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Abstract

Being based on V. Konoplev’s axiomatic approach to continuum mechanics, the paper broadens

its frontiers in order to bring together continuum mechanics with classical mechanics in a new

theory of mechanical systems. There are derived motion equations of ‘abstract’ mechanical systems

specified for mass–points, multibody systems and continua: Newton–Euler equations, Lagrange

equations of II kind and Navier–Stokes ones.

Quasi–linear constitutive equations are introduced in conformity with V. Konoplev’s definition

of stress and strain (rate) matrices.

PACS numbers: 45.20.D–, 46, 83.10.Ff, 47.10.ab, 83.10.Gr.

Keywords: classical mechanics, continuum mechanics, constitutive equations, measures, foundations of me-

chanics, screw theory.
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I. INTRODUCTION

Classical mechanics is based on the axiom system introduced by I. Newton [1]. In result

of generalizations made by L. Euler it is also used to studying the kinematical and dynamical

behavior of physical objects modeled as a rigid body or their aggregates.

In the case of a parcel of air, water or rock consisting of a large number of particles, a

corresponding discrete model, which can be constructed with the help of classical mechanics

methods, would be hopelessly complicated. A different sort of models has been developed

over the last three centuries to describe such physical systems. The model, called continuous

medium or continuum, exploits the fact that in air, water and rock nearby particles behave

similarly. The corresponding theory discounts the molecular structure of physical systems

and regards matter as indefinitely divisible (here particles are characterized by their place

volume and mass density). Thus the intent is to obtain a mathematical description of the

macroscopic behavior of physical systems rather than to ascertain the ultimate physical basis

of phenomena.

The analysis of the behavior of physical systems modeled as a continuum consists that

we know as continuum mechanics.

A new architecture of mechanics is suggested in [2, 3] under the conditions that

: 1. there are no boxes or particles which can be rotated and deformed;

: 2. there are no mass–points (points with zero volume and non–zero mass).

The first condition makes it essentially various w.r.t. conventional continuum mechanics

while the second condition deepens the conflict between classical mechanics and that of

continua [4]:

‘. . . the dynamics of a continuous system must clearly include as a limiting case

(corresponding to a medium of density everywhere zero except in one very small

region) the mechanics of a single material particle. This at once shows that

it is absolutely necessary that the postulates introduced for the mechanics of

a continuous system should be brought into harmony with the modifications

accepted above in the mechanics of the material particle’.

Following [2, 3, 5] we aim to remove the conflict by bringing together the continuum me-

chanics of Konoplev and the classical one into a theory of mechanical systems.
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The new theory gives mathematical foundations to mechanics, which could be called

Newtonian because it remains true to the principles of classical mechanics [1, 5] such as

the absolute space and time, the concept of a mechanical system consisting of points in

3–dimensional space as well as those of the mass additivity, actions–at–a–distance and dif-

ferential laws of motion, Galileo’s principle of relativity, etc. (it sounds curiously, but I.

Newton has defined mass, as well as force, as ‘the measure of the same’ – see, e.g., defini-

tions I, II and VI in [1] – as though he has foreseen application of the measure theory to

mechanics in 20th century [2, 3, 5]).

It is built on relatively simple, transparent ideas, some conventional notions are used,

but sometimes their sense is radically changed. We try to give all of them on tabula rasa

without using any background in the field of mechanics. That is why no prior knowledge of

continuum mechanics or the classical is required. It does not mean that we have done all

our best in order to avoid any mechanical reminiscences. However giving no comments or

motivations, we are about to point out all technical details of the introduced constructions

(for, as Goethe has told, ‘God is in the small things . . .’).

To demonstrate the new theory effectiveness we define the main classes of mechanical sys-

tems and deduce sufficiently many results known in the conventional mechanics: kinematics

equations and Newton–Euler and Lagrange equations, stress–strain relations, etc.

We shall use the expression ‘see also’ in the case where a given statement differs in details

from that of cited works and thus it is formally absent in them.

II. MAIN NOTIONS AND PRINCIPLES OF NEWTONIAN MECHANICS

The principle demand to a theory of mechanical systems is that ‘the problem of mechan-

ics comes to describing motions being in nature, namely, to their description in the most

complete and simple form’ [6]. Within the framework of this understanding the key concept

of our theory is that a mechanical system is a set of points equiped with some fields: the

mass, force, velocity ones, etc.

In what follows we shall use Galilean spacetime [7] introduced as a quadruple G =

{A4,V4, g, τ} where

: 1. V4 is a 4-dimensional vector space,

: 2. τ : V4 → R1 is a surjective linear map called the time map,
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: 3. g = 〈·, ·〉 is an inner product on ker{τ} (= R3), and

: 4. A4 is an affine normed space modeled on V4.

Introduce a point–wise spatial set X3 with the translation space V3 of 3–dimensional

(free) vectors and a parameterization t ∈ R1 of the image of τ being in a point–wise time set

T with the translation space V+ of 1–dimensional (free) vectors having one and the same

sense.

A. Screw space

It is considered as conventional [8] that the screw calculus is not adapted for the descrip-

tion of continuous media, and ‘. . . being very attractive representation of a system of forces

and rigid body motions with the help motors and screws, nevertheless it has no essential

practical value . . .’ [9]. As a result in mechanics there is mainly absent the fundamental

understanding (concept) that the interaction between mechanical systems is described with

the help of screws.

The using of the screw concept is the key for the theory of mechanical systems (including,

a continuum, a mass point and a rigid body) which is below constructed.

Let us introduce two fields λ and µ of vectors bounded with points of X3 such that for

any x and y ∈ X3 with
−→
λx and

−→
λy ∈ λ and −→µx and −→µy ∈ µ there are

−→
λx =

−→
λy

def
=

−→
λ , −→µx =

−→µy +
−−−→
(x, y)×

−→
λ

The set lλ = {λ, µ} is called screw while lλx = {
−→
λ ,−→µx} is its representative at the point

x ∈ X3. We shall use the notations µ(lλ) and −→µx for moment component µ of lλ and its

representative, respectively.

A screw is called couple if
−→
λ = 0. An other special kind of screws is known as sliding

vector (or slider) if in the case where λ 6= 0 the inner product (
−→
λ ,−→µx) = 0 for (all) x.

In the case where λ 6= 0 a screw lλ is a slider iff there is at least a point at which the

moment component µ(lλ) of the screw is zero. A slider representative at a point x is called

axial if µx(l
λ) = 0.

Screws form a vector space S where any screw can be resolved in a sum of a slider and a

couple [10].
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B. Main measures of Newtonian mechanics (see also [2, 3])

Let us define the Lebesgue measure µt on σ–algebra of subsets in T while on σ–algebra

of subsets in X3 there be so called determinative time–invariant measure

µLS(A) = µac(A) + µpp(A)

where µac(A) is the absolutely continuous component w.r.t. Lebesgue measure µ3 and µpp(A)

is the pure point (discrete) component presented as µpp(A) =
∑
k µpp(xk) for points in an

arbitrary subset A ∈ σ3 such that µpp(xk) 6= 0. These points are called pure, the others

being called continuous [11]. We assume µac to be Lebesgue measure µ3.

We shall further use the measure µLS for definition of points with mass, but without

volume, and without masses bodies with volumes, but without masses and forces exerting

on them.

Definition 1. Let A ∈ σ3, then the measure m(A) : A → R1 is called mass (measure of

inertia).

Due to the Radon–Nikodym theorem [11] we may specifym(A) as Lebesgue–Stieltjes integral

m(A) =
∫
χ

A
ρxµLS(dx)

with a µLS–integrable (mass) density ρx w.r.t. the measure µLS(dx) (here χA
is the charac-

teristic function of A). The density can be time–varying.

