C̃ may then be used, with X = P̃ L̃ and D = D̃, to compute

accurate con-eigenvalues and con-eigenvectors of C̃ (see Theorem 7). As before, we may optionally

use Algorithm 1 to compute an SVD of P̃ L̃D̃ = Ũ Σ̃
(
Ũ ′

)∗
, yielding C̃ = Ũ

(
Σ̃
)2
Ũ∗. Since the

con-eigenvalues decay exponentially fast, the complexity of this algorithm is O
(
n
(
log(δǫ)−1

)2)

operations. Therefore, when used in the reduction procedure outlined in Section 2.1, the near
optimal rational approximation may be obtained by computing the SVD of a matrix that is roughly
the size of the optimal number of poles. The pseudo-code is given in Algorithm 5.

Algorithm 5 Con_Eigvector (a, b, x, y, δ) computes accurate con-eigenvalue decomposition of
positive-definite Cauchy matrix Cij = aibj/ (xi + yj) . Input: a, b, x, and y defining Cij =
aibj/ (xi + yj), and target size δ of con-eigenvalue. Output: con-eigenvalues lager than δ, and
associated con-eigenvectors.

(Λ, T )← Con_Eigvector (a, b, x, y, δ)

1. Compute partial Cholesky factors
(
L̃, D̃, P̃

)
←

Cholesky_Cauchy(a, b, x, y, δ) (Algorithm 4) and set X = P̃ L̃

2. Optionally, compute the SVD factors
(
Ũ , Σ̃, Ũ ′

)
←

SVD_RRD
(
P̃ L̃, D̃

)
(Algorithm 1) and set X = Ũ, D = Σ̃

3. Compute con-eigenvalues and con-eigenvectors (Λ, T )←
ConEig_RRD(X,D) (Algorithm 2) using Algorithm 2

4. Select largest l such that Λll ≥
δ and output Λ (1 : l, 1 : l), T (1 : n, 1 : l)
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4. Experimental verification

We test the accuracy of Algorithm 5 on 300 random Cauchy matrices, Cij = (αiαj) / (1− γiγj),
i, j = 1, . . . , 120. The complex poles γj = ρje

2πiφj and residues wj = ζje
2πiψj are generated by taking

ρj , φj , and ψj from the uniform distribution on (0, 1), and taking ζj from the uniform distribution

on (0, 10). For each randomly generated matrix, we first compute, as a gauge, CC = TΛ2T−1 using
the in-built Mathematica TM eigenvalue solver with 300 digits of precision, and compare the result

with T̂ and Λ̂ computed via Algorithm 5 using standard double precision. We then evaluate the

maximum relative error in the con-eigenvalues λj = Λjj , maxj

∣∣∣λj − λ̂j
∣∣∣ / |λj |, and the maximum

error in the computed con-eigenvectors, maxj

∥∥∥T (:, j)− T̂ (:, j)
∥∥∥
2
/ ‖T (:, j)‖2. We first scale T̂ (:, j)

by the complex-valued constant T (i0, j) /T̂ (i0, j), i0 = max1≤i≤n |T (i, j)|, since T (:, j) and T̂ (:, j)
are defined only up to an arbitrary complex-valued factor.

Figures 4.1 and 4.2 summarize the result of a typical run. Figure 4.1(a) shows the distribution of
the poles γj inside the unit disk and Figure 4.1(b) displays log10 λ

2
j as a function of the index j. Fig-

ure 4.2(a) shows the relative error in the con-eigenvalues
∣∣∣λj − λ̂j

∣∣∣ / |λj |, and Figure 4.2(b) displays

the error in the normalized con-eigenvectors ‖zj − ẑj‖2 / ‖zj‖2, as functions of the index j.

(a)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(b)

20 40 60 80 100 120

-100

-80

-60

-40

-20

Figure 4.1. (a) Distribution of poles γj determining Cauchy matrix C in a typical

run. (b) Exponential decay of the eigenvalues λ2j of CC as a function of the index
j using log10 scale.

(a) 20 40 60 80 100 120

-14.8

-14.6

-14.4

-14.2

-14.0

-13.8

(b)
20 40 60 80 100 120

-14.5

-14.0

-13.5

Error in con-eigenvectors, log scale

Figure 4.2. (a) Relative error in the jth con-eigenvalue,
∣∣∣λj − λ̂j

∣∣∣ / |λj |, as a func-

tion of the index j. (b) The error in the jth con-eigenvector, ‖zj − ẑj‖2 / ‖zj‖2,
zj = T (:, j), as a function of the index j.

In Figures 4.3 and 4.4 for each of the 300 random Cauchy matrices, we plot the error in the com-

puted con-eigenvalues
∣∣∣λ̂j − λj

∣∣∣ / |λj | and con-eigenvectors ‖ûj − uj‖2 / ‖uj‖2for j = 1, 40, 80, 120
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(note the exponential decay of λj). We see that the con-eigenvalues and the con-eigenvectors
are computed with nearly full precision for all the Cauchy matrices. In fact, the largest errors∣∣∣λ̂j − λj

∣∣∣ / |λj | and ‖ûj − uj‖2 / ‖uj‖2 in the computed con-eigenvalues and con-eigenvectors, for

any of the 300 Cauchy matrices and any 1 ≤ j ≤ n, are 5.3× 10−13 and 6.4× 10−13.

