On the polygonal diameter of the interior, resp. exterior, of a simple closed polygon in the plane

Yaakov S. Kupit毣*, Horst Martini ${ }^{* *}$, Micha A. Perles *
* Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, ISRAEL, kupitz@math.huji.ac.il; perles@math.huji.ac.il
** Faculty of Mathematics, University of Technology, 09107 Chemnitz, GERMANY, martini@mathematik.tu-chemnitz.de

Abstract

We give a tight upper bound on the polygonal diameter of the interior, resp. exterior, of a simple n-gon, $n \geq 3$, in the plane as a function of n, and describe an n-gon $(n \geq 3)$ for which both upper bounds (for the interior and the exterior) are attained simultaneously.

Keywords: Jordan-Brouwer theorem, Jordan exterior (interior), Jordan's curve theorem, polygonal diameter, raindrop proof, simple closed polygon

MSC(2000): 51M05, 52B70, 57M50, 57N05

1 Introduction

The following is well known
Theorem 1.1. (The Jordan theorem) Let $f:[0,1] \rightarrow \mathbb{R}^{2}$ be a simple closed curve in the plane (f is continous, $f(0)=f(1)$ and $f(u) \neq f(v)$ for $0<$ $u<v \leq 1$). Define $P={ }_{\text {def }}$ image $f=\{f(u): 0 \leq u \leq 1\}$, the image of f. Then $\mathbb{R}^{2} \backslash P=U_{0} \cup U_{1}$, where U_{0}, U_{1} are connected open, non-empty mutually disjoint sets, U_{0} is bounded (interior), U_{1} is unbounded (exterior), and $P=\operatorname{bd}\left(U_{0}\right)=\operatorname{bd}\left(U_{1}\right)$.

[^0]The proof of this theorem is not easy; see [3], 8], [11, [9, p. 37 ff], [1, vol. I, pp. 39-64], [7, pp. 285 ff .], and the survey [5]. When the curve P is polygonal, however, i.e., when f is piecewise affine, the theorem becomes elementary:

Theorem 1.2. (The piecewise affine Jordan theorem) Let $p_{0}, p_{1}, \ldots, p_{n-1}, p_{n}=$ $p_{0}, n \geq 3$, be (n distinct) points in \mathbb{R}^{2}. Assume that the polygon $P==_{\text {def }}$ $\bigcup_{i=1}^{n}\left[p_{i-1}, p_{i}\right]$ is simple, i.e., the segments $\left[p_{i-1}, p_{i}\right]$ do not intersect except for common endpoints: $\left\{p_{i}\right\}=\left[p_{i-1}, p_{i}\right] \cap\left[p_{i}, p_{i+1}\right]$ for $1 \leq i \leq n-1,\left\{p_{0}\right\}=$ $\left[p_{0}, p_{1}\right] \cap\left[p_{n-1}, p_{0}\right]$. Then $\mathbb{R}^{2} \backslash P=U_{0} \cup U_{1}$ with the same properties of U_{0}, U_{1} listed above (Theorem 1.1).

Definition 1.1. A polygon P satisfying the conditions of Theorem 1.2 is a simple closed n-gon. The bounded [resp. unbounded] domain U_{0} [resp. U_{1}] is the interior [resp. exterior], denoted by int $P[$ resp. $\operatorname{ext} P]$, of P.

A particularly simple proof of Theorem 1.2 is known as the "raindrop proof", see [4, pp. 267-269], [6, pp. 281-285], [2, pp. 27-29], or [9, pp. 16-18]. We reproduce this proof in a somewhat more complete and formal form than usually given in the literature for later reference to some of its parts.

So we first prove Theorem 1.2 (in Paragraphs 2 and 3 below). Then, squeezing this proof, a tight upper bound on the polygonal diameter of int P [resp. $\operatorname{ext} P]$ (see Definition 3.2 below) is given as a function of n, and an n-gon ($n \geq 3$) for which both upper bounds are attained simultaneously is described (see Theorem 4.1]below). The d-dimensional analogue ($d \geq 2$) of this problem was discussed in [10, Theorem 3.2]. There we gave upper bounds on the polygonal diameter of int \mathcal{C}, resp. ext \mathcal{C}, for a polyhedral $(d-1)$-pseudomanifold \mathcal{C} in \mathbb{R}^{d} as a function of the number n of its facets and d. The bounds given there are shown to be almost tight (see [10, Section 4]), whereas the bounds given here (for $d=2$) are tight. Another novelty of the present paper is that there is an n-gon P in \mathbb{R}^{2} for which both upper bounds (on the polygonal diameter of $\operatorname{int} P$ and $\operatorname{ext} P$) are attained (simultanously), as said above, whereas for $d \geq 3$ the examples given in [10, Section 4] (namely one for int \mathcal{C} and another one for ext \mathcal{C}) are different from each other.

For the sake of the proof of Theorem 1.2, we split it into two statements: Let P be a simple closed polygon in \mathbb{R}^{2}.
(E) (separation): $\mathbb{R}^{2} \backslash P$ is the disjoint union of two open sets, $\operatorname{int} P$ and $\operatorname{ext} P$. The boundary of each one of these sets is P; int P is bounded and ext P is unbounded.
(F) (connectivity): The sets int P and $\operatorname{ext} P$ are [polygonally] connected.

We shall prove (E) (Paragraph 2) by constructing a continuous function $f: \mathbb{R}^{2} \backslash P \rightarrow\{0,1\}$ which attains both values 0 and 1 in every neighborhood of every point $x \in P$, and defining $\operatorname{ext} P=f^{-1}(0), \operatorname{int} P=f^{-1}(1)$. Statement (F) (polygonal connectivity of int P and of ext P) follows from Theorem 3.1 below.

2 A "raindrop" proof of (E)

The construction of f will be performed in three steps:
Preliminary step: Choosing a "generic" direction.
Choose an orthogonal basis (u, v) for \mathbb{R}^{2} so that no two vertices of P have the same x-coordinate. Intuitively: the polygon P is drawn as a paper; rotate the paper so that no two vertices lie one above the other. Formally: let L_{1}, \ldots, L_{t} be all lines spanned by subsets of $\left\{p_{1}, \ldots, p_{n}\right\}$. For $i=1, \ldots, t$ let $L_{i}^{0}={ }_{\text {def }} L_{i}-L_{i}$ be the linear (1-dimensional) subspace parallel to L_{i}. Choose a unit vector $v \in \mathbb{R}^{2} \backslash \bigcup_{i=1}^{t} L_{i}^{0}$ (" v " for "vertical"). The vector v is our direction "up", and $-v$ is pointing "down". By our choice of v, a line L, spanned by the vertices of P, will meet a line parallel to v in at most one point.