The set Xc
3 ⊂ X3 is called set of concentration of the measure m on X3 if m(B) = 0 for

everyone µLS−measured set B ⊂ X3 \X
c
3.

We shall use the notion of signed measure [12] being a generalization of the concept of

measure by allowing it to have negative values. Some authors call it charge, by analogy with

electric charge, which is a familiar distribution that takes on positive and negative values.

Let η(·) be a function on σ3 whose values are n–ples of signed measures. Then:

: 1. the function η(·) is called vector signed measure on σ3;

: 2. a function ζ(·, ·), defined on σ3 × σ3 and being a vector signed measure by each of

arguments, is called vector signed bi–measure;

: 3. the vector signed bi–measure ζ(·, ·) is called skew if ζ(A,B) = −ζ(B,A) for any A and

B ∈ σ3.
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Definition 2. Let A and B ∈ σ3, then the skew vector signed bi–measure F(A,B): (A,B) →

S is called measure of action of B on A (where S) is the screw space.

We specify F(A,B) as Lebesgue–Stieltjes integral

F(A,B) =
∫
χ

A
lφ(x,B)µLS(dx) =

∫
χ

B
lψ(y,A)µLS(dy)

where representatives of µLS–integrable slider functions lφ(x,B) and lψ(y,A) are axial at all

x ∈ A and y ∈ B, respectively.

The set Ae = X3 \ A is called environment of A. It is clear that

F(A,Ae) = F(A,Ae + A)
def
=

∫
χ

A
lφ(x,A

e+A)µLS(dx) =
∫
χ

A
lφ(x,x

e)µLS(dx) (1)

We shall assume that lφ(x,x
e) ≡ 0 on the set X3 \X

c
3.

Definition 3. The slider function lφ(x,x
e) is called intensity of the action of xe upon x ∈ Xc

3.

Remark 1. The intensity can also depend on the motion prehistory.

Exemplify the introduced notion. Let the skew bi–measure G(A,B) be such that

G(A,Ae) =
∫
χ

A
lg(x,x

e)ρxµLS(dx), g(x, xe) = γ
∫
χ

xe
(x− y)

ρyµLS(dy)

‖x− y‖3

where γ is a positive (gravitational) constant, representatives of the µLS–integrable slider

function lg(x,x
e) are axial at all x ∈ Xc

3.

Definition 4 [3]. The slider function lρxg(x,x
e) is called intensity of gravitating action of xe

upon x ∈ Xc
3.

C. Fundamental principles of dynamics

Let σt be Borel σ–algebra of subsets in T while σ3 be Borel σ–algebra of subsets in X3.

Let us fix some parameterization t ∈ R1 of T, then the differentiable bijection: X3 →

Xt ⊂ R3 is called motion, t is a time instant.

For any point x ∈ X3 the motion defines the point x(t) ∈ Xt. Introduce the radius–vector
−−→
x(t) =

−−−−−−→
(O0, x(t)) called position of x(t) ∈ Xt w.r.t. O0 and the vector −→vx =

−−→
x(t)

•
called its

velocity (to honor Newton, we use the superscript • for derivatives by t). Thus we equip the

set X3 with the fields of positions, velocities and the measuares of mechanics.
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Let representatives of the slider function lvx be axial at all x ∈ X3.

Second Newton’s law (see also [3, 13]). There exist a Cartesian frame E0 with the origin

O0 and a parameterization t ∈ R1 of T such that motion of a point x ∈ Ac is described by

the following equations

: 1. if the point x is continuous

ρx(l
vx,0
x )• = lφ(x,x

e),0
x (2)

: 2. if the point x is pure

mx(l
vx,0
x )• = µpp(x)l

φ(x,xe),0
x (3)

where mx = ρxµpp(x) is mass of the pure point (coordinate representations of vectors

in E0 are marked with the superscript 0).

Henceforth we call the parameterization and the frame E0 Galilean (this formulation of

second Newton’s law is connected with first one and isolated systems nohow).

Remark 2. In the case of time–varying densities of inertia (masses) relations (2)–(3) are

invariant w.r.t. Galilean group [2, 3] while the traditional form of second Newton’s law [1]

does not. In such case relations (2)–(3) include in themselves slider functions of so called

reactivity (see the well–known equation of Meschersky).

Definition 5. Elements of σ−algebra σ3 answering the second Newton’s law and the prin-

ciples of causality, determinancy and relativity [7] are called mechanical systems [3], the set

X3,G, (σ3, σt) and (µLS, m,F) being called Universe of Newtonian mechanics.

In the given definition (see also [2, 3]), similarly to that of probability space [14], Universes

of mechanics are separately defined for every mechanical problem.

In the motion equations the intensities are defined nohow, and any action intensity pic-

tures some mechanical system [7] in depending on its ‘constitution’. Sometimes some part

of the intensities is implicitly given, while another one must be defined from the restriction

or constraint imposed on a point, its velocity and, perhaps, derivative of the velocity, be-

forehand set, i.e., not dependent on the law of point motion. In this case a point which

motion is in agreement with constraints is called constrained.

Example. Let the vector φ(x, xe) describe the action of xe on x when constraints are absent

and the constraints be given by the equation σ(x0, v0, t) = 0 where σ is a differentiable
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vector–function of the instant t, the position x0 and the velocity v0. After differentiating

σ(x0, v0, t) = 0 we have
∂σ

∂x0,T
v0 +

∂σ

∂v0,T
v0• +

∂σ

∂t
= 0

and

v0• = −(
∂σ

∂v0,T
)T [

∂σ

∂v0,T
(
∂σ

∂v0,T
)T ]−1(

∂σ

∂x0,T
v0 +

∂σ

∂t
)

if the above inverse exists.

Hence there exists such slider function lc(x,x
e) (with representatives being axial at all

x ∈ Ac) that

ρx(l
vx,0
x )• = lφ(x,x

e),0
x + lc(x,x

e),0
x (4)

if the point x is continuous or

mx(l
vx,0
x )• = µpp(x)[l

φ(x,xe),0
x + lc(x,x

e),0
x ] (5)

if the point x is pure.

In this way we may introduce the following

Principle of constraint release. Motion of any constrained point x ∈ Ac is described by

equations (4) and (5) (in the Galilean frame E0) with some µLS–integrable slider function

lc(x,x
e) called intensity of constraint action upon x ∈ Ac.

The principle of constraint release demarcates two categories of actions, namely, active

and passive ones: it says that an active (motive) action creates motion while a passive one

only puts obstacles in this motion. If we remove constraints then only active actions are

kept.

Remark 3 One must not suppose that the Principle of release from constraints and that of

DAlembert eliminate the difference in the nature of active forces and passive ones (constraint

actions and forces of inertia). It is only for the sake of convenience that we use these

principles: only forces the resultant of which is f exert on the particle [15].

III. A MASS–POINT

Consider a set A ∈ σ3 consisting of a unique pure point of the measure µLS as a free

mass–point. In this case from relation (3) follows the well–known second Newton’s law (in
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the Galilean frame E0):

mxv
0•
x = f 0 (6)

where f = µpp(x)φ is called force exerting on the mass–point x.

Note that in the case where the mass is time–varying the force includes in itself that of

reactivity (see the well–known equation of Meschersky).

Motion of a mass–point can be constrained. Let us give the description of constrained

motion.

Variety of constraints contains so called ideal and non–ideal ones. Ideal constraints gen-

erate constraint actions having the direction and sense of the normal to the corresponding

manifold. We shall assume that constraints are ideal (Axiom of ideal constraints), sclero-

nomic and holonomic.

Ideal holonomic and scleronomic constraints force the point under consideration to move

along with a certain manifold σ(x0) = 0 having lower dimension than its configuration space.