(a) 50 100 150 200 250 300

1.´10-13

2.´10-13

3.´10-13

4.´10-13

5.´10-13

(b) 50 100 150 200 250 300

5.´10-15

1.´10-14

1.5´10-14

(c) 50 100 150 200 250 300

5.´10-15

1.´10-14

1.5´10-14

2.´10-14

2.5´10-14

3.´10-14

(d) 50 100 150 200 250 300

1.´10-14

2.´10-14

3.´10-14

4.´10-14

5.´10-14

6.´10-14

7.´10-14

Figure 4.3. Relative error in the computed con-eigenvalues,
∣∣∣λ̂j − λj

∣∣∣ / |λj |, for

j = 1, 40, 80, 120 ((a), (b), (c), and (d), respectively), plotted for each of the 300
random Cauchy matrices.
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(b) 50 100 150 200 250 300
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(c)
50 100 150 200 250 300
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3.´10-14
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(d) 50 100 150 200 250 300
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Figure 4.4. Relative error in the computed con-eigenvectors, ‖ûj − uj‖2/‖uj‖2,
for j = 1, 40, 80, 120 ((a), (b), (c), and (d), respectively), plotted for each of the 300
random Cauchy matrices.
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5. Accuracy and perturbation theory

We show that Algorithm 5 of the previous section (with the optional SVD step included) achieves
high relative accuracy. We also demonstrate that small perturbations of ai, bj , xi, and yj determining
C lead to small relative perturbations of the con-eigenvalues and small perturbations of the angles
between subspaces spanned by the con-eigenvectors, as long as the parameters xi and yj are not
too close in a relative sense. We mention that omitting Step 2 in Algorithm 5 also yields high
relative accuracy, but with a more pessimistic error bound (in practice we have observed essentially
no difference in accuracy between the two algorithms).

For two (complex) floating point numbers x and y, we denote by fl (x⊙ y) the result of applying
the operation x ⊙ y in floating point arithmetic, where ⊙ is one of the four basic operations, ⊙ ∈
{+,−,×,÷}. We use that fl (x⊙ y) = (x⊙ y) (1 + δ), where |δ| ≤ cǫ+O

(
ǫ2
)
, ǫ denote the machine

round-off, and c is a small constant (cf. [20]). We will also abuse notation by letting fl (XY ) denote
the result of multiplying matrices X and Y in floating point arithmetic.

Let us define a quantity that will appear often in our estimates. For a given diagonal matrix D′,
we define

(5.1) dij (D
′) = min

(
|D′

ii|∣∣D′
jj

∣∣ ,
∣∣D′

jj

∣∣
|D′

ii|

)
, i, j = 1, . . . , n.

For the diagonal matrices considered in this paper, the elements of the matrix dij (D
′) decrease

exponentially fast away from its diagonal i = j.
In Theorems 5-7 below we always assume that the con-eigenvalues are simple, although this is not

a crucial restriction. In the statements and proofs of these theorems, the implicit constant factor
implied by the notation O (η) and O (ǫ) (here ǫ, η≪ 1) depends only on the size n of the matrix C.
We also use the notation O (1) to denote a quantity that depends only on the size n. We note that
all these implicit constants may be tracked more carefully and are modest-sized functions of n.

Theorem 5. Suppose that the parameters defining the positive-definite Cauchy matrix C = C(a, b, x, y)

are perturbed to ã = a+ δa, b̃ = b+ δb, x = x+ δx, and y = y + δy. Let us define

η = (1/η1 + 1/η2 + 1/η3)max {‖δa‖∞ , ‖δb‖∞ , ‖δx‖∞ , ‖δy‖∞} ,
where

η1 = min
i6=j

|xi − xj |
|xj |+ |xi|

, η2 = min
i6=j

|yi − yj|
|yj|+ |yi|

, η3 = min
i6=j

|xi + yj|
|xi|+ |yj|

.

Let C = LDL∗ denote the Cholesky factorization of C, and let C̃ = C(ã, b̃, x̃, ỹ) denote the Cauchy

matrix corresponding to the perturbed parameters. Finally, let λi, λ̃i and zi, z̃i denote the con-

eigenvalues and con-eigenvectors of C and C̃.

Then the con-eigenvalues λi and λ̃i satisfy
∣∣∣λi − λ̃i

∣∣∣
|λi|

≤ κ (L)O (η) ,

and the acute angle between the con-eigenvectors zi and z̃i is bounded by

sin (∠zi, z̃i) ≤
κ (L)

relgapi
O (η) , relgapi = min

j 6=i

|λi − λj |
|λi|+ |λj |

,

where κ(L) =
∥∥L−1

∥∥ ‖L‖ is the condition number.