For a point $p \in \mathbb{R}^{2} \backslash P$ denote by $R(p)$ the closed vertical "pointing down" half-line $R(p)=_{\text {def }}\{p-\lambda v: 0 \leq \lambda<\infty\} . R(p)$ is the path of a "raindrop" emanating from p. We divide $\mathbb{R}^{2} \backslash P$ into two disjoint sets

$$
\begin{aligned}
& S_{0}=\text { def } \quad\left\{p \in \mathbb{R}^{2} \backslash P: R(p) \text { does not meet any vertex of } P\right\}, \\
& S_{1}={ }_{\text {def }} \quad\left\{p \in \mathbb{R}^{2} \backslash P: R(p) \text { meets exactly one vertex of } P\right\} .
\end{aligned}
$$

(By our choice of v, we have $\mathbb{R}^{2} \backslash P=S_{0} \cup S_{1}$.) We shall define f on S_{0} (=Step I), then extend it (continuously) to S_{1} (= Step II). The following notation will be used: For a set $A \subset \mathbb{R}^{2}, A^{+}=_{\text {def }}\{a+\lambda v: a \in A, \lambda \geq 0\}$.

Thus A^{+}is the set of points that lie "above" A. If A is closed, then A^{+}is closed. Note that (for all $p \in \mathbb{R}^{2}$ and $A \subset \mathbb{R}^{2}$):

$$
\begin{equation*}
R(p) \text { meets } A \text { iff } p \in A^{+} \tag{1}
\end{equation*}
$$

Step I: Define f on S_{0}.
For $p \in S_{o}$ denote by $r(p)$ the number of edges of P met by $R(p)$, and define $f(p)={ }_{\text {def }} \operatorname{par}(r(p))=_{\text {def }} \frac{1}{2}\left(1-(-1)^{r(p)}\right)$, the parity of $r(p)(f(p)=0$ if $r(p)$ is even, 1 if $r(p)$ is odd).

Fig. 1: the function $r(p)$ Fig. 2: the parity function $f(p)=\operatorname{par}(r(p))$

Next we show that S_{0} is a dense open subset of \mathbb{R}^{2}, and that $f: S_{0} \rightarrow\{0,1\}$ is a continuous, hence locally constant function. Using vert P for the set of vertices of P, we have in view of (11)

$$
\begin{equation*}
S_{0}=\mathbb{R}^{2} \backslash\left(P \cup(\operatorname{vert} P)^{+}\right) \tag{2}
\end{equation*}
$$

The set $(\operatorname{vert} P)^{+}$is closed, same as P. Thus S_{0} is an open subset of \mathbb{R}^{2}. Moreover, the set $P \cup(\operatorname{vert} P)^{+}$can be covered by a finite number of lines in \mathbb{R}^{2}. It follows that S_{0} is dense in R^{2}.

Continuity of f : Assume $x \in S_{0}$. Let ε be the (positive) distance from x to $P \cup(\operatorname{vert} P)^{+}\left(=\mathbb{R}^{2} \backslash S_{0}\right)$. If $x^{\prime} \in \mathbb{R}^{2},\left\|x-x^{\prime}\right\|<\varepsilon$, then the segment $\left[x, x^{\prime}\right]$ does not meet $P \cup(\operatorname{vert} P)^{+}$. Let $e=\left[p_{i-1}, p_{i}\right](1 \leq i \leq n)$ be any edge of P. The set e^{+}is a closed, convex, unbounded and full-dimensional polyhedral subset of \mathbb{R}^{2}, whose boundary consists of the lower edge e and the side edges p_{i-1}^{+}, p_{i}^{+}. Thus bde $e^{+} \subset P \cup(\operatorname{vert} P)^{+}$, and therefore the segment $\left[x, x^{\prime}\right]$ does not meet the boundary of e^{+}. It follows that $x^{\prime} \in e^{+}$iff $x \in e^{+}$, i.e., $R(x)$ meets e iff $R\left(x^{\prime}\right)$ meets e. This is true for all edges e of P. Therefore $r(x)=r\left(x^{\prime}\right)$, hence $f(x)=f\left(x^{\prime}\right)$. This shows that the function $f: S_{0} \rightarrow\{0,1\}$ is locally constant, hence continuous (in S_{0}).

Step II: Extend f continuously from S_{0} to $S_{0} \cup S_{1}=\mathbb{R}^{2} \backslash P$.
Suppose $p \in S_{1}$. Let p_{i} be the unique vertex of P that meets $R(p)$, i.e., $p \in p_{i}^{+}$. Note that $p \neq p_{i}$, i.e., $p \in \operatorname{relint} p_{i}^{+}$. Let $e_{1}=\left[p_{i-1}, p_{i}\right], e_{2}=\left[p_{i}, p_{i+1}\right]$ be the two edges of P incident with p_{i}. Define $L=p+\mathbb{R} v . L$ is the vertical line through p. Denote by L^{-}, L^{+}the two closed half-planes of \mathbb{R}^{2} bounded by L. None of the edges e_{1}, e_{2} is included in L, and they may be either in the same half-plane L^{-}or L^{+}, or in different half-planes. Choose the notation so that either $(\alpha) e_{1} \subset L^{-}, e_{2} \subset L^{+}\left(\right.$Fig. 3) or $(\beta) e_{1} \cup e_{2} \subset L^{+}$(Fig. 4).

Fig. 3: case α
Fig. 4: case β

A glance on Figures 3 and 4 shows that for a point x in the vicinity of p, but not lying on L, the parity of $r(x)$ is the same in either side of L. Hence we can extend the definition of f to p by defining $f(p)$ to be this parity. To make this into a formal argument consider the closed set $\triangle=_{\text {def }} P \cup\left(\operatorname{vert} P \backslash\left\{p_{i}\right\}\right)^{+}$. This set includes the boundary of e^{+}, for every edge e of P, except for e_{1}^{+} and e_{2}^{+}. It also includes the boundaries of e_{1}^{+}and e_{2}^{+}, except for $p_{i}^{+} \backslash\left\{p_{i}\right\}$, and it does not contain the point p. Put $\varepsilon={ }_{\operatorname{def}} \operatorname{dist}(p, \triangle)>0$, and define $U==_{\text {def }}\left\{x \in \mathbb{R}^{2}:\|x-p\|<\varepsilon\right\}=\operatorname{int} B^{2}(p, \varepsilon)$. Note that if $x \in U$, then the closed interval $[p, x]$ misses \triangle. Now make the following observations.
(I) If e is any edge of P, other than e_{1} and e_{2}, then the interval $[p, x]$ does not meet the boundary of e^{+}, and therefore p and x are either both in e^{+}, or both not in e^{+}.
(II) If, say, $e_{1} \subset L^{-}$and $x \in \operatorname{int} L^{-}$then, moving along the interval $[p, x]$ from p to x, we start at a point $p \in p_{i}^{+} \subset \mathrm{bd} e_{1}^{+}$, move into inte e_{1}^{+}, and do not hit the boundary of e_{1}^{+}again. Therefore $x \in \operatorname{int} e_{1}^{+}$. The same holds with L^{-}replaced by L^{+}, and/or e_{1} replaced by e_{2}. It follows that in case (α) : if $x \in U \backslash L$, then x belongs to exactly one of the sets e_{1}^{+}, e_{2}^{+}. And it follows that in case (β) : if $x \in U \cap \operatorname{int} L^{-}$, then x belongs to none of the sets e_{1}^{+}, e_{2}^{+}; if $x \in U \cap L^{+}$, then x belongs to both of them.
(III) If $p_{j} \in \operatorname{vert} P \backslash\left\{p_{i}\right\}$, then $p_{j}^{+} \subset \triangle$, and therefore $x \notin p_{j}^{+}$, who-ever $x \in U$.
(IV) If $x \in U \backslash L$, then clearly $x \notin p_{i}^{+}$. If $x \in U \cap L$, then the interval $[p, x]$ lies on L, contains a point $p \in p_{i}^{+} \backslash\left\{p_{i}\right\}$ and does not meet p_{i}; therefore $x \in p_{i}^{+} \backslash\left\{p_{i}\right\}\left(=\operatorname{relint} p_{i}^{+}\right)$. From these observations we infer:
(A) $U \backslash L \subset S_{0}$ and f is constant on $U \backslash L$.
(B) $U \cap L \subset S_{1}$.