Let this manifold can be parameterized with some vector q. The vector q is called generalized

one, its first derivative being called generalized velocity q•.

For any point x0 of the manifold we have

x0 = η(q)

If the columns of the following matrix [16]

τ =
∂η

∂qT

are linearly independent, they form a basis of the linear space T = T(q) being tangent to

the manifold at a point q.

If the columns of the following matrix [16]

ν =
∂σ

∂x0,T

are linearly independent, they form a basis of the linear space N = N(q) being orthogonal

to the manifold at a point q.

Thus R3 = T×N with the basis [τ, ν]. It is easy to see that

PτR3 = T, PνR3 = N

where Pτ = (τT τ)−1τT and Pν = ν(νT ν)−1νT are projections.
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It is obvious that x0• = τq• and x0•• = τq••+( ∂τ
∂qT

q•)q• (here the matrix ∂τ
∂qT

q• is square).

As the constraint is supposed to be ideal and therefore Pτr
0 = 0, from (5) follows

mx[q
•• + Pτ (

∂τ

∂qT
q•)q•] = Pτf

0 (7)

Applying the projection Pν to (5) we define the following equation

mxPν(
∂τ

∂qT
q•)q• = Pν(f

0 + c0) = Pνf
0 + c0

From this relation follows that

c0 = mxPν(
∂τ

∂qT
q•)q• − Pνf

0

i.e., the constraint force is not a function of time, but it depends on the generalizing coor-

dinates and velocities as well as on the active force.

It is clear that the theory above can be applied to mass–point systems.

IV. RIGID BODIES

Definition 6 (see also [17]). A bounded closed set A ∈ σ3 is called rigid body if

: 1. constraints applied on its points keep distances between them not changing with time;

: 2. the constraints are ideal.

A rigid body may contain continuous and pure points.

Remark 4. In elementary manuals of mechanics, transition from a mass point to a body as

a point system is made somehow imperceptibly; constraint forces are not mentioned at all,

and instead of a lawful exception there is an illegal, silent exclusion of these forces. They

remain ordinarily without any attention and even without a mention, as if they did not exist

at all.

A. Motion of a rigid body (see also [2, 10])

Below we do not consider motion of separate points of a rigid body, as due to Euler the

motion of a rigid body as a whole is characterized by so called generalized coordinates and

velocities.

Quasi–velocities of a rigid body. Consider a rigid body Ak ⊂ σ3 with an attached

Cartesian frame Ek having an origin Ok.
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For any vector λ = col{λ1, λ2, λ3} ∈ R3 there are defined the cross product matrix

λ×
def
=




0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0




(8)

and the relation λ0 = C0,kλ
k where C0,k ∈ SO(R, 3).

Let x be an arbitrary point fixed in Ek. Introduce the radius–vectors r0 and rk ∈ R3 of

the point x w.r.t. the origins O0 and Ok, respectively. Define d0,k = r0 − rk. Then we may

represent the relation r0 = d0,k+ rk ∈ R3 in E0 as r
0
0 = d00,k+C0,kr

k
k . As r

k
k is time–constant,

with differentiating the last relation we have v0x = v00,k+C
•
0,kr

k
k where v

0
x = r0•0 and v00,k = d0•0,k

are velocities of x and Ok w.r.t. O0 in the frame E0, respectively. Hence

vkx = vk0,k + Ck,0C
•
0,kr

k
k (9)

Definition 7.

: 1. The vector −→v0,k =
−→
d•0,k is called velocity of Ek–displacement w.r.t. the frame E0, its co-

ordinate column vk0,k is called quasi–velocity of Ek–displacement or linear (translation)

quasi–velocity;

: 2. the vector −→ω0,k with the coordinate column ωk0,k (in Ek) is called instantaneous velocity

of Ek–rotation w.r.t. the frame E0 if (in according with (9))

ωk×0,k = Ck,0C
•
0,k (10)

ωk0,k is called angular quasi–velocity;

: 3. the coordinate column

V0,k =



vk0,k

ωk0,k


 ∈ R6

is called quasi–velocity of motion of the frame Ek w.r.t. the frame E0.

Algebraic theory of screws. Consider a vector λ ∈ R3 bounded with a point x ∈ R3

and define its moments µ̃0 and µ̃k ∈ R3 w.r.t. the points O0 and Ok, respectively. As

µ̃k = µ̃0 + λ× d0,k, the set {λ, µ̃} is a slider (with representatives {λ, µ̃0} and {λ, µ̃k}).

Let us define:
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: 1. the coordinate columns λ0, λk, µ̃0
0 = r0×0 λ0, µ̃kk = rk×k λk in the frames E0 and Ek;

: 2. (Plücker) coordinate columns (of 1–st type) πλ,00 = col{λ0, µ̃0
0} and πλ,kk = col{λk, µ̃kk};

: 3. the following matrices

T 0
0,k =




I O

d0×0,k I


 , C⊗

0,k =



C0,k O

O C0,k


 (11)

where I is the unit matrix, O is the null matrix.

Theorem 1 [3]. Matrices L
(1)
0,k = T 0

0,kC
⊗
0,k = C⊗

0,kT
k
0,k form the multiplicative group L(1)(R, 6)

such that πλ,00 = L
(1)
0,kπ

λ,k
k and

L
(1)•
0,k = L

(1)
0,kΦ0,k (12)

where Φ0,k =



ωk×0,k O

vk×0,k ωk×0,k


.

Proof. The columns πλ,00 and πλ,kk can be represented as follows

πλ,00 =



I

r0×0


λ0, πλ,kk =




I

rk×k


λk

From r00 = d00,k + r0k follows that

L
(1)
0,kπ

λ,k
k = T 0

0,kC
⊗
0,k




I

rk×k


λk = T 0

0,k



I

r0×k


λ0 = πλ,00

Relation (12) is true as from (11) follows that L
(1)•
0,k = T 0•

0,kC
⊗
0,k+T

0
0,kC

⊗•
0,k = T 0

0,kC
⊗
0,k(C

⊗
k,0C

⊗•
0,k+

C⊗
k,0T

0•
0,kC

⊗
0,k) = L

(1)
0,kΦ0,k.

These matrices form a group as there are L
(1)
0,pL

(1)
p,k = T 0

0,pC
⊗
0,pT

p
p,kC

⊗
p,k = T 0

0,pT
0
p,kC

⊗
0,pC

⊗
p,k =

T 0
0,kC

⊗
0,k = L

(1)
0,k for a subindex p and L

(1),−1
0,k = (T 0

0,kC
⊗
0,k)

−1 = C⊗,T
0,k (T 0

0,k)
−1 = C⊗

k,0T
0
k,0C

⊗,T
0,k C

⊗
k,0

= T kk,0C
⊗
k,0 = L

(1)
k,0.

Sum of πλ,00 –kind columns (for different triples λ0 and points x) is an element of

6−dimensional linear space R6.

Using different Cartesian frames Ek we are brought to say that the rotation group

SO(R, 3) restores
−→
λ ∈ V3 from coordinate triples λk. In the similar way we may use

the group L(1)(R, 6) in order to define the vector space S1 from sums of πλ,kk with different

triples λk and points x. Its elements are called wrenches.
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The columns πλ,kk generate the element πλ ∈ S1 called slider (of 1–st type).

Introduce columns of the kind col{µ̃kx, λ
k} = Îπλ,kk where Î =



O I

I O


. Then the group

L(2)(R, 6) of matrices L
(2)
0,k = ÎL

(1)
0,kÎ generates the element called slider (of 2–nd type). Their

sums generate the vector space S2 with elements called twists. It is clear that the wrench

and twist spaces are isomorphic to the space S.