Next we state

Theorem 6. Suppose that Algorithm 5 (with the optional SVD step included) is used to compute
the full con-eigenvalue decomposition of a positive-definite Cauchy matrix C. Suppose also that C
has the Cholesky factorization C = (PL)D2 (PL)

∗
, where P is the permutation matrix that encodes
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complete pivoting. Then, letting λi, λ̂i, and zi, ẑi denote exact and computed con-eigenvalues and
con-eigenvectors of C, we bound the relative error

∣∣∣λi − λ̂i
∣∣∣

|λi|
≤ (ρµψ + ν + κ (L))O (η) ,

and the acute angle between zi and ẑi

sin (∠ẑi, zi) ≤
ρµψ + ν + κ (L)

relgapi
O (ǫ) , relgapi = min

j 6=i

|λi − λj |
|λi|+ |λj |

.

The value of ν comes from the error analysis of the modified Jacobi algorithm described in Section 2.4.
The values of ρ, µ, and ψ come from the error analysis of the Householder QR algorithm described
in Section 2.3.2.

Theorem 7. Suppose Algorithm 5 (with the optional SVD step included) is used to compute m

approximate con-eigenvalues λ̂i and associated con-eigenvectors ẑi of a positive-definite Cauchy ma-
trix C. Suppose also that C has the Cholesky factorization C = (PL)D2 (PL)∗, where P is the

permutation matrix that encodes complete pivoting. Let L̃ = L (1 : n,m) and D̃ = D (1 : m, 1 : 1m),

where m is chosen so that Dmm ≤ δǫ for some δ > 0, and L̃D̃ = QR̃P̃ is the QR factorization of

L̃D̃ with column pivoting.
Then the acute angle between zm and ẑm may be bounded by

sin (∠ẑi, zi) ≤
(
ρµψ + ν + κ (L)

relgapi
+
‖C‖

relgapi
O (ǫ)

)
,

where, as in Theorem 6, the value of ν comes from the Jacobi algorithm and values of ρ, µ, and ψ
from the Householder QR algorithm.

Although estimates (2.8) and (2.9) imply that the SVD of the matrixG = Σ
(
UTU

)
Σ = (QW )SV

in Algorithm 5 is computed accurately (and, therefore, the con-eigenvalues are computed accurately),
the con-eigenvector zi is obtained from the right singular vector vi of G by the transformation
zi =

(
UΣ
)
vi/
∥∥(UΣ

)
vi
∥∥. Since the elements of Σ decay exponentially fast, the matrix UΣ has

a very large condition number, and it would at first appear that the computed con-eigenvector

ẑi = fl
((
Û Σ̂
)
v̂i/
∥∥∥
(
Û Σ̂
)
v̂i

∥∥∥
)

could be a wildly inaccurate approximation of zi, even if v̂i, Û , and

Σ̂ are known accurately. The reason Algorithm 5 achieves high accuracy is that the singular vectors vi
are bounded component-wise by |vi (j)| ≤ dij (Σ) c0, and the computed singular vector components
v̂i (j) of G are accurate relative to the scaling of Σ in the sense that |vi (j)− v̂i (j)| ≤ c0dij (Σ) ǫ.
The constant c0 is moderate sized if L, the unit triangular matrix from the Cholesky factorization
of C, is well-conditioned, and the relative gap, relgapi, is not too small. Recall that the quantities
dij (Σ) = min (Σii/Σjj ,Σjj/Σii) may be many orders of magnitude smaller than ǫ. Then it follows
that

(5.2)

∣∣∣∣∣
Σjj
Σii

vi (j)− fl

(
Σ̂jj

Σ̂ii
v̂i (j)

)∣∣∣∣∣ ≤ c1ǫ,

where c1 is a constant (small if c0 is small). It also turns out that ‖Σvi/Σii‖ ≥ 1. Therefore, since U is
orthogonal, and the ith exact and computed con-eigenvectors zi and ẑi are given by zi = U (Σwi/Σii)

and ẑi = fl
(
Û
(
Σ̂ŵi/Σ̂ii

))
, it follows from the above inequality that sin (∠zi, ẑi) = c1O (ǫ). The

details of the proof may be found in Section 5.2.
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5.1. Perturbation theorem. In this section, we prove Theorem 5. We start by formulating several
preliminary results. Lemma 8 describes how perturbations of the vectors a, b, x, and y defining
the Cauchy matrix C = C(a, b, x, y) change the factors L and D in the Cholesky decomposition
C = LDL∗ (see [11] for a proof).

Lemma 8. Suppose the data defining the Cauchy matrix C = C(a, b, x, y) is perturbed to ã = a+δa,

b̃ = b+ δb, x = x+ δx, and y = y + δy. Let us define

η = (1/η1 + 1/η2 + 1/η3)max {‖δa‖∞ , ‖δb‖∞ , ‖δx‖∞ , ‖δy‖∞} ,
where

η1 = min
i6=j

|xi − xj |
|xj |+ |xi|

, η2 = min
i6=j

|yi − yj|
|yj|+ |yi|

, η3 = min
i6=j

|xi + yj|
|xi|+ |yj|

.