Now define $f(p)$ to be the constant value that f takes on $U \backslash L$. Clearly, if we apply the same procedure to any point $p^{\prime} \in U \cap L$, we will end up with a value $f\left(p^{\prime}\right)$ equal to the value $f(p)$ just defined. (Note that any ε^{\prime}-neighborhood of $p^{\prime}\left(\varepsilon^{\prime}>0\right)$ contains points of $U \backslash L$.) Thus we have extended f to a locally constant, hence continuous function $f: \mathbb{R}^{2} \backslash P \rightarrow\{0,1\}$.

To complete the proof of statement (E), we define, as indicated after (F) above, the sets $\operatorname{ext} P==_{\operatorname{def}} f^{-1}(0)$ and $\operatorname{int} P={ }_{\text {def }} f^{-1}(1)$. These are clearly two disjoint open sets in \mathbb{R}^{2}, whose union is $\operatorname{dom} f=\mathbb{R}^{2} \backslash P$. Note that $\mathbb{R}^{2} \backslash \operatorname{conv} P \subset \operatorname{ext} P$ and, therefore, $\operatorname{int} P \subset \operatorname{conv} P$. Thus $\operatorname{ext} P$ is unbounded and $\operatorname{int} P$ is bounded.

We still have to show that every point of P is a boundary point of both int P and $\operatorname{ext} P$ (and therefore $\operatorname{int} P \neq \emptyset, \operatorname{ext} P \neq \emptyset$). Since the boundaries of int P and of ext P are closed sets, it suffices to show that the common boundary points of int P and ext P are dense in P.

For any vertex $p_{i}(1 \leq i \leq n)$ the intersection of the vertical line $p_{i}+\mathbb{R} v$ with an edge e of P is at most a singleton. Thus $e \backslash \cup\left\{p_{i}+\mathbb{R} v: 1 \leq\right.$ $i \leq n\}$ is dense in e, and $P \backslash \cup\left\{p_{i}+\mathbb{R} v: 1 \leq i \leq n\right\}$ is dense in P. If $x \in P \backslash \cup\left\{p_{i}+\mathbb{R} v: 1 \leq i \leq n\right\}$, then x belongs to the relative interior of some edge e of P. If $\varepsilon>0$ is sufficiently small, then the points $x+\varepsilon v, x-\varepsilon v$ are both in S_{0}, the half-line $R(x+\varepsilon v)$ meets e, in addition to all edges met by $R(x-\varepsilon v)$. Thus $r(x+\varepsilon v)=1+r(x-\varepsilon v)$, and $f(x+\varepsilon v) \neq f(x-\varepsilon v)$, i.e., $\{f(x-\varepsilon v), f(x+\varepsilon v)\}=\{0,1\}$. Thus x is a common boundary point of $\operatorname{int} P$ and ext P. This finishes the proof of (E).

3 Proof of (F)

Put $I_{i}=_{\text {def }}\left[p_{i-1}, p_{i}\right], 1 \leq i \leq n$, the edges of P, and for $i=1,2, \ldots, n$ let u_{i} be a unit vector perpendicular to aff I_{i}. Choose the orientation of u_{i} in such a way that for each point $b \in \operatorname{relint} I_{i}$ and for all sufficiently small positive value of $\varepsilon, b+\varepsilon u_{i} \in \operatorname{ext} P$ and $b-\varepsilon u_{i} \in \operatorname{int} P$. Define $u_{i, i+1}={ }_{\operatorname{def}} u_{i}+u_{i+1}, 1 \leq i \leq n$ (the indices are taken modulo n, i.e., $\left.p_{n}=p_{0}, u_{n+1}=u_{1}, u_{n, n+1}=u_{n, 1}=u_{n}+u_{1}\right)$.
Lemma 3.1. If ε is a sufficiently small positive number, then $p_{i}+\varepsilon u_{i, i+1} \in$ $\operatorname{ext} P$, and $p_{i}-\varepsilon u_{i, i+1} \in \operatorname{int} P$ for $1 \leq i \leq n$.

Proof: The edges I_{i}, I_{i+1} lie in two rays (half-lines) L_{i}, L_{i+1} bounded by p_{i}, say $L_{i}=p_{i}+\mathbb{R}^{+} v_{i}, L_{i+1}=p_{i}+\mathbb{R}^{+} v_{i+1}$, where v_{i}, v_{i+1} are suitable unit vectors orthogonal to u_{i}, u_{i+1}, respectively.
(a)
(b)
(c)

Fig. 5
If ε is a sufficiently small positive number $\left(0<\varepsilon<\operatorname{dist}\left(p_{i}, P \backslash\left(\operatorname{relint}\left(I_{i} \cup\right.\right.\right.\right.$ $\left.I_{i+1}\right)$), then $B^{2}\left(p_{i}, \varepsilon\right) \backslash P=B^{2}\left(p_{i}, \varepsilon\right) \backslash\left(L_{i} \cup L_{i+1}\right)$. The union $L_{i} \cup L_{i+1}$ divides $B^{2}\left(p_{i}, \varepsilon\right)$ into two open sectors, $B^{2}\left(p_{i}, \varepsilon\right) \cap \operatorname{int} P$ and $B^{2}\left(p_{i}, \varepsilon\right) \cap \operatorname{ext} P$. If L_{i}, L_{i+1} are collinear $\left(v_{i+1}=-v_{i}\right)$, then each one of these two sectors is an open half disc. In this case $u_{i}=u_{i+1}$ (Fig. 5(a)), $u_{i, i+1}=2 u_{i}=2 u_{i+1}$, and the lemma holds trivially. If u_{i}, u_{i+1} are not collinear, then one of the sectors is larger than a half disc, and the other is smaller. In both cases we have