Remark 5. The quasi–velocity of motion of the frame Ek w.r.t. the frame E0 is the twist

representative because for any points x and y ∈ R3




vkx

ωk0,k


 =



I

−−−→
(x, y)

k×

O I







vky

ωk0,k




Newton–Euler equation. From relations (4) and (5) follows that

: 1. at each continuous point x ∈ Ack

ρx(π
vx,0
0 )• = π

φ(x,xe),0
0 + π

c(x,xe),0
0

: 2. at each pure point x ∈ Ack

mx(π
vx,0
0 )• = µpp(x)[π

φ(x,xe),0
0 + π

c(x,xe),0
0 ]

Hence we have the screw form of the second Newton’s law

∫
χ

Ak
(πvx,00 )•ρxµLS(dx) = F0

k
def
=

∫
χ

Ak
π
φ(x,xe),0
0 µLS(dx) (13)

as the constraints are considered as ideal and thus
∫
χ

Ak
π
c(x,xe),0
0 µLS(dx) = 0 [17].

Due to (1) there is F0
k =

∫
χ

Ak
π
φ(x,Ae

k
),0

0 µLS(dx), i.e., we may neglect interactions between

the points of Ak.

Remark 6. These interactions are not constraint actions.

Lemma 1 [3]. There is the following relation

πvx,kk = Θx
kV0,k, Θx

k =




I −rk×k

rk×k −(rk×k )2




13



Proof. The statement is true as from relations (9) and (10) follows

πvx,kk =




I

rk×k


 vkx =




I

rk×k



(
vk0,k + ωk×0,kr

k
k

)
=




I −rk×k

rk×k −(rk×k )2






vk0,k

ωk0,k




where the relation ωk×0,kr
k
k = −rk×k ωk0,k is used.

From the lemma we have
(
πvx,00

)•
=

(
L
(1)
0,kπ

vx,k
k

)•
= L

(1)
0,k(Θ

x
kV

•
0,k + Φ0,kΘ

x
kV0,k). That is

why from (13) we arrive at the following

Theorem 2 [3]. The motion of Ak (w.r.t. E0 in the frame Ek) is described by the (Newton–

Euler) equation

ΘkV
•
0,k + Φ0,kΘkV0,k = Fk

k (14)

where Θk =
∫
χ

Ak
Θx
k ρxµ(dx), F

k
k = L

(1)
k,0F

0
k .

It is easy to see that the matrices of relation (14) depend on rotation matrices (and linear

and angular quasi–velocities, too) that is why equation (14) must be considered along with

the (Euler kinematical) relation

C•
0,k = C0,kω

k×
0,k (15)

Euler angles. We may avoid to use equation (15) as the rotation matrix C0,k can be

parameterized with the help of some vector ϑ0,k ∈ R3 and (see [2])

ωk0,k = D0,kϑ
•
0,k (16)

where the matrix D0,k = D0,k(ϑ0,k) is known.

Indeed, for Cartesian frames E0 and Ek of the space R3 with the origin O0 and Ok and

the bases [e0] and [ek] let the rotation matrix C0,k be such that for any vector
−→
λ there is

λ0 = C0,kλ
k.

First define, e.g., the auxiliary vector e = ek×3 e01. Second with the rotation around the

axis e01 at the angle ϕ between the vectors e02 and e we obtain E
1 = [e11, e

1
2, e

1
3] = E0C1 where

E0 = [e01, e
0
2, e

0
3], e

1
1 = e01 and e12 = e. Then with the rotation around the axis e12 = e at the

angle ϑ between the vectors e13 and ek3 we obtain E2 = [e21, e
2
2, e

3
3] = E1C2 where e22 = e12 = e

and e33 = ek3. At last the rotation around the axis ek3 at the angle ψ between the vectors

e22 and ek2 gives Ek =
[
ek1, e

k
2, e

k
3

]
= E2C3. Thus the rotation matrix C0,k is defined by the

14



relation C0,k = C1C2C3 where

C1 =




1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ



, C2 =




cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϕ



, C3 =




cosψ − sinϕ 0

sinψ cosψ 0

0 0 1




(17)

are so called the simplest rotation matrices with Euler angles ϕ, ϑ, and ψ [18].

Note that at the second step we could choose the angle between e01 and e. Moreover we

could start with any auxiliary vector e = e0×k ekl where k, l are any naturals 1, 2, 3 (the case

where k = l is admissible, too). It means that there are 12 ways to represent the matrix

C0,k as a product of three matrices of type (17) with the help of different Euler angles [18].

Our choice of representing C0,k given above has the advantage that

C0,k ≈ I + ϑ×

for small ϑ = col{ϕ, ϑ, ψ} (among 12 representations of C0,k there are 3! with the same

property).

Lemma 2 [3] For relation (16) there is the matrix

D0,k(ϑ0,k) =
[
CT

3 C
T
2 e

0
1, C

T
3 e

0
2, e

0
3

]
, ϑ0,k =




ϑ1

ϑ2

ϑ3




def
=




ϕ

ϑ

ψ




(18)

Proof. From (10) follows that ωk×0,k = CT
0,kC

•
0,k = CT

3 C
T
2 C

T
1 (C

•
1C2C3 +C1C

•
2C3 +C1C2C

•
3 ) =

CT
3 C

T
2 (C

T
1 C

•
1 )C2C3 + CT

3 (C
T
2 C

•
2 )C3 + (CT

3 C
•
3 ). Due to (17) the relations in the parentheses

above are CT
i C

•
i = e0×i ϑ•i and ωk×0,k = CT

3 C
T
2 e

0×
1 C2C3ϑ

•
1 +CT

3 e
0×
2 C3ϑ

•
2 + e0×3 ϑ•3 or ωk0,k =

CT
3 C

T
2 e

0
1ϑ

•
1 + CT

3 e
0
2ϑ

•
2 + e03ϑ

•
3 or −→ω0,k =

∑3
i=1

−→
θiϑ

•
i where θ1 = CT

3 C
T
2 e

0
1, θ2 = CT

3 e
0
2 and

θ3 = e03. Thus the matrices of relation (30) prove to be expressed through Euler angles.

Fedorov vector–parameter. Let us consider an other parameterization. The number

triple f ∈ R3 is called Fedorov vector–parameter of a rotation matrix C [19] if it is answered

with the following skew matrix (see (8))

f× = (C − I)(C + I)−1 (19)

Some authors prefer the involutory form (C − I)−1(C + I).
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The inverse (Cayley) transformation restores the rotation matrix

C=(I + f×)(I − f×)−1 (20)

It can be proven that Cf×CT = f× or Cf = f , i.e., f is an eigenvector of C.

With using (20) as a function of f , it is easy to be verified (for example, by means of

Maple c©) that there are true the following relations

f× =
C − CT

1 + trC
(21)

C =
(1− ‖f‖2)I + 2ffT + 2f×

1 + ‖f‖2
(22)

There is no frame w.r.t. which Fedorov vector–parameter is defined. It can be put in

correspondence with many other objects of different nature, e.g., with Euler angles.

Gibbs vectors. In a Cartesian frame E0 of the space R3 there is a point that can be defined

by f as coordinates of the point or by its (bounded) radius–vector −→g (in the space V3 of

geometrical - free - vectors) for which this triple serves as decomposition coefficients on this

basis, i.e., there is the coordinate triple g = f . Thus with the help of the canonical basis of

R3 we define the vector −→g ∈ V3 known as that of Gibbs [18].

Rodrigues vector. Consider a Cartesian frame Ek with an origin Ok and define the vectors

−→r0,p and −→rp,k ∈ V3 such that rp0,p = f0,p in Ep and rkp,k = fp,k in Ek. We will call them

Rodrigues vectors [20] (2−→rp,k – vector of finite rotation of Ek w.r.t. Ep [21]).