Then C = C(a, b, x, y) and C̃ = C̃(ã, b̃, x̃, ỹ) have Cholesky factorizations C = LDL∗ and C̃ =

L̃D̃L̃∗, where L, L̃ are unit lower triangular matrices, D, D̃ are diagonal matrices with positive
entries, and ∣∣∣Lij − L̂ij

∣∣∣ = |Lij | O (η) ,
∣∣∣Dii − D̂ii

∣∣∣ = |Dii| O (η) .

We also need the following proposition, the proof of which may be obtained via techniques de-
veloped in [4] and [15] (see also [24]). The proof is given in the Appendix (it is a straightforward
modification of that found in [15, Proposition 2.12], and is provided for completeness).

Proposition 9. Suppose G = DBD and G+δG = D (B + δB)D, where D is a diagonal matrix with
positive diagonal entries, and B, B+δB are non-singular Hermitian matrices. Then, letting Σ denote
the diagonal matrix of eigenvalues of G, unit eigenvectors xi and x̃i of DBD and D (B + δB)D,
may be chosen so that

|xi(j)− x̃i(j)| ≤ dij (D)

(
κ (B)

1/2

σmin (B)

)
O (‖δB‖)
relgapi

.

Also, the following norm-wise and component-wise bounds hold:

κ−1/2 (B) ≤
∥∥∥∥
Dxi
Dii

∥∥∥∥ , |xi(j)| ≤ κ(B)1/2dij (D) .

Finally, we state the main result needed to prove Theorem 5.

Proposition 10. Suppose G = DBD and G + δG = D (B + δB)D, where B is a non-singular
complex-valued matrix, and D is a diagonal matrix with positive diagonal elements. Then the ith
(left or right) singular vectors vi and ṽi of G and G+ δG may be chosen so that

|vi(j)− ṽi(j)| ≤ dij (D)
κ (B)2

relgapi
O
(‖δB‖
‖B‖

)
, |vi(j)| ≤ κ(B)1/2dij (D) .

If, in addition, the matrix B is complex symmetric (BT = B), then
∥∥∥∥
Dvi
Dii

∥∥∥∥ ≥ κ−1/2 (B) .

Proof. Note that the SVD of DBD may be obtained from the eigenvalue decomposition of the
Hermitian matrix

F =

(
0 DBD

(DBD)
∗

0

)
=

(
D 0
0 D

)(
0 B
B∗ 0

)(
D 0
0 D

)
.

Similarly, the SVD of D (B + δB)D may be obtained from the eigenvalue decomposition of the
Hermitian matrix

F + δF =

(
D 0
0 D

)(
0 B + δB

(B + δB)
∗

0

)(
D 0
0 D

)
.
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Indeed, given the SVD, DBD = USV ∗, the matrix F has the eigenvalue decomposition

F =

[
1√
2

(
V V
U −U

)](
S 0
0 −S

)[
1√
2

(
V V
U −U

)]∗
.

A similar statement applies to F + δF . The component-wise bounds now follow from applying
Proposition 10 to F and F + δF , and using the equalities

∥∥∥∥∥

(
0 B
B∗ 0

)−1
∥∥∥∥∥ =

∥∥∥∥
(

0 B−1
(
B−1

)∗
0

)∥∥∥∥ = 2
∥∥B−1

∥∥ , and

∥∥∥∥
(

0 B
B∗ 0

)∥∥∥∥ = 2 ‖B‖ .

If B is complex symmetric, then we may take U = V and apply Proposition 10, yielding

∥∥∥∥
(
D 0
0 D

)(
vi
vi

)
/Dii

∥∥∥∥ = 2

∥∥∥∥
Dvi
Dii

∥∥∥∥ ≥ κ1/2
((

0 B
B∗ 0

))
= 2κ1/2 (B) .

We now prove Theorem 5.
Recall that the matrix T of con-eigenvectors satisfies T = UΣV , where C = UΣ2U∗ is the SVD

of C and V is the matrix of right singular vectors of G = Σ
(
UTU

)
Σ. Let C̃ = Ũ Σ̃2Ũ∗ denote the

SVD of C̃. From Lemma 8 and the discussion in Section 2.2 (see also [11]),

(5.3)
∥∥∥U − Ũ

∥∥∥ = κ (L)O (η) ,

∣∣∣∣∣
Σii − Σ̃ii

Σii

∣∣∣∣∣ = κ (L)O (η) .

Defining G̃ = Σ̃
(
ŨTŨ

)
Σ̃, the above bounds yield G̃ = Σ

(
UTU + E

)
Σ, where ‖E‖ = κ (L)O (η).

Proposition 10 states that unit singular vectors ṽi of G̃ and vi of G may be chosen so that

(5.4) |vi(j)| ≤ κ1/2
(
UTU

)
dij (Σ) = dij (Σ) ,

and

(5.5) |vi(j)− ṽi(j)| ≤ dij (Σ)
(
κ2
(
UTU

)

relgapi

)
O (‖E‖) ≤ dij (Σ)

κ (L)

relgapi
O (η) .