$$
\begin{equation*}
\left\langle u_{i}, v_{i+1}\right\rangle=\left\langle u_{i+1}, v_{i}\right\rangle=\sin \alpha \tag{3}
\end{equation*}
$$

where α is the central angle of the sector $B^{2}\left(p_{i}, \varepsilon\right) \cap \operatorname{ext} P$ at $p_{i}\left(0 \leq \alpha \leq 360^{\circ}\right)$.
If $\left\langle u_{i}, v_{i+1}\right\rangle<0$, then $B^{2}\left(p_{i}, \varepsilon\right) \cap \operatorname{ext} P$ is the larger sector (Fig. 5(b)), and if $\left\langle u_{i}, v_{i+1}\right\rangle>0$, then $B^{2}\left(p_{i}, \varepsilon\right) \cap \operatorname{int} P$ is the larger sector (Fig. 5(c)). Summing up the equalities

$$
\begin{aligned}
u_{i} & =\left\langle u_{i}, u_{i+1}\right\rangle u_{i+1}+\left\langle u_{i}, v_{i+1}\right\rangle v_{i+1}, \\
u_{i+1} & =\left\langle u_{i+1}, u_{i}\right\rangle u_{i}+\left\langle u_{i+1}, v_{i}\right\rangle v_{i}
\end{aligned}
$$

and using (3), we find $\left(1-\left\langle u_{i}, u_{i+1}\right\rangle\right)\left(u_{i}+u_{i+1}\right)=\sin \alpha\left(v_{i}+v_{i+1}\right)$.
If $u_{i} \neq u_{i+1}$, then $1-\left\langle u_{i}, u_{i+1}\right\rangle>0$, and

$$
u_{i, i+1}=u_{i}+u_{i+1}=\frac{\sin \alpha}{1-\left\langle u_{i}, u_{i+1}\right\rangle} \cdot\left(v_{i}+v_{i+1}\right) .
$$

Thus $u_{i, i+1}$ is a positive [resp., negative] multiple of $v_{i}+v_{i+1}$ when $\sin \alpha>0$ [resp., $\sin \alpha<0]$. In both cases, $u_{i, i+1}$ points towards ext P, and $-u_{i, i+1}$ towards int P.

Lemma 3.2. ("Push away from \boldsymbol{P} ")
(a) Fix $i, 1 \leq i \leq n$, suppose $b \in \operatorname{relint} I_{i}$ and u is a vector satisfying $\left\langle u, u_{i}\right\rangle>0$. Define $I^{0}={ }_{\text {def }}\left[b, p_{i}\right], I^{\varepsilon}=_{\operatorname{def}}\left[b+\varepsilon u, p_{i}+\varepsilon u_{i, i+1}\right]\left(u_{i}, u_{i+1}\right.$ and $u_{i, i+1}=u_{i}+u_{i+1}$ denote the same vectors as in the previous lemma). If ε is a sufficiently small positive number, then $I^{\varepsilon} \subset \operatorname{ext} P$ and $I^{-\varepsilon} \subset \operatorname{int} P$. (The required smallness of ε may depend on the choice of the point b and of the vector u.)
(b) Fix $i, 1 \leq i \leq n$, and define $J^{0}={ }_{\operatorname{def}}\left[p_{i}, p_{i+1}\right]=I_{i+1}, J^{\varepsilon}={ }_{\operatorname{def}}\left[p_{i}+\right.$ $\left.\varepsilon u_{i, i+1}, p_{i+1}+\varepsilon u_{i+1, i+2}\right]$. If ε is a sufficiently small positive number, then $J^{\varepsilon} \in \operatorname{ext} P$ and $J^{-\varepsilon} \in \operatorname{int} P$.

Proof:

(a) First note that I^{0} does not meet any edge of P except I_{i} and I_{i+1}. The same holds for I^{ε}, provided

$$
|\varepsilon|<\min \left(\frac{1}{2}, \frac{1}{\|u\|}\right) \cdot \operatorname{dist}\left(I^{0}, P \backslash\left(\operatorname{relint}\left(I_{i} \cup I_{i+1}\right)\right)\right) .
$$

By Lemma 3.1, $p_{i}+\varepsilon u_{i, i+1} \in \operatorname{ext} P$ and $p_{i}-\varepsilon u_{i, i+1} \in \operatorname{int} P$, provided ε is positive and sufficiently small. To complete the proof, it suffices to show that $I^{\varepsilon} \cap I_{i}=\emptyset$ and $I^{\varepsilon} \cap I_{i+1}=\emptyset$ (for sufficiently small $|\varepsilon|, \varepsilon \neq 0$).
As for $I_{i}:\left\langle u_{i}, u\right\rangle>0$ (given) and $\left\langle u_{i}, u_{i, i+1}\right\rangle=1+\left\langle u_{i}, u_{i+1}\right\rangle>0$. Therefore, for any $\varepsilon \neq 0$ both endpoints of I^{ε} lie (strictly) on the same side of the line $\operatorname{aff} I_{i}$, hence $I_{i} \cap I^{\varepsilon}=\emptyset$.

As for I_{i+1} : If I_{i+1} and I_{i} lie on the same line $\left(u_{i}=u_{i+1}\right)$, then the previous argument shows that $I_{i+1} \cap I^{\varepsilon}=\emptyset$ for all $\varepsilon \neq 0$ as well. If $u_{i} \neq u_{i+1}$, consider first the case $\left\langle u_{i}, v_{i+1}\right\rangle<0$. (Fig. 5(b)). For $\varepsilon>0, I^{\varepsilon}$ lies in the open half-plane $\left\{x \in \mathbb{R}^{2}:\left\langle u_{i}, x\right\rangle>\left\langle u_{i}, p_{i}\right\rangle\right\}$, whereas I_{i+1} lies in the closed half-plane $\left\{x \in \mathbb{R}^{2}:\left\langle u_{i}, x\right\rangle \leq\left\langle u_{i}, p_{i}\right\rangle\right\}$. Therefore $I^{\varepsilon} \cap I_{i+1}=\emptyset$. For $\varepsilon<0$,

$$
\left\langle u_{i+1}, p_{i}+\varepsilon u_{i, i+1}\right\rangle=\left\langle u_{i+1}, p_{i}\right\rangle+\varepsilon\left(1+\left\langle u_{i}, u_{i+1}\right\rangle\right)<\left\langle u_{i+1}, p_{i}\right\rangle .
$$