Thus noone may identify Fedorov vector–parameter and Gibbs and Rodrigues vectors.

Composition rules for Fedorov vector–parameters and Gibbs and Rodrigues vec-

tors. Henceforth we shall consider the structure of indices used in rigid body kinematics

where any rotation matrices C0,p and Cp,k depicture rotations of Cartesian frames Ep and Ek

w.r.t. E0 and Ep, respectively. According to (21), for the matrices C0,p and Cp,k it is possible

to construct vector–parameters f0,p and fp,k.

Let us consider the product of two rotation matrices C0,p and Cp,k with the vector–

parameters f0,k and fp,k. Then [19]

C0,k=C0,pCp,k ⇔ f0,k = 〈f0,p, fp,k〉 =
1

1− fT0,pfp,k
(f0,p + fp,k + f×

0,pfp,k) (23)

16



Indeed, introduce the following notation

f0,k =




x

y

z



, f0,p =




a

b

c



, fp,k =




p

q

r




where elements of the columns are known functions of time.

Let us rewrite relation (23) in the following form

(1− ap− bq − cr)




x

y

z




=




a

b

c



+




p

q

r



+




0 −c b

c 0 −a

−b a 0







p

q

r




It is easy to be verified, for example, by means of Maple c© that

C0,k=




1 −z y

z 1 −x

−y x 1







1 z −y

−z 1 x

y −x 1




−1

=




1− ap− bq − cr −(c+ r − bp+ aq) (b+ q + cp− ar)

(c+ r − bp + aq) 1− ap− bq − cr −(a + p+ br − cq)

−(b+ q + cp− ar) (a + p+ br − cq) 1− ap− bq − cr



×




1− ap− bq − cr (c+ r − bp+ aq) −(b+ q + cp− ar)

−(c + r − bp + aq) 1− ap− bq − cr (a+ p+ br − cq)

(b+ q + cp− ar) −(a+ p+ br − cq) 1− ap− bq − cr




−1

and C0,k − C0,pCp,k = 0 where we use

C0,p =




1 −c b

c 1 −a

−b a 1







1 c −b

−c 1 a

b −a 1




−1

, Cp,k =




1 −r q

r 1 −p

−q p 1







1 r −q

−r 1 p

q −p 1




−1

As the vector product of −→g0,p and −→gp,k is answered with a vector having the coordinate

representation g×0,pgp,k = f×
0,pfp,k in E0, from (23) follows that the composition rule (23) takes

the following form [19]

−→g0,k = 〈−→g0,p,
−→gp,k〉 =

1

1− (−→g0,p,
−→gp,k)

(
−→g0,p +

−→gp,k +
−→g0,p×

−→gp,k
)

(24)
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For vector–parameters in R3, the operation of vector product is not defined, as well as

the matrix multiplication is not defined for vectors in V3. That is why the composition rules

(23) and (24) are formally different, but speaking more precisely rule (23) proves to be the

coordinate form of (24).

For Rodrigues vectors we may write down the following composition rule [20, 21]

−→r0,k = 〈−→r0,p,
−→rp,k〉 =

1

1− (−→r0,p,
−→rp,k)

(−→r0,p +
−→rp,k −

−→r0,p×
−→rp,k) (25)

Indeed, in the frame Ek from (25) follows

rk0,k =
1

1− rk,T0,p r
k
p,k

(
rk0,p + rkp,k + rk×p,kr

k
0,p

)
(26)

As rk0,p = Ck,pr
p
0,p, r

k
0,k = f0,k, r

p
0,p = f0,p, r

k
p,k = fp,k, fp,k = Ck,pfp,k and (I+f×

p,k)Ck,p = I−f×
p,k,

relations (25) and (26) coincide one with another.

Gibbs vector −→g0,k coincides with Rodrigues vector −→r0,k while in general it is not the same

for −→gp,k (introduced with the help of the canonical basis of R3) and −→rp,k (having the same

coordinates in Ep and Ek, but not in E0), i.e., Gibbs and Rodrigues vectors are essentially

various.

Relation (24) for Gibbs vectors and relation (25) for Rodrigues vectors are formally

different, but they are only geometrical and kinematical interpretations (modifications or

forms) of the composition rule (23). In the calculating relation their using gives nothing

new as their coordinate representations lead to the same rule (23). But no one may identify

Fedorov vector–parameter or Gibbs vector with that of Rodrigues (see Fig. 1.1).

FIG. 1. Gibbs and Rodrigues vectors

Relation between angular quasi–velocity and vector–parameter. For C0,k = C1
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there are ωk0,k = ϕ•




0

0

1




and f1 = tan ϕ
2




0

0

1



, i.e., the vector of angular velocity and that

of Rodrigues are collinear.

As f×•
1 = 1

2

(
1 + tan2 ϕ

2

)
ϕ•




0 −1 0

1 0 0

0 0 0




= 1
2
(1 + ‖f1‖

2)ϕ•




0 −1 0

1 0 0

0 0 0



, we have f •

1 =

1
2
(1 + ‖f1‖

2)ϕ•




0

0

1




and ωk0,k = 2
1+‖f1‖2

f •
1 . This result depends on the special kind of

C0,k = C1 as for the product C0,k = C1C2C3 there is the following relation [21]

−→ω0,k =
2

1 + ‖−→r0,k‖2
(−→r •

0,k +
−→r0,k ×

−→r •
0,k) (27)

or

ωk0,k =
2

1 + ‖f0,k‖2
(f •

0,k + f×
0,kf

•
0,k) (28)

Relations (16) or (28) permits us to pass from angular quasi–velocities to Euler angles (see

also [2]) or Fedorov vector–parameters in Newton–Euler equations and to obtain Lagrange

equations of the second kind.

Canonical generalized coordinates and velocities [2].

Definition 8: 1. The vectors q0,k = col{d k

0,k , ϑ0,k}, q•
0,k = col{d k•

0,k , ϑ
•
0,k} are called canon-

ical generalized coordinates and velocities of the frame Ek in the motion w.r.t. the

frame E0;

: 2. the relation

V0,k =M0,kq
•
0,k, M0,k = diag{I,D0,k} (29)

is called equation of kinematics of Ek–frame w.r.t. E0.

Then from relation (14) follows the (Lagrange) equation

A(q0,k)q
••
0,k + B(q0,k, q

•
0,k)q

•
0,k =MT

0,kF
k
k (30)

where A(q0,k) =MT
0,kΘkM0,k, B(q0,k, q

•
0,k) =MT

0,k(ΘkM
•
0,k + Φ0,kΘkM0,k).

Note that as a rule the matrix M•
0,k can be analytically calculated (see, e.g., [3]).

Systems of consecutively connected bodies [22]. Let us have a system of n + 1 con-

secutively connected bodies Ak with attached Cartesian frames Ek having the origins Ok
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(k = 0, n). The first body is immobile and is indexed by 0, and the bodies are associated

with the rotation matrices Ck−1,k.

We may consider Newton–Euler equations where ‘absolute’ quasi–velocities V0,k of the

bodies w.r.t. the main frame E0 are used. But in practice there are only the ‘relative’

quasi–velocities Vk−1,k of the frame Ek w.r.t. Ek−1.

Thus we must connect the ‘absolute’ quasi–velocities with ‘relative’ ones.

Twist composition rule. There is the following composition rule [3]

{−→v0,k,
−→ω0,k} = {−→v0,k−1,

−→ω0,k−1}+ {−→vk−1,k,
−→ωk−1,k}

Proof. As the bodies are connected consecutively there is the relation C0,k = C0,k−1Ck−1,k

is true. With differentiating it we have ωk0,k = ωk0,k−1 + ωkk−1,k = Ck,k−1ω
k−1
0,k−1 + ωkk−1,k.