Therefore, defining wi = Σvi/Σii and w̃i = Σ̃ṽi/Σ̃ii, we have

|wi(j)− w̃i(j)| =
Σjj
Σii

∣∣∣∣∣vi(j)−
Σ̃jj
Σjj

Σii

Σ̃ii
ṽi(j)

∣∣∣∣∣

≤ Σjj
Σii
|vi(j)− (1 + κ (L)O (η)) ṽi(j)|

≤ Σjj
Σii

(|vi(j)− ṽi(j)|+ |vi(j)|κ (L)O (η))

≤
(
κ (L)

relgapi
+ κ (L)

)
O (η) ,

where we used (5.3) in the first inequality, and (5.4)-(5.5) in the last one. Proposition 10 also implies
that 1/ ‖wi‖ ≤ κ1/2

(
UTU

)
= 1 and 1/ ‖ŵi‖ ≤ O (1).
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The proof now follows upon noting that the con-eigenvectors zi and z̃i satisfy zi = Uwi, z̃i = Ũ w̃i,
and using (5.3),

sin∠ (ẑi, zi) = min
α

∥∥∥∥∥∥
Ũ w̃i∥∥∥Ũ w̃i

∥∥∥
− α Uwi
‖Uwi‖

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
Ũw̃i∥∥∥Ũw̃i

∥∥∥
− Uwi
‖Uw̃i‖

∥∥∥∥∥∥

≤

∥∥∥∥∥∥


 Ũw̃i∥∥∥Ũw̃i

∥∥∥
− Uw̃i∥∥∥Ũ w̃i

∥∥∥


+


 Uw̃i∥∥∥Ũ w̃i

∥∥∥
− Uwi∥∥∥Ũ w̃i

∥∥∥



∥∥∥∥∥∥

≤

∥∥∥
(
Ũ − U

)
w̃i

∥∥∥
∥∥∥Ũ w̃i

∥∥∥
+
‖U‖∥∥∥Ũ w̃i

∥∥∥
‖(w̃i − wi)‖ ≤

(
κ (L)

relgapi
+ κ (L)

)
O (η) .

�

5.2. Proof of Theorem 6 (high relative accuracy of Algorithm 5). First consider Steps 1 and 2

of Algorithm 5. From [11], the computed SVD factors Σ̂ and Û of C satisfy

(5.6)
∣∣∣Dij − D̂ij

∣∣∣ ≤ |Dij |κ (L)O (ǫ) ,
∥∥∥U − Û

∥∥∥ ≤ κ (L)O (ǫ) .

Next, Algorithm 2 is used to compute the con-eigenvalue decomposition of Σ̂
(
ÛTÛ

)
Σ̂. In Step 1,

the computed matrix Ĝ satisfies Ĝ = fl
(
Σ̂
(
ÛTÛ

)
Σ̂
)
= Σ

(
UTU + E0

)
Σ, where ‖E0‖ ≤ κ (L)O (ǫ).

In Step 2 of Algorithm 2, a computed upper triangular factor R̂ of Ĝ is obtained using the
Householder QR algorithm with complete pivoting. By Theorem 2, there is an orthogonal matrix Q

and permutation matrices P1 and P2 such that the computed R̂ satisfies

(5.7) P1QR̂P2 = Σ
(
UTU + E2

)
Σ,

where E2 = E0 + E1, ‖E1‖ ≤ ρµψO (ǫ), and ρ, µ, and ψ are “pivot growth factors” described in
Section 2.3.2.

Step 3 of Algorithm 2 involves computing an approximate SVD R̂P2 ≈ ÛlΛ̂Ûr
∗

using the modified

one-sided Jacobi algorithm, applied from the right. Note that, from (5.7), if R̂P2 has the (exact)

SVD R̂P2 = UlΛU
∗
r , then Ur is the matrix of right singular vectors of Σ

(
UTU + E2

)
Σ. Therefore,

defining U ′
r = ΣUrΣ

−1, Proposition 10 implies that
∣∣∣(U ′

r)ij

∣∣∣ ≤ κ
(
UTU + E2

)
≤ O (1). Also,

∣∣∣(U ′
r)

−1
ij

∣∣∣ =
∣∣∣
(
ΣU−1

r Σ−1
)
ij

∣∣∣ =
∣∣∣
(
ΣU∗

rΣ
−1
)
ij

∣∣∣ =
∣∣∣(U ′

r)ji

∣∣∣ ≤ O (1) .

Therefore, we have κ (U ′
r) ≤ O (1). Then it follows that we may write R̂P2 = R′Σ, where R′ =

Ul
(
ΣUrΣ

−1
)

and κ (R′) ≤ O (1).

Now, let v̂i denote the computed right singular vector of R̂P2. Then, by Theorem 3 and the

equality R̂P2 = R′Σ, there is an exact right singular vector v
(1)
i of R̂ such that

(5.8)
∣∣∣v̂i (j)− v(1)i (j)

∣∣∣ ≤ dij (Σ)
ν

relgapi
O (ǫ) .