On the other hand, $\left\langle u_{i+1}, b\right\rangle<\left\langle u_{i+1}, p_{i}\right\rangle$ (for any point $b \in \operatorname{relint} I_{i}$, since $\left\langle u_{i+1}, v_{i}\right\rangle<0$), and therefore $\left\langle u_{i+1}, b+\varepsilon u\right\rangle<\left\langle u_{i+1}, p_{i}\right\rangle$ for sufficiently small $|\varepsilon|, \varepsilon \neq 0$. Thus both endpoints of I^{ε} lie on the same open side of the line $\operatorname{aff} I_{i+1}$, hence $I^{\varepsilon} \cap I_{i+1}=\emptyset$.
In the case $\left\langle u_{i}, v_{i+1}\right\rangle>0$ (Fig. 5(c) above), just repeat the previous argument with the roles of $\varepsilon>0$ and $\varepsilon<0$ interchanged.
(b) The proof is similar to that of (a). First, note that J^{0} does not meet any edge of P except I_{i}, I_{i+1} and I_{i+2}. The same holds for J^{ε}, provided

$$
|\varepsilon|<\min \left(\frac{1}{2}, \frac{1}{\|u\|}\right) \cdot \operatorname{dist}\left(J^{0}, P \backslash \operatorname{relint}\left(I_{i} \cup I_{i+1} \cup I_{i+2}\right)\right) .
$$

By Lemma 3.1, $p_{i}+\varepsilon u_{i, i+1}, p_{i+1}+\varepsilon u_{i+1, i+2} \in \operatorname{ext} P$ and $p_{i}-\varepsilon u_{i, i+1}, p_{i+1}-$ $\varepsilon u_{i+1, i+2} \in \operatorname{int} P$, provided ε is positive and sufficiently small. To complete the proof, it suffices to show that $J^{\varepsilon} \cap I_{i}=\emptyset, J^{\varepsilon} \cap I_{i+1}=\emptyset$ and $J^{\varepsilon} \cap I_{i+2}=\emptyset$ (for sufficiently small $|\varepsilon|, \varepsilon \neq 0$).
As for $I_{i+1}:\left\langle u_{i+1}, u_{i, i+1}\right\rangle=1+\left\langle u_{i+1}, u_{i}\right\rangle>0$ and $\left\langle u_{i+1}, u_{i+1, i+2}\right\rangle=$ $1+\left\langle u_{i+1}, u_{i+2}\right\rangle>0$. Therefore, for any $\varepsilon>0$, both endpoints of J^{ε} lie on the same open side of the line $\operatorname{aff} I_{i+1}$, hence $I_{i+1} \cap J^{\varepsilon}=\emptyset$.
As for I_{i} : If I_{i+1} and I_{i} lie in the same line $\left(u_{i}=u_{i+1}\right)$, then the previous argument shows that $I_{i} \cap J^{\varepsilon}=\emptyset$ for all $\varepsilon \neq 0$ as well. If $u_{i} \neq u_{i+1}$, consider first the case $\left\langle u_{i}, v_{i+1}\right\rangle<0$ (Fig. 5(b)).
For $\varepsilon>0, J^{\varepsilon}$ lies in the open half-plane $\left\{x \in \mathbb{R}^{2}:\left\langle u_{i+1}, x\right\rangle>\left\langle u_{i+1}, p_{i}\right\rangle\right\}$, whereas I_{i} lies in the closed half-plane $\left\{x \in \mathbb{R}^{2}:\left\langle u_{i+1}, x\right\rangle \leq\left\langle u_{i+1}, p_{i}\right\rangle\right\}$. Therefore, $J^{\varepsilon} \cap I_{i}=\emptyset$.
For $\varepsilon<0$, we have $\left\langle u_{i}, p_{i}+\varepsilon u_{i, i+1}\right\rangle=\left\langle u_{i}, p_{i}\right\rangle+\varepsilon\left(1+\left\langle u_{i}, u_{i+1}\right\rangle\right)<\left\langle u_{i}, p_{i}\right\rangle$.

On the other hand, $\left\langle u_{i}, p_{i+1}\right\rangle<\left\langle u_{i}, p_{i}\right\rangle$ (since $\left\langle u_{i}, v_{i+1}\right\rangle<0$), and therefore $\left\langle u_{i}, p_{i+1}+\varepsilon u_{i+1, i+2}\right\rangle<\left\langle u_{i}, p_{i}\right\rangle$ for sufficiently small $|\varepsilon|$. Thus both endpoints of J^{ε} lie on the same open side of the line aff I_{i}, hence $J^{\varepsilon} \cap I_{i}=\emptyset$.
In the case $\left\langle u_{i}, v_{i+1}\right\rangle>0$ (Fig. $5(\mathrm{c})$), just repeat the previous argument with the roles of $\varepsilon>0$ and $\varepsilon<0$ interchanged.

As for I_{i+2} : Since the roles of I_{i} and I_{i+2} are interchangeable, the statement proved above for I_{i} applies to I_{i+2} as well.

Definition 3.1. Let p be a point in $\mathbb{R}^{2} \backslash P(=\operatorname{ext} P \cup \operatorname{int} P)$, and I be an edge of P. We say that p sees I if, for some point $a \in \operatorname{relint} I,[p, a] \cap P=\{a\}$.

Lemma 3.3. Assume $p \in \mathbb{R}^{2} \backslash P$. Then p sees at least one edge of P.

Proof: Assume, w.l.o.g., that $p \in \operatorname{ext} P$. Let q be a point in $\operatorname{int} P$. Let U be a neighborhood of q that lies entirely in int P. Choose a point $q^{\prime} \in U$ such that the line $\operatorname{aff}\left(p, q^{\prime}\right)$ does not meet any vertex of P. (This condition can be met by avoiding a finite number of lines through p.) Then the line segment $\left[p, q^{\prime}\right]$ must meet P. Let a be the first point of P on $\left[p, q^{\prime}\right]$ (starting from p). Then a is a relative interior point of some edge I of P_{i}, and $[p, a] \cap P=\{a\}$.

Definition 3.2. (poldiam $(\cdot))$: For a set $S \subset \mathbb{R}^{2}$ and points $a, b \in S$, denote by $\pi_{S}(a, b)$ the smallest number of edges of a polygonal path that connects a to b within $S\left(\pi_{S}(a, b)=_{\text {def }} \infty\right.$ if no such polygonal path exists). If S is polygonally connected, then $\pi_{S}(\cdot, \cdot)$ is an integer valued metric on S. The polygonal diameter of S is defined as poldiam $(S)={ }_{\text {def }} \sup \left\{\pi_{S}(a, b): a, b \in\right.$ $S\}$.

To prove (F) in Section 1 above, it suffices to show that poldiam(int $P)<\infty$ and poldiam $(\operatorname{ext} P)<\infty$. The following theorem does it.

Theorem 3.1. (straightforward upper bound on poldiam(int P) and poldiam($\operatorname{ext} \boldsymbol{P})$) If P is a simple closed n-gon $(n \geq 3)$ in \mathbb{R}^{2}, then we have that poldiam $(\operatorname{int} P)$ and poldiam $(\operatorname{ext} P)$ are both $\leq\left\lfloor\frac{n}{2}\right\rceil+3$.