Besides define the vectors
−→
d0,k−1 =

−−−−−−−→
(O0, Ok−1) and

−→
dk−1,k =

−−−−−−−→
(Ok−1, Ok), then d00,k =

d00,k−1 + d0k−1,k, v
0
0,k = v00,k−1 + d0•k−1,k, d

0
k−1,k = C0,k−1d

k−1
k−1,k, d

0•
k−1,k = v0k−1,k + C•

0,k−1d
k−1
k−1,k =

C0,k−1ω
k−1×
0,k−1d

k−1
k−1,k + v0k−1,k = v0k−1,k + C0,k−1ω

k−1×
0,k−1C0,k−1d

k−1
k−1,k = v0k−1,k − d0×k−1,kω

0
0,k−1 =

v0k−1,k + d0×k,k−1ω
0
0,k−1. Hence v00,k = v00,k−1 + v0k−1,k + d0×k,k−1ω

0
k−1,k, v

k
0,k = Ck,k−1v

k−1
0,k−1 +

Ck,k−1d
k−1×
k,k−1ω

k−1
0,k−1+v

k
k−1,k, V0,k =



Ck,k−1 O

O Ck,k−1






I dk−1×

k,k−1

O I


V0,k−1+Vk−1,k = L

(2)
k,k−1V0,k−1+

Vk−1,k.

From the rule we have

V0,k =
p=k∑

p=1

L
(2)
k,pVp−1,p, Vp−1,p =



vpp−1,p

ωpp−1,p


 (31)

where L
(2)
k,p =



Ck,p O

O Ck,p






I dp×k,p

O I


, L(2)

k,k = I.

From (31) follows the equation of kinematics

Va = L(2)Vr (32)

where Va=col{V0,1, . . . ,V0,k , . . . ,V0,n},Vr=col{V0,1, . . . ,Vk−1,k , . . . ,Vn−1,n}, L
(2) is the trian-

gular matrix with blocks L
(2)
k,p being functions of ‘relative’ frame rotations and translations.

Let rotation matrices Ck−1,k be parameterized with the help of some vectors ϑk−1,k ∈ R3

and (see (16))

ωkk−1,k = Dk−1,kϑ
•
k−1,k
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where the matrices Dk−1,k = Dk−1,k(ϑk−1,k) are known.

Then we may introduce canonical generalized coordinates and velocities of the frame Ek

in the motion w.r.t. the frame Ek−1:

qk−1,k = col{d k

k−1,k , ϑk−1,k}, q•
k−1,k = col{d k•

k−1,k , ϑ
•
k−1,k}

and the equation of kinematics

Vk−1,k =Mk−1,kq
•
k−1,k , Mk−1,k = diag{I,Dk−1,k}

Introduce the vector q with the entries qk−1,k . Then from relation (32) follows

Va = L(2)Mq (33)

where M is the diagonal matrix with block entries Mk−1,k.

Thus with the help of relation (14) we have the following Lagrange equation

A(q)q•• + B(q, q•)q• = MTL(2),TF

where A(q)=MTL(2),TΘL(2)M, B(q, q•)=MTL(2),T [Θ(L(2)M)•+ΦΘL(2)M], Θ , Φ and F are

diagonal matrices and columns with block entries Θk, Φk−1,k and F k

k
.

Note that as a rule the matrix (L(2)M)• can be analytically calculated (see, e.g., [3]).

FIG. 2. Multibody system graphs

Multibody systems with tree–like structure. Consider a multibody system with tree–

like structure given by the graph in Fig. 1.2A. Let vertices ji represent the system bodies or

the origins of the attached Cartesian frames E ij where the index i numbers the tree–tops, the
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index j numbers the bodies from the base to the corresponding tree–tops. Introduce V m,i
k,j as

quasi–velocities characterizing rotation and translation of the frames E ij w.r.t. E
m
k . Then we

have the sets {V 0,1
0,1 , V

1,1
1,2 , V

1,1
2,3 , V

1,1
3,4 , V

1,1
4,5 }, {V

0,1
0,1 , V

1,1
1,2 , V

1,1
2,3 , V

1,1
3,4 , V

1,2
4,5 , V

2,2
5,6 }, {V

0,1
0,1 , V

1,1
1,2 , V

1,1
2,3 ,

V 1,1
3,4 , V

1,2
4,5 , V

2,3
5,6 }, {V

0,1
0,1 V

1,1
1,2 , V

1,1
2,3 , V

1,4
3,4 }, {V

0,1
0,1 V

1,1
1,2 V

1,5
2,3 V

5,5
3,4 }, {V

0,1
0,1 , V

1,1
1,2 , V

1,5
2,3 , V

5,6
3,4 } and {V 0,1

0,1 ,

V 1,1
0,2 , V

1,1
0,3 , V

1,1
0,4 , V

1,1
0,5 }, {V

0,1
0,1 , V

1,1
0,2 , V

1,1
0,3 , V

1,1
0,4 , V

1,2
0,5 , V

2,2
0,6 }, {V

0,1
0,1 , V

1,1
0,2 , V

1,1
0,3 , V

1,1
0,4 , V

1,2
0,5 , V

2,3
0,6 }, {V

0,1
0,1 ,

V 1,1
0,2 , V

1,1
0,3 , V

1,4
0,4 }, {V

0,1
0,1 , V

1,1
0,2 , V

1,5
0,3 , V

5,5
0,4 },{V

0,1
0,1 , V

1,1
0,2 , V

1,5
0,3 , V

5,6
0,4 } with the same subscripts as in

the case of consecutively connected bodies for the relative and absolute quasi–velocities.

This case is considered above that is why we arrive at relations (32) and (33) with the

known matrix L(2), M, P and

Va = col{V 0,1
0,1 , V

1,1
0,2 , V

1,1
0,3 , V

1,1
0,4 , V

1,1
0,5 , V

1,2
0,5 , V

2,2
0,6 , V

2,3
0,6 , V

1,4
0,4 , V

1,5
0,3 , V

5,5
0,4 , V

5,6
0,4 }

Vr = col{V 0,1
0,1 , V

1,1
1,2 , V

1,1
2,3 , V

1,1
3,4 , V

1,1
4,5 , V

1,2
4,5 , V

2,2
5,6 , V

2,3
5,6 , V

1,4
3,4 , V

1,5
2,3 , V

5,5
3,4 , V

5,6
3,4 }

q = col{q0,1
0,1 , q

1,1
1,2 , q

1,1
2,3 , q

1,1
3,4 , q

1,1
4,5 , q

1,2
4,5 , q

2,2
5,6 , q

2,3
5,6 , q

1,4
3,4 , q

1,5
2,3 , q

5,5
3,4 , q

5,6
3,4}

q̃ = col{q̃0,1
0,1 , q̃

1,1
1,2 , q̃

1,1
2,3 , q̃

1,1
3,4 , q̃

1,1
4,5 , q̃

1,2
4,5 , q̃

2,2
5,6 , q̃

2,3
5,6 , q̃

1,4
3,4 , q̃

1,5
2,3 , q̃

5,5
3,4 , q̃

5,6
3,4}

where qm,ik,j are generalized coordinates characterizing motion of E ij w.r.t. E
m
k .

Remark 7 The results obtained can be immediately applied to systems with loops, e.g., if

in the system under consideration (see Fig. 1.2B) the vertex 62 is connected with 63 by the

edge (62, 63). In this case relation (37) is the same, but in the case where constraints are

considered there are the following additional constraints
−−−−→
(52, 62) +

−−−−→
(62, 63) +

−−−−→
(62, 52) = 0 and

C2,2
5,6C

2,3
6,6C

2,2
6,5 = I.