Also, since P1QR̂P2 = (P1Q) ÛlΣ̂Ûr = D
(
UTU + E2

)
D, Theorem 10 ensures that there is an exact

left singular vector vi of G = D
(
UTU

)
D that satisfies

∣∣∣vi (j)− v(1)i (j)
∣∣∣ ≤ dij (Σ)

κ2
(
UTU

)

relgapi
O (‖E2‖) ≤ dij (Σ)

κ (L) + ρµψ

relgapi
O (ǫ) .(5.9)

Therefore, from (5.8) and (5.9) we obtain

(5.10) |vi (j)− v̂i (j)| ≤ dij (Σ)
ρµψ + ν + κ (L)

relgapi
O (ǫ) .
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We will also need the following component-wise bounds,

(5.11) |vi (j)| , |v̂i (j)| ≤ dij (Σ)O (1) ,

which follow from Proposition 10.

Finally, Step 4 of Algorithm 2 involves computing the con-eigenvector ẑi = fl
(
Û
(
Σ̂v̂i/Σ̂ii

))
.

Now let ŵi = fl
(
Σ̂v̂i/Σ̂ii

)
= Σ̂v̂i/Σ̂ii + E3, wi = Σvi/Σii and note that

|E4| ≤
∣∣∣Σ̂
∣∣∣ |v̂i| /

∣∣∣Σ̂ii
∣∣∣O (ǫ) = (1 +O (ǫ)) |Σ| |v̂i| / |Σii| O (ǫ) = O (ǫ) ,

where (5.6) is used in the first equality and (5.11) is used in the second equality. Therefore, we
obtain

|wi(j)− ŵi(j)| =
Σjj
Σii

∣∣∣∣∣vi(j)−
Σ̂jj
Σjj

Σii

Σ̂ii
v̂i(j)

∣∣∣∣∣

=
Σjj
Σii
|vi(j)− (1 + κ (L)O (ǫ)) v̂i(j)|

≤ Σjj
Σii

(|vi(j)− v̂i(j)|+ |v̂i(j)| κ (L)O (ǫ))

≤ Σjj
Σii

dij (Σ)

(
ρµψ + ν + κ (L)

relgapi
+ κ (L)

)
O (ǫ)

≤
(
ρµψ + ν + κ (L)

relgapi
+ κ (L)

)
O (ǫ) ,

where we used (5.6) in the second equality, and (5.11) and (5.10) in the second inequality. We also
have from Proposition 10 that 1/ ‖wi‖ ≤ κ1/2

(
UTU

)
= 1 and 1/ ‖ŵi‖ ≤ κ1/2

(
UTU + E

)
= O (1).

Therefore, recalling that U is orthogonal and
∥∥∥Û − U

∥∥∥ = κ (L)O (ǫ), a similar calculation as in the

proof of Theorem 5 shows that the acute angle between the computed and exact con-eigenvectors

ẑi = fl
(
Û ŵi

)
and zi = Uwi is bounded by the quantity in the last inequality above, thus completing

the proof.

5.3. Proof of Theorem 7. We need the following well-known result describing the sensitivity of
the eigenvalue problem for diagonalizable matrices.

Lemma 11. Assuming that A has simple eigenvalues, we consider its perturbation A + E. Let
X =

(
x1 . . . xn

)
denote the matrix of unit eigenvectors of A, with corresponding eigenvalues

λ1, . . . , λn. Then the acute angle between the ith unit eigenvectors xi and x̃i of A and Ã is bounded
by

sin (∠xi, x̃i) ≤ κ (X)
O (‖E‖)
absgapi

, where absgapi = min
j 6=i
|λi − λj | .

The next result shows that the matrix of eigenvectors of CC is well-conditioned.

Lemma 12. Let C denote a positive-definite Cauchy matrix, and let T denote the matrix of unit
eigenvectors of CC. Then we have κ (T ) = O (1), where O (1) denotes a modest-sized function of n.

Proof. From Section 3.1, we know that the matrix of (unnormalized) eigenvectors of CC is given by
Z = U

(
ΣV Σ−1

)
, where V is the matrix of right singular vectors of Σ

(
UTU

)
Σ and U is the unitary

matrix in C = UΣU∗. Now, by Proposition 10, we have that

(5.12)
∣∣∣
(
ΣV Σ−1

)
ij

∣∣∣ =
∣∣∣
(
ΣV Σ−1

)
ij

∣∣∣ ≤ κ1/2
(
UTU

)
= 1.
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Also, ∣∣∣
(
ΣV Σ−1

)−1

ij

∣∣∣ =
∣∣∣∣
(
ΣV

−1
Σ−1

)
ij

∣∣∣∣ =
∣∣∣
(
ΣV Σ−1

)
ji

∣∣∣ ≤ 1.

Therefore, κ
(
ΣV Σ−1

)
= O (1), and it follows that κ (Z) ≤ κ

(
ΣV Σ−1

)
= O (1).