Proof: Assume that a, b are two points in the same component (int P or $\operatorname{ext} P)$ of $\mathbb{R}^{2} \backslash P$. By Lemma 3.2, $a[b]$ sees at least one edge $I^{\prime}\left[I^{\prime \prime}\right]$ of P via
$\mathbb{R}^{2} \backslash P\left(\right.$ possibly $\left.I^{\prime}=I^{\prime \prime}\right)$. The set $P \backslash\left(\operatorname{relint}\left(I^{\prime} \cup I^{\prime \prime}\right)\right)$ consists of at most two simple polygonal paths $P^{\prime}, P^{\prime \prime}$, the shorter one of which, say P^{\prime}, concatenated by $I^{\prime}, I^{\prime \prime}$ in both of its endpoints is of the form $\left\langle J_{0}, J_{1}, \ldots, J_{m}, J_{m+1}\right\rangle$, where $m \leq\left\lfloor\frac{n-2}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor-1, J_{0}, J_{1} \ldots, J_{m+1}$ are edges of $P\left(\left\{J_{0}, J_{m+1}\right\}=\left\{I^{\prime}, I^{\prime \prime}\right\}\right)$, J_{i-1} and J_{i} share a vertex q_{i} for $i=1,2, \ldots, m+1, a$ sees via $\mathbb{R}^{2} \backslash P$ a point $a^{\prime} \in \operatorname{relint} J_{0}$, and b sees via $\mathbb{R}^{2} \backslash P$ a point $b^{\prime} \in \operatorname{relint} J_{m+1}$.

Thus $\left\langle a, a^{\prime}, q_{1}, q_{2}, \ldots, q_{m}, q_{m+1}, b^{\prime}, b\right\rangle$ is a polygonal path of $m+4 \leq\left\lfloor\frac{n}{2}\right\rfloor-$ $1+4=\left\lfloor\frac{n}{2}\right\rfloor+3$ edges that connects a to b and runs along P except for $\left[a, a^{\prime}\right]$ and $\left[b^{\prime}, b\right]$. By Lemma 3.2, this path can be pushed away from P into $\mathbb{R}^{2} \backslash P$, thus producing a polygonal path of $m+4 \leq\left\lfloor\frac{n}{2}\right\rfloor+3$ edges that connects a to b via $\mathbb{R}^{2} \backslash P$.

4 Tight upper bounds on poldiam(int P) and on poldiam(extP)

Theorem 3.1] gives a upper bound on poldiam(int P) [poldiam $(\operatorname{ext} P)$] which is somewhat "naive", but sufficient to prove (F) in Section 1 above. Here we "squeeze" the proof of Theorem 3.1 to obtain a tight result.

Theorem 4.1. (Main Theorem) Let P be a simple closed n-gon in $\mathbb{R}^{2}, n \geq 3$. Then
(a) the polygonal diameter of int P is $\leq\left\lfloor\frac{n}{2}\right\rfloor$, and the polygonal diameter of $\operatorname{ext} P$ is $\leq\left\lceil\frac{n}{2}\right\rceil$;
(b) for every $n \geq 3$, there is an n-gon P_{n} for which both bounds are attained.

Proof of Theorem 4.1(a): First note that if P is a convex polygon, then poldiam $(\operatorname{int} P)=1 \leq\left\lfloor\frac{n}{2}\right\rfloor$, and it can be easily checked that poldiam $(\operatorname{ext} P)=$ $2 \leq\left\lceil\frac{n}{2}\right\rceil$. (If we consider the closures, however, we find that poldiam(cl $\operatorname{int} P)=1$, whereas poldiam $(\mathrm{cl} \operatorname{ext} P)=3$ if P has parallel edges, and equals 2 otherwise.) This settles the case $n=3$ (P_{3} is just a triangle). If $n=4$ and P is not convex, then ext P is the union of three convex sets (two open
half-planes and a wedge), each two having a point in common, and therefore poldiam $(\operatorname{ext} P)=2=\left\lceil\frac{n}{2}\right\rceil$. This settles the case $n=4$ for $\operatorname{ext} P$.

In view of the proof of Theorem 3.1 and the foregoing discussion, we can establish the bounds on poldiam(int P) and poldiam $(\operatorname{ext} P)$ as claimed in Theorem 4.1(a) by showing the following:

Theorem 4.2. Let P be a closed simple n-gon in \mathbb{R}^{2}.
(i) If $n \geq 4$ and $a, b \in \operatorname{int} P$, then there are two vertices a^{\prime}, b^{\prime} of P such that a sees a^{\prime} via int P, b sees b^{\prime} via int P, and a^{\prime}, b^{\prime} are at most $\left\lfloor\frac{n}{2}\right\rfloor-2$ edges apart on P. (Recall that "a sees a^{\prime} via int P " means just: $] a, a^{\prime}[\subset \operatorname{int} P$.)
(ii) If $n \geq 5$ and $a, b \in \operatorname{ext} P$, then there are two vertices a^{\prime}, b^{\prime} of P such that a sees a^{\prime} via $\operatorname{ext} P, b$ sees b^{\prime} via $\operatorname{ext} P$, and a^{\prime}, b^{\prime} are at most $\left\lceil\frac{n}{2}\right\rceil-2$ edges apart on P,
or: $\pi_{\text {extP }}(a, b) \leq 3\left(\leq\left\lceil\frac{n}{2}\right\rceil\right.$ for $\left.n \geq 5\right)$.
Remark 4.1. The condition $n \geq 5$ in the first part of Theorem 4 (ii) cannot be relaxed to $n \geq 4$: Let $P_{4}=\left\langle p_{0}, p_{1}, p_{2}, p_{3}\right\rangle$ be a convex quadrilateral, and let $a, b \in \operatorname{ext} P_{4}, a$ close to $\left[p_{0}, p_{1}\right]$ and b close to $\left[p_{2}, p_{3}\right]$. Then a and b do not see a common vertex of P_{4}.

Lemma 4.1. Let P be a simple closed polygon in \mathbb{R}^{2}. Let $\left\lceil b^{\prime}, p\right\rceil$ be an edge of P, a, b two points such that $\left.\left.a \in \mathbb{R}^{2} \backslash P, b \in\right] b^{\prime}, p\right]\left(=\left[b^{\prime}, p\right] \backslash\left\{b^{\prime}\right\}\right)$ and a sees b (via $\mathbb{R}^{2} \backslash P$). Then a sees $\left(v i a \mathbb{R}^{2} \backslash P\right)$ a vertex of P included in $\left[a, b^{\prime}, b\right] \backslash[a, b]$.