Computing efficiency of the vector–parameter method for matrix product. Due

to rule (23) for the product Cp,k = C1C2C3 we have

fp,k =
1

1− (tan ϕ

2
tan ψ

2
) tan ϑ

2




− tan ϕ

2
+ (tan ψ

2
tan ϑ

2
)

− tan ϑ
2
− (tan ϕ

2
tan ψ

2
)

− tan ψ
2
+ (tan ϕ

2
tan ϑ

2
)




(34)

Using the notation: cζ = cos ζ , sζ = sin ζ , ζ = ϕ, ϑ, and ψ – we may write

Cp,k = C1C2C3 =




(cϑcψ) cϕsψ + (sϕcψ)sϑ (sϕsψ)− cϕcψsϑ

−(cϑsψ) (cϕcψ)− (sϕsψ)sϑ (sϕcψ) + (cϕsψ)sϑ

sϑ −(sϕcϑ) (cϕcϑ)




(35)

22



Define the rotation matrices Ck−1,k for k = 0, n with the help of relations (35) and

construct their consecutive products C0,k = C0,k−1Ck−1,k. For k = 1, n with the help of

vector–parameters fk−1,k (see relation (34)) define f0,k (see relation (23)) and the rotation

matrices C0,k (see relation (22)). The corresponding numbers of multiplications (divisions)

N×, additions N+ and transcendental functions Ntr are given in Table 1.1.

The most important point of kinematics problems is what variables are measured. In

the case where such variables are Euler angles (in the set 3 − 2 − 1) the vector–parameter

method proves to be more numerically effective in calculating matrix products than the

direct product one (see also [23]).

If we may measure vector–parameters then with using them in the capacity of generalized

coordinates it leads to the highest effectiveness of describing multibody dynamics in the

computational respect.
Table 1.1. Computing efficiency of direct product (I) and vector–parameter method (II)

in the case where Euler angles are given in the set 3− 2− 1.

Relation (21) (22) (23) (34) (35) I II

N× 1 10 10 8 12 39n − 27 28n − 10

N+ 13 23 10 4 4 22n − 18 37n − 10

Ntr − − − 3 6 6n 3n

Motion equations for systems with tree–like structure and simple constraints.

Consider a system with ideal holonomic constraints such that there are given mk time–

constant entries of qk−1,k – this case is used in mechanical systems such as, e.g., manipulators.

For any time–varying entry i of qk−1,k let us define the 6−dimensional column pi with 1 at
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the place i and 0 otherwise. This column is called basis vector of mobility [2]. Define

(6 −mk) × 6−dimensional matrix Pk−1,k with such columns. It means that we may define

(6−mk)−dimensional time–varying vector q̃k−1,k such that q•k−1,k = Pk−1,kq̃
•
k−1,k.

Thus we arrive at the following equation of kinematics

Vk−1,k =Mk−1,kPk−1,kq̃
•
k−1,k

w.r.t. the time–varying generalized coordinates q̃k−1,k and velocities q̃•
k−1,k.

We may introduce the block–column q̃ = col{q̃ 0,1, . . . , q̃k−1,k , . . . , q̃n−1,n} and the diagonal

matrix P with block entries Pk−1,k (see (29)). Then there is the following relation

Vr = MP q̃•

and Lagrange equation system of II kind

A(q̃)q̃•• +B(q̃, q̃•)q̃• = PTMTL(2),TF (36)

where A(q̃) = PTMTL(2),TΘL(2)MP, B(q̃, q̃•) = PTMTL(2),T (I d
dt
+ Φ)(ΘL(2)MP).

V. A CONTINUUM

Suppose the set A ∈ X3 has no pure point of the measure µLS, µLS(dx) = µ3(dx) and

m(dx) = ρxµ3(dx) in A
c.

Strain matrix and its rate. Given x(t) and y(t) ∈ Ac in the instant t ∈ T, define the

vector h(t) = y0(t)− x0(t) (in E0). If h(t) is small we have

v0y(t)
∼= v0x(t) + dv0x/dx

0h(t)

Define the matrix Zx(t) as the solution of the following equation

Z•
x(t) = dv0x/dx

0

with initial data Zx = I for t = t0.

Definition 9 [3]. The matrices Zx and Z•
x are called strain one and its rate at the point

x(t) ∈ Ac in the instant t, respectively.
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There is no reason to consider the strain matrix and its rate as important (kinematical)

characteristics of continuum motion.

Stress matrix. Let us define (see also [2, 3]):

: 1. a section S between the set A and an arbitrary plane P ;

: 2. the vector bi–measure

D(A) =
∫
χ

A
l∆(x,xe)µ3(dx)

where representatives of the slider function l∆ are axial at all x ∈ A;

: 3. on the set S the slider function lδ(x) of the measure D w.r.t. Lebesgue 2−dimensional

measure µ2(dx) on Borel σ–algebra σ2 of open subsets of S such that

D(S) =
∫
χ

S
lδ(x,x

e)µ2(dx)

: 4. 3 × 3–matrix–function Tx of x and t which can be differentiable by x the necessary

number of times and such that the vector δ(x, xe) has the coordinate representation

δ0(x, xe) = Txn
0
x

where nx is the normal to the plane P at the point x;

: 5. the entries of ∆0(x, xe) being connected with the rows T jx (j = 1, 3) of the matrix Tx by

the following relation (in the frame E0)

∆0(x, xe) = DivTx

def
= col{divT 1

x
, divT 2

x
, divT 3

x
}

Remark 8. One may see that the measure D(A) is introduced under the influence of Gauss–

Ostrogradsky divergence theorem [5], but here it is said nothing about the properties of Tx,

e.g., about its symmetry.

Definition 10 [3].

: 1. The slider function l∆(x,xe) is called intensity of stress action upon x ∈ Ac;

: 2. Tx is called stress matrix.

Notion of continuum.

Definition 11 A matrix–function of entries of some matrices is called isotropic if it is

invariant w.r.t. SO(R, 3).
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Let us note the set of all isotropic maps from the strain matrix Zx or its rate Z•
x to the

stress matrix Tx as α2(Zx, Z
•
x) and use below the notation Tx ∈ α2(Zx, Z

•
x).

Definition 12. Suppose that

lφ(x,x
e) = ρxl

g(x,xe), lc(x,x
e) = l∆(x,xe) (37)

the stress matrix Tx belongs to α2(Zx, Z
•
x) and the measure of inertia is time–constant on

Ac, i.e., d
dt
m(dx) = 0. Then the set A is called continuous medium or continuum.

Motion of continuum. Due to relations (4) and (37) the equation of continuum motion

at a point x ∈ Ac is of the form (see also [3, 5]) (in the Galilean frame E0)

ρxv
0•
x = ρxg

0 +DivTx , ρ•x + divρx v
0
x = 0, Tx ∈ α2(Zx, Z

•
x)

where DivTx is the constraint action [24].

Some stress–strain or constitutive relations.

Introduce the following matrices E1 = (trUx )I , E2 = symUx = 0.5(Ux + U T

x
) and

E3 = antUx = 0.5(Ux − U T

x
) where Ux = Zx or Ux = Z•

x. These 3 matrices are linearly

independent.

It is easy to see that for 3 × 3–matrices P and Q the aggregate PUxQ is an isotropic

quasi–linear function of Ux if P and Q are proportional to I with scalar coefficients being

isotropic (i.e., invariant w.r.t. rotations).

Theorem 3 [25]. All isotropic quasi–linear 3×3–matrix functions of entries of Ux are given

by the following map (Ux → T )

T = r1E1 + r2E2 + r3E3 (38)

where ri are invariant w.r.t. rotations (they can be functions of the time, invariants of Ux

and so on).