Now define Ωii = ‖zi‖, and let T = ZΩ−1 denote the matrix of unit eigenvectors. From (5.12),
Ωii = O (1). Also, again using Proposition 10, we have

Ωii =
∥∥UΣviΣ

−1
ii

∥∥ =
∥∥ΣviΣ−1

ii

∥∥ ≥ κ1/2
(
UTU

)
= 1.

Therefore, we finally obtain κ (T ) ≤ κ (Z)κ (Ω) = O (1). �

The next lemma is the key to proving Theorem 7.

Proposition 13. Suppose that PCP has the Cholesky factorization C = (PL)D2 (PL) (where

complete pivoting is used). For a given m ≤ n, define C̃ = L1D
2
1L

∗
1, where L1 = (PL) (1 : n, 1 : m),

D1 = D (1 : m, 1 : m), and where 1 ≤ m ≤ n is such that Dmm ≤ ǫλi. Assume that the eigenvalues

of CC and C̃C̃ are simple. Then if CCzi = λizi and C̃C̃z̃i = λ̃iz̃i, we may bound the acute angle
between zi and z̃i by

sin (∠zi, z̃i) ≤
‖C‖

relgapi
O (ǫ) , where relgapi = min

j 6=i

|λi − λj |
λi + λj

.

Proof. Let

PL =

(
L11 L12

L21 L22

)
, D =

(
D1 0
0 D2

)
.

Then, since complete pivoting is used and the components of PL are bounded by 1,

C = (PL)D2 (PL)∗ =

(
L11D1 L12D2

L21D1 L22D2

)(
D1L

∗
11 D1L

∗
21

D2L
∗
12 D2L

∗
22

)
,

=

(
L11D1 0
L21D1 0

)(
D1L

∗
11 D1L

∗
21

0 0

)
+ E1

= L1D
2
1L

∗
1 + E1 = C̃ + E1,

where ‖E1‖ ≤ O(1)Dmm. Therefore, C̃C̃ = CC + E2, where E2 = C̃E1 + E1C̃ + E1E1 and
‖E2‖ ≤ O(1) ‖C‖Dmm.

Now, let T denote the matrix of unit eigenvectors of CC. Then by Lemmas 11 and 12, we have

sin (∠zi, z̃i) ≤ κ (T )
O (‖E2‖)
absgapi

≤ O (1) ‖C‖
absgapi

Dmm.

≤ O (1)

relgapi
‖C‖ Dmm

λi
≤ ‖C‖

relgapi
O (ǫ) .

�

Finally, we are ready to prove Theorem 7.

Proof. The proof of Theorem 6 shows that the m computed con-eigenvectors ̂̃zi of C̃ = L̃D̃2L̃ are
close to the exact eigenvectors z̃i, i.e.,

sin
(
∠ ̂̃zi, z̃i

)
≤ ρµψ + ν + κ (L)

relgapi
O (ǫ) ,

Since Proposition 13 implies that

sin (∠zi, z̃i) ≤
‖C‖

relgapi
O (ǫ) ,

the claim follows. �
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6. Appendix

We prove Proposition 10. For the sake of clarity, we first prove several lemmas. Throughout this
section, unless stated otherwise B will denote a non-singular Hermitian matrix and D will denote a
real-valued matrix with positive diagonal elements.

Lemma 14. The eigenvalues λi of DBD may be arranged so that

λmin (B)D2
ii ≤ λi ≤ λmax (B)D2

ii.

Proof. It suffices to show that λmin (B)
(
D2x, x

)
≤ (DBDx, x) ≤ λmax (B)

(
D2x, x

)
, since D2 and

DBD are Hermitian. These inequalities follows from the fact that (DBDx, x) = (BDx,Dx), since

λmax (B)
(
D2x, x

)
= λmax (B) (Dx,Dx) ≤ (BDx,Dx) ≤ λmax (B) (Dx,Dx) = λmax (B)

(
D2x, x

)
.

�

Lemma 15. The components of the ith eigenvector xi of DBD, normalized so that ‖xi‖ = 1, satisfy
the estimate

|xi(j)| ≤ κ(B)1/2dij (D) .

It also holds that ∥∥∥∥
Dxi
Dii

∥∥∥∥ ≥ κ−1/2 (B) .

Proof. Let G = DBD, and suppose that Gxi = λixi. Then yi = Dxi satisfies, Byi = λiD
−2yi.

Therefore,

|λi| = |λi|
∥∥D−1yi

∥∥2 = |λi|
∣∣(yi, D−2yi

)∣∣ = |λi| |(yi, Byi)| ≥ σmin(B) ‖yi‖2 .
Similarly,

|λi| = |λi|
∥∥D−1yi

∥∥2 = |λi|
∣∣(yi, D−2yi

)∣∣ = |λi| |(yi, Byi)| ≤ σmax(B) ‖yi‖2 .
It follows that

(6.1)

( |λi|
σmax(B)

)1/2

≤ ‖yi‖ ≤
( |λi|
σmin(B)

)1/2

.