Proof: If a sees b^{\prime} then we are done. Otherwise the polygon $\left.P \backslash\right] b^{\prime}, p$ meets the set $\left[a, b, b^{\prime}\right] \backslash\left[b^{\prime}, b\right]$. For $0 \leq \lambda \leq 1$, define $b(\lambda)={ }_{\operatorname{def}}(1-\lambda) b+\lambda b^{\prime}$, and let λ_{0} be the smallest value of $\lambda, 0 \leq \lambda \leq 1$, such that $[a, b(\lambda)] \cap(P \backslash] b^{\prime}, p[) \neq \emptyset$ $\left(0<\lambda_{0} \leq 1 ; \lambda_{0}=1\right.$ is possible). Let c^{\prime} be the point of $\left[a, b\left(\lambda_{0}\right)\right] \cap P$ nearest to a. Then c^{\prime} is a vertex of $P, c^{\prime} \in\left[a, b, b^{\prime}\right] \backslash[a, b]$ and a sees c^{\prime}.

Corollary 4.1. Let P be a simple closed n-gon, $n \geq 3$, in \mathbb{R}^{2}. Every point $a \in \mathbb{R}^{2} \backslash P$ sees via $\mathbb{R}^{2} \backslash P$ at least two vertices of P.

Proof: Let R be a ray emanating from a that meets P. By a slight rotation of R around a we may assume that R does not meet any vertex of P, but still $R \cap P \neq \emptyset$. Let b be the first point of R that belongs to P (starting from
$a)$. By assumption $b \in\left[b^{\prime}, b^{\prime \prime}\left[\right.\right.$ for some edge $\left[b^{\prime}, b^{\prime \prime}\right]$ of P. By Lemma 4.1, a sees via $\mathbb{R}^{2} \backslash P$ a vertex $c^{\prime}\left[c^{\prime \prime}\right]$ of P included in $\left[a, b, b^{\prime}\right] \backslash[a, b]$ [included in $\left.\left[a, b, b^{\prime \prime}\right] \backslash[a, b]\right]$, and clearly $c^{\prime} \neq c^{\prime \prime}$.

Lemma 4.2. Let P be a simple closed n-gon, $n \geq 4$, in \mathbb{R}^{2}, and let $a \in \mathbb{R}^{2} \backslash P$. If every ray emanating from a meets P, then a sees via $\mathbb{R}^{2} \backslash P$ two nonadjacent vertices of P.

Remark 4.2. The condition that every ray emanating from a meets P is met by every point $a \in \operatorname{int} P$.

Proof: By Corollary 4.1, a sees a vertex c of P via $\mathbb{R}^{2} \backslash P$. Consider the ray $R={ }_{\text {def }}\{a+\lambda(a-c): \lambda \geq 0\}$ that emanates from a in a direction opposite to c. By our assumption, R meets P. Let b be the first point of R that belongs to P. If b is a vertex of P, then a sees the two vertices b, c via $\mathbb{R}^{2} \backslash P$. These vertices are not adjacent, since $[c, b] \cap P=\{c, b\}$. Otherwise, if b is not a vertex of P, then b is a relative interior point of an edge $\left[b^{\prime}, b^{\prime \prime}\right]$ of P $(R \cap] b^{\prime}, b^{\prime \prime}[=\{b\})$. By Lemma 4.1, a sees via $\mathbb{R}^{2} \backslash P$ a vertex $c^{\prime}\left[c^{\prime \prime}\right]$ of P included in $\left[a, b, b^{\prime}\right] \backslash[a, b]$ [included in $\left.\left[a, b, b^{\prime \prime}\right] \backslash[a, b]\right]$. Clearly, $c^{\prime} \neq c^{\prime \prime}$ and $c^{\prime}, c^{\prime \prime}$ are non-adjacent in P unless $c^{\prime}=b^{\prime}$ and $c^{\prime \prime}=b^{\prime \prime}$. In this case a sees via $\mathbb{R}^{2} \backslash P$ both couples of vertices $\left\{c, b^{\prime}\right\}$ and $\left\{c, b^{\prime \prime}\right\}$. At least one of these couples is non-adjacent in P, otherwise P would be a triangle, contrary to the assumption that $n \geq 4$.

Proof of Theorem 4.2:

(i) Suppose P is a simple closed n-gon, $n \geq 4$, in \mathbb{R}^{2}. Define $S={ }_{\text {def }} \operatorname{int} P$, and assume $a, b \in S$. If $n=4,5$, then $\operatorname{cl} S(=P \cup \operatorname{int} P)$ is starshaped with respect to a vertex of P. (If $n=5$, then S can be triangulated by two interior diagonals with a common vertex.) In this case a and b see via S a common vertex a^{\prime} of P. Define $b^{\prime}={ }_{\text {def }} a^{\prime}$; we find that a^{\prime}, b^{\prime} are at zero edges apart on P. But $0 \leq 0=\left\lfloor\frac{n}{2}\right\rfloor-2$ for $n=4,5$.
Assume, therefore, that $n \geq 6$, and that a and b do not see a common vertex of P via S. By Lemma4.2, a sees via S two non-adjacent vertices $a^{\prime}, a^{\prime \prime}$ of P. These vertices divide P into two paths P_{1}, P_{2}, each having $\leq n-2$ edges. Applying Lemma 4.2 again, we find that b sees via S two non-adjacent vertices $b^{\prime}, b^{\prime \prime}$ of P and $\left\{a^{\prime}, a^{\prime \prime}\right\} \cap\left\{b^{\prime}, b^{\prime \prime}\right\}=\emptyset$.