Thus we may define the following relation

Tx = −r0E0 + r1E1 + r2E2 + r3E3, E0 = I (39)

as constitutive. It is convectional the invariant w.r.t. rotations ri to be called rheological

coefficients w.r.t. the set of Ei.
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We may construct another set of linearly independent matrices, e.g.,

Ê1 = (trUx )I , Ê2 = Ux , Ê3 = U T

x

Then from relation (38) follows that we may take the constitutive relation

Tx = −r̂0Ê0 + r̂1Ê1 + r̂2Ê2 + r̂3Ê3, Ê0 = I

with the invariants r̂0, r̂1, r̂2 and r̂3 (w.r.t. rotations) called rheological coefficients w.r.t.

the set of Êi. Thus the ‘structure’ of constitutive relations is not unique.

If Ux = Zx and r0 = 0 the continuum is called elastic material, if Ux = Z•
x and r0 > 0

(called Pascal pressure) the continuum is called viscous fluid [26].

Remark 9. Continua defined by relation (39) coincide with the continua used in continuum

mechanics in the following cases [5, 26]

: 1. the Pascal pressure r0 is positive and r1 = r2 = r3 = 0 (ideal fluid);

: 2. r0 is non–negative and r3 = 0 (continua of Navier–Stokes–Lame type);

: 3. r0 is non–negative and r1trI +r2 = 0 → trTx = −r0trI (continua used in some theories).

In the case of 2 × 2–matrices it is easy to see that for matrices P and Q the aggregate

PUxQ is an isotropic quasi–linear map of Ux if P and Q are of the kind aI + ãĨ where

Ĩ =



0 −1

1 0


, the scalar coefficients a and ã are isotropic (i.e., invariant w.r.t. rotations).

Let us construct the following isotropic quasi–linear map

T = r1(trUx )I + r̃1(pfUx )Ĩ + r2Ux + r̃2U
T

x
+ r3ĨUx + r̃3U

T
x Ĩ + r4ĨUxĨ + r̃4ĨU

T
x Ĩ (40)

where ri and r̃i are invariants (w.r.t. rotations), pfUx = tr{Ĩ Ux}.

It is easy to see that there are only 6 terms being linearly independent (all isotropic affine

functions of entries of the matrix Ux are given by relation (40)). Therefore we may reduce

function (40), e.g., to the following one

T = r1(trUx )I + r̃1(pfUx )Ĩ + r2Ux + r3ĨUx + r̃3U
T
x Ĩ + r4ĨUxĨ

where all terms are linearly independent. That is why we may define the following consti-

tutive relation

Tx = −r0I − r̃0Ĩ + r1(trUx )I + r̃1(pfUx )Ĩ + r2Ux + r3ĨUx + r̃3U
T
x Ĩ + r4ĨUxĨ (41)
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with invariants (w.r.t. rotations) ri and r̃i.

Let us stop at 2− and 3−dimensional constitutive relations with the same ‘structure’.

With the help of routine calculations we see the following statement to be true.

Theorem 4. In 2– and 3–dimensional cases let constitutive relations be of the (39)–form

and (r1trI + r2)r2r3 6= 0 where I is used as 2– and 3–dimensional identity matrices, respec-

tively. Then there exists the inverse map

Ux = n0I + n1(trTx )I + n2 symTx + n3 antTx

where

n0 =
r0

r1trI + r2
, n1 =

−r1
r2(r1trI + r2)

, n2 =
1

r2
, n3 =

1

r3

Remark 10. The three coefficients

ε =
1

n2 − n1

=
r2(r1trI + r2)

r1(trI − 1) + r2
, µ =

1

2n2

=
r2
2
, ν =

n1

n1 − n2

=
r1

r1(trI − 1) + r2

can be called Young modulus, ε, shear or rigidity one, µ, and Poisson ratio, ν, respectively.

Note that there is the known relation ε = 2µ(1 + ν).

Divergence of the stress matrix.

Introduce the next notations

ux = col{ux1, ux2, ux3}, ujk = (
∂

∂x0k
uxj), Ux =




u11 u12 u13

u21 u22 u23

u31 u32 u33




Then with the help of routine calculations in 3–dimensional case we have DivUx = ∇2ux

and

DivUT
x =




u111 + u212 + u313

u121 + u222 + u323

u131 + u232 + u333




= ∇2ux + cirl cirlux

as

cirlux=∇× ux = ∇×




u1

u2

u3




=




u32 − u23

u13 − u31

u21 − u12



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cirl cirlux=∇× (∇× ux) =




u111 + u212 + u313

u121 + u222 + u323

u131 + u232 + u333



−∇2ux

where ∇2ux = col{∇2ux1,∇
2ux2,∇

2ux3}. That is why DivsymUx = ∇2ux+
1
2
cirl cirlux,

DivantUx =−1
2
cirl cirlux and in the case of (39) we have

DivTx=−gradr0 + divux gradr1 + 2symUx gradr2 + 2antUx gradr3

+r1graddivux + 2r2∇
2ux + (r2 − r3)cirl cirlux (42)

where divux = trUx.

In 2–dimensional case there are DivUx = ∇2ux and

DivUT
x =



u111 + u212

u121 + u222


 = ∇2ux +



u212 − u112

u121 − u221




That is why DivsymUx = ∇2ux +
1
2



u212 − u112

u121 − u221


, DivUx = −1

2



u212 − u112

u121 − u221




and in the case of (39) we have relation (42) where the term (r2 − r3)cirl cirlux must be

replaced with (r2 − r3)



u212 − u112

u121 − u221


 .

A constitutive relation is called correct if map (38) or (41) has inverse (see also [3]).

Navier–Stokes–Lame continua are incorrect as r2r3(r1trI + r2) = 0.

VI. BRIEF COMMENTS

Continuum mechanics is closely connected with Riemann integral theory. In continuum

mechanics as well as in Riemann theory there is realized the idea of approximating an area

by summing rectangular strips (segments, squares or boxes), then using some kind of limit

process to obtain the exact area required. It is safe to say that we may name the well known

mechanics of continua as that of Cauchy (due to the man who created it).

The Riemann integral, natural though it is, has been superseded by the Lebesgue or

Lebesgue–Stieltjes integral and other more recent theories of integration. In this way, V.

Konoplev suggested a new architecture of continuum mechanics based on Lebesgue integral

and his algebraic theory of sliders. As result in Konoplev mechanics there do not arise boxes
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or particles which can be rotated by the laws of Newtonian mechanics as well as there are

no imaged surfaces with stresses over them and other concepts of Cauchy mechanics. But

with introducing the measures as Lebesgue integrals he was forced to exclude mass–points

from consideration.

Unlike V. Konoplev, we use Lebesgue–Stieltjes integral in order to introduce main me-

chanics measures and classes of mechanical systems such that mass–points, rigid bodies and

continua (under the special assumption about interaction in mechanical systems and their

‘constitution’). In this way we become closer to mechanics of C. Truesdell.

CONCLUSION

It is a first attempt to represent elements of Konoplev’s axiomatics and its (possibly

debatable) modification in the form of a journal paper. One must realize the difficulties and

gaps issued from this goal.

It is impossible to separate the theory given above from that of Konoplev. That is why

the paper author prefers to yield the palm to Prof. V. Konoplev but carries full responsibility

for all lacks of his paper. This is the place to express his sincere thanks to Prof. V. Konoplev

for the collaboration of many years.

The author would be highly grateful with whoever would bring any element likely to be

able to make progress the development, and thus the comprehension, of the paper. Any

comments, reviews, critiques, or objections are invited to be sent to the author by e–mail.
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