The estimate on the norm of Dxi/Dii follows from the first inequality above and Lemma 14, since
∥∥∥∥
Dxi
Dii

∥∥∥∥ =
‖yi‖
Dii

≥
( |λi|
D2
ii

)1/2
1

σmax(B)1/2
≥
(
σmin(B)

σmin(B)

)1/2

.

To prove the inequality on the components of xi, first suppose that Dii ≤ Djj . Then

|xi(j)| =
|yi(j)|
Djj

≤ 1

Djj

( |λi|
σmin(B)

)1/2

=

(
Dii

Djj

)( |λi|1/2
Dii

)(
1

σmin(B)

)1/2

≤
(
σmax(B)

σmin(B)

)1/2(
Dii

Djj

)

≤ κ(B)1/2
(
Dii

Djj

)
,

where we used (6.1) in the first inequality and Lemma 14 in the second inequality.
Now suppose that Djj > Dii. Then xi is an eigenvector of G−1,

G−1xi =
(
D−1B−1D−1

)
xi =

1

λi
xi.
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Since D−1
jj < D−1

ii , we may apply the first case to G−1,

|xi(j)| ≤ κ(B−1)1/2
D−1
ii

D−1
jj

= κ(B)1/2
Djj

Dii
.

The inequalities on the components of xi follow. �

Lemma 16. Given a (Hermitian) perturbation δB, the eigenvalues λi and λ̃i of DBD and D(B +
δB)D may be arranged so that

1− ‖δB‖
σmin(B)

≤
∣∣∣∣∣
λ̃i
λi

∣∣∣∣∣ ≤ 1 +
‖δB‖
σmin(B)

.

Proof. Use Lemma 2.1 of [15] with H = B, K = D−2, δH = δB, and δK = 0.
�

We now prove Proposition 10.

Proof. From standard perturbation theory, if xi (t) denotes the ith eigenvector of D (B + tδB)D,
0 ≤ t ≤ 1, then

x′i(t) = t
∑

k 6=j

xk(t)
∗ (DδBD) xi(t)

λi(t)− λk(t)
xk(t) = t

∑

k 6=j

(Dxk(t))
∗δB (Dxi(t))

λi(t)− λk(t)
xk(t).

Now let yk(t) = Dxk(t), zk(t) = yk(t)/ ‖yk(t)‖. Then

(6.2) |x′i(t)(j)| ≤ t
∑

k 6=j

ξkj
|zk(t)∗δBzi(t)|

|λi(t)− λk(t)| / |λi(t)λk(t)|1/2
|xk(t)(j)| ,

where

|ξki| =
‖yk(t)‖
|λk(t)|1/2

‖yi(t)‖
|λi(t)|1/2

.

Since yk(t) satisfies

(B + tδB) yk(t) = λk(t)D
−2yk(t),

we may estimate

|λk(t)| = |λk(t)|
∣∣(yk(t), D−2yk(t)

)∣∣
= |(yk(t), (B + tδB) yk(t))|
≥ ‖yk(t)‖2 σmin (B) (1− t ‖δB‖) .

From the above bound,

|ξkj | ≤
(

1

σmin (B) (1− t ‖δB‖)

)

=
1

σmin (B)
+O (‖δB‖) .(6.3)
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Using (6.3) and Lemma 15 in equation (6.2), we obtain

|x′i(t)(j)| ≤ t
∑

k 6=j

ξkj
|zk(t)∗ (δB) zi(t)|

|λi(t)− λk(t)| / |λi(t)λk(t)|1/2
|xk(t)(j)|

≤ (n− 1) t

σmin (B)

‖δB‖
|λi(t)− λk(t)| / |λi(t)λk(t)|1/2

|xk(t)(j)|

≤ (n− 1) tκ (B)
1/2

σmin (B)
min

(
|λi(t)λk(t)|1/2
|λi(t)− λk(t)|

∣∣∣∣
λk (t)

λj (t)

∣∣∣∣
1/2

,
|λi(t)λk(t)|1/2
|λi(t)− λk(t)|

∣∣∣∣
λj (t)

λk (t)

∣∣∣∣
1/2
)

≤ ‖δB‖ (n− 1) tκ (B)
1/2

σmin (B)
min

(
|λk(t)|

|λi(t)− λk(t)|

∣∣∣∣
λi (t)

λj (t)

∣∣∣∣
1/2

,
|λi(t)|

|λi(t)− λk(t)|

∣∣∣∣
λj (t)

λi (t)

∣∣∣∣
1/2
)

≤ ‖δB‖
(
(n− 1) tκ (B)1/2

σmin (B)

|λk(t)|+ |λi(t)|
|λi(t)− λk(t)|

)
min

(∣∣∣∣
λi (t)

λj (t)

∣∣∣∣
1/2

,

∣∣∣∣
λj (t)

λi (t)

∣∣∣∣
1/2
)
.

The result follows from the equality |x̃i (j)− xi (j)| =
∣∣∣
´ 1

0
x′i(t) (j) dt

∣∣∣. �
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