If both b^{\prime} and $b^{\prime \prime}$ are interior vertices of the same path, say P_{1}, then they divide P_{1} into three parts. The middle part has at least two edges, and the two extreme parts together have at most $n-4$ edges. The shorter extreme part, with endpoints (say) a^{\prime}, b^{\prime}, has at most $\left\lfloor\frac{n-4}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor-2$ edges.
If, however, b^{\prime} is an interior vertex of P_{1} and $b^{\prime \prime}$ is an interior vertex of P_{2}, then they divide P_{1} and P_{2} into four polygonal paths, each one of which having one endpoint b^{\prime} or $b^{\prime \prime}$. The shortest of these paths has at most $\left\lfloor\frac{n}{4}\right\rfloor$ edges. But $\left\lfloor\frac{n}{4}\right\rfloor \leq\left\lfloor\frac{n}{2}\right\rfloor-2$ for $n \geq 6$.
(ii) Assume $n \geq 5$, define $T=\operatorname{ext} P$, and let $a, b \in T$. Then either
(A1) every ray emanating from a meets P, or
(A2) some ray emanating from a misses P.
Similarly, either
(B1) every ray emanating from b meets P, or
(B2) some ray emanating from b misses P.
If (A1) and (B1) hold, then both a and b see via T two non-adjacent vertices of P (Lemma 4.2). If $n \geq 6$, this implies that $a[b]$ sees a vertex $a^{\prime}\left[b^{\prime}\right]$ of P such that a^{\prime}, b^{\prime} are at most $\left\lfloor\frac{n-4}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor-2 \leq\left\lceil\frac{n}{2}\right\rceil-2$ or $\left\lfloor\frac{n}{4}\right\rfloor \leq\left\lfloor\frac{n}{2}\right\rfloor-2 \leq\left\lceil\frac{n}{2}\right\rceil-2$ edges apart on P, as in the proof of part (i) above. If $n=5$, then a sees via T a vertex a^{\prime} of P, and b sees via T a vertex b^{\prime} of P, where a^{\prime} and b^{\prime} are either equal or adjacent, i.e., a^{\prime}, b^{\prime} are at most one edge apart on P. But for $n=5$ one has $1 \leq\left\lceil\frac{n}{2}\right\rceil-2$.
If (A2) and (B2) hold, then, due to the compactness of P, we can find rays $R_{a}=\{a+\lambda u: \lambda \geq 0\}$ and $R_{b}=\{b+\lambda v: \lambda \geq 0\}$ that miss P, where the direction vectors u and v are linearly independent. When λ is sufficiently large, the segment $[a+\lambda u, b+\lambda u]$ misses P. Therefore $\pi_{T}(a, b) \leq 3\left(\leq\left\lceil\frac{n}{2}\right\rceil\right.$ for $\left.n \geq 5\right)$ if $R_{a} \cap R_{b}=\emptyset$, and $\pi_{T}(a, b)=2<$ $3\left(\leq\left\lceil\frac{n}{2}\right\rceil\right.$ for $\left.n \geq 5\right)$ if $R_{a} \cap R_{b} \neq \emptyset$.
If (A1) and (B2) hold, then a sees via T two non-adjacent vertices $a^{\prime}, a^{\prime \prime}$ of P, which divide P into two paths P_{1}, P_{2} (with disjoint relative interiors) each one of which having $\leq n-2$ edges. The point b, however, sees two distinct vertices $b^{\prime}, b^{\prime \prime}$ of P, which may be adjacent (Corollary 4.1). If $\left\{a^{\prime}, a^{\prime \prime}\right\} \cap\left\{b^{\prime}, b^{\prime \prime}\right\} \neq \emptyset$, then again $\pi_{T}(a, b) \leq 2<3\left(\leq\left\lceil\frac{n}{2}\right\rceil\right.$ for
$n \geq 5)$. If $\left\{a^{\prime}, a^{\prime \prime}\right\} \cap\left\{b^{\prime}, b^{\prime \prime}\right\}=\emptyset$, then b^{\prime} and $b^{\prime \prime}$ are interior vertices of P_{1} or P_{2}, or both. If b^{\prime} and $b^{\prime \prime}$ belong to different paths, then (as in the proof of part (i) above) they divide P_{1} and P_{2} into four polygonal paths, each having one endpoint b^{\prime} or $b^{\prime \prime}$. The shortest one of these paths has at most $\left\lfloor\frac{n}{4}\right\rfloor$ edges. But $\left\lfloor\frac{n}{4}\right\rfloor \leq\left\lceil\frac{n}{2}\right\rceil-2$ for $n \geq 5$. If both b^{\prime} and $b^{\prime \prime}$ are interior vertices of the same path, say P_{1}, then (as in the proof of part (i) above) they divide P_{1} into three parts. The two extreme parts together have at most $n-2-1=n-3$ edges. The shortest extreme part with endpoints (say) a^{\prime}, b^{\prime} has at most $\left\lfloor\frac{n-3}{2}\right\rfloor$ edges. But $\left\lfloor\frac{n-3}{2}\right\rfloor=\left\lfloor\frac{n-1}{2}\right\rfloor-1=\left\lceil\frac{n}{2}\right\rceil-2$ for all $n \in \mathbb{N}$.
The same applies when (A2) and (B1) hold. This finishes the proof of Theorem 4.2.

By this also the proof of Theorem 4.1(a) is finished.

Proof of Theorem 4.1(b):

We split our examples into two cases, namely even n and odd $n, n \geq 3$.
Example 4.1. $\boldsymbol{n}=\mathbf{2 m}$ (even), $\boldsymbol{m} \geq \mathbf{2}$. Figure 6 shows the example for the case $m=3(n=6)$.

$$
\text { Fig. 6: } m=3(n=6)
$$

Here we have $\pi_{\text {int } P}(a, b)=m(=3)=\left\lfloor\frac{n}{2}\right\rfloor$ and $\pi_{\text {ext } P}(c, d)=m(=3)=\left\lceil\frac{n}{2}\right\rceil$. One can extend the figure inward beyond vertex \#4.

Example 4.2. $n=2 m+1$ (odd), $m \geq 1$. Figure 7 shows the example for the case $m=3(n=7)$

$$
\text { Fig. 7: } m=3(n=7)
$$

We have $\pi_{\mathrm{int} P}(a, b)=m(=3)=\left\lfloor\frac{n}{2}\right\rfloor$ and $\pi_{\operatorname{ext} P}(c, d)=m+1(=4)=\left\lceil\frac{n}{2}\right\rceil$. Again, one can extend the figure inward beyond vertex \#4.

References

[1] Aleksandrov, P. S.: Combinatorial Topology (in three volumes), translated from the Russian, 1947. Kombinatornaya Topologiya, by Harace Komm, Graylock Press, Rochester (1956). Reproduced by Dover Publications, New York (1998).
[2] Benson, R. V.: Euclidean Geometry and Convexity, McGrawHill, New York (1966).
[3] Bertoglio, N., Chuaqui, R.: An elementary geometric nonstandard proof of the Jordan curve theorem, Geom. Dedicata 51 (1994), 15-27.
[4] Courant, R., Robbins, H.: What is Mathematics? 4th ed., Oxford University Press, London (2003).
[5] Dostál, M., Tindell, R.: The Jordan curve theorem revisited, Jahresber. Deutsch. Math.-Ver. 80 (1978), 111-128.
[6] Hille, E.: Analytic Function Theory, Vol. I, Ginn and Company, Boston (1959), (Chelsea, 1973).
[7] Kuratowski, K.: Introduction to Set Theory and Topology, 2nd ed., Pergamon Press and Polish Scientific Publications, Warsaw (1972).
[8] Lawson, T.: Topology: A Geometric Approach, Oxford Graduate Texts in Mathematics, Vol. 9, Oxford University Press, London (2003).
[9] Moise, E. E.: Geometric Topology in Dimension 2 and 3, Springer, New York (1977).
[10] Perles, M. A., Martini, H., Kupitz, Y. S.: A JordanBrouwer separation theorem for polyhedral pseudomanifolds, Discrete Comput. Geom. 42 (2009), 277-304.
[11] Thomassen, C.: The Jordan-Schönflies theorem and the classification of surfaces, Amer. Math. Monthly 99 (1992), 116-130.

[^0]: ${ }^{1}$ Partially supported by the Landau Center at the Mathematics Institute of the Hebrew University of Jerusalem (supported by Minerva Foundation, Germany), and by Deutsche Forschungsgemeinschaft.

