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CONCENTRATION OF POINTS ON MODULAR QUADRATIC FORMS

ANA ZUMALACÁRREGUI

Abstract. Let Q(x, y) be a quadratic form with discriminant D 6= 0. We obtain non trivial upper
bound estimates for the number of solutions of the congruence Q(x, y) ≡ λ (mod p), where p is
a prime and x, y lie in certain intervals of length M , under the assumption that Q(x, y) − λ is an
absolutely irreducible polynomial modulo p. In particular we prove that the number of solutions
to this congruence is Mo(1) when M ≪ p1/4. These estimates generalize a previous result by
Cilleruelo and Garaev on the particular congruence xy ≡ λ (mod p).

1. Introduction

Let Q(x, y) be a quadratic form with discriminant D 6= 0. For any odd prime p and λ ∈ Z, we
consider the congruence

(1) Q(x, y) ≡ λ (mod p)

ß

K + 1 ≤ x ≤ K + M,
L + 1 ≤ y ≤ L + M,

for arbitrary values of K, L and M . We denote by IQ(M ; K, L) the number of solutions to (1).

It follows from [6, 7] that if the quadratic form Q(x, y) − λ is absolutely irreducible modulo p, one
can derive from the Bombieri bound [1] that

(2) IQ(M ; K, L) =
M2

p
+ O(p1/2 log2 p).

Whenever M is small, say M ≪ p1/2 log2 p, this estimate provides an upper bound which is worse
than the trivial estimate IQ(M ; K, L) ≤ 2M (for every x in the range we have a second degree
polynomial in y with no more than two solutions).

In the special case Q(x, y) = xy and (λ, p) = 1, Chan and Shparlinsky [2] used sum product
estimates to obtain a non trivial estimate

I(M ; K, L) ≪ M2/p + M1−η,

for some η > 0. Cilleruelo and Garaev [3], using a different method, improved this estimate:

I(M ; K, L) ≪
Ä

M4/3p−1/3 + 1
ä

Mo(1).

The aim of this work is to generalize Cilleruelo and Garaev’s estimate to any non-degenerate
quadratic form.

Theorem 1. Let Q(x, y) be a quadratic form defined over Z, with discriminant D 6= 0. For any

prime p and λ ∈ Z such that Q(x, y) − λ is absolutely irreducible modulo p, we have

IQ(M ; K, L) ≪
Ä

M4/3p−1/3 + 1
ä

Mo(1).

This estimate is non trivial when M = o(p) and better than (2) whenever M ≪ p5/8. Furthermore,
when M ≪ p1/4 Theorem 1 gives IQ(M ; K, L) = Mo(1), which is sharp. Probably the last estimate

also holds for M ≪ p1/2, but it seems to be a difficult problem.
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Note that if

Q(x, y) − λ ≡ q1(x, y)q2(x, y) (mod p),

for some linear polynomials qi(x, y) ∈ Z[x, y], we have that solutions in (1) will correspond to
solutions of the linear equations qi(x, y) ≡ 0 (mod p) and we could have ≫ M different solutions.
The condition of irreducibility is required to avoid this situation.

Observe that the condition D 6= 0 restrict ourselves to the study of ellipses and hyperbolas. The
given upper bound cannot be applied to quadratic forms with discriminant D = 0. For example
the number of solutions to (1) when Q(x, y) = y − x2 is ≍ M1/2.

2. Proof of Theorem 1

The following lemmas will be required during our proof. These results will give us useful upper
bounds over the number of lattice points in arcs of certain length on conics.

Lemma 1. Let D 6= 0, 1 be a fixed square-free integer. On the conic x2 − Dy2 = n an arc of length

n1/6 contains, at most, two lattice points.

This lemma is a particular case of Theorem 1.2 in [4].

Lemma 2. Let D 6= 0, 1 be a fixed square-free integer. If n = MO(1), on the conic x2 − Dy2 = n
an arc of length MO(1) contains, at most, Mo(1) lattice points.

Proof. This result is a variant of Lemma 4 in [3], where the conclusion was proved when 1 ≤ x, y ≤
MO(1), (see Lemma 3.5 [5] for a more general result).

If D is negative, the result is contained in Lemma 4 in [3] since it is clear that 1 ≤ x, y ≪ √
n =

MO(1). We must study though the case where D is positive.

By symmetry we can consider only those arcs in the first quadrant, since any non-negative lattice
point (x, y) will lead us to no more than four lattice points (±x, ±y). Let (u0, v0) be the minimal

non-negative solution to the Pell’s equation x2−Dy2 = 1, and ξ = u0−
√

Dv0 its related fundamental

unit in the ring of integers of Q
Ä√

D
ä

. Suppose that (x0, y0) is a positive solution to x2
0 − Dy2

0 = n

that lies in our initial arc and let t ∈ R be the solution to

(x0 +
√

Dy0)ξt = (x0 −
√

Dy0)ξ−t.

Then for m = [t], we have (x0 +
√

Dy0)ξm = x1 +
√

Dy1 ≍ √
n. This means that each solution

in our initial arc corresponds to a ‘primitive’ solution lying in an arc of length ≪ √
n. Conversely,

solutions in an arc of length ≪ √
n can be taken to larger arcs by multiplying by powers of ξ−1.

Since our initial interval has length MO(1) there will be no more than O(log M) powers connected
to each primitive solution. The term O(log M) is absorbed by Mo(1).
On the other hand, we know by Lemma 4 in [3] that the number of lattice points in an arc of length
O(

√
n) is Mo(1). It follows that the number of solutions in the original arc will be bounded by

Mo(1). �

We are now in conditions to start the proof of Theorem 1.

Proof. Let Q(x, y) = ax2 + bxy + cy2 + dx + ey + f be a quadratic form with integer coefficients
and discriminant D = b2 − 4ac 6= 0. Whenever a = c = 0, the congruence in (1) can be written
in the form XY ≡ µ (mod p), where X = bx + e, Y = by + d and µ = bλ − (ed + bf). This case
was already studied in [3], but one extra condition was required: µ must be coprime with p or,
equivalently, XY − µ must be absolutely irreducible modulo p.

If a 6= 0 the congruence in (1) can be written as

X2 − DY 2 ≡ µ (mod p),

where X = Dy + 2(ae − db), Y = 2ax + by + d and µ = 4aDλ − D(4af − d2) + 4a(ae − db). The
case a = 0 and c 6= 0 follows by exchanging x for y in the previous argument (and so c, e will be
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the coefficients of x2 and x instead of a, d). Our new variables X, Y lie in intervals of length ≪ M .
Specifically X lies in an interval of length DM and Y in an interval of length (2|a| + |b|)M .

We also can assume that p > D. Since D 6= 0, different original solutions will lead us to a different
solution.

These observations allow us to bound the number of solutions to (1) by the number of solutions of
the congruence

x2 − Dy2 ≡ µ (mod p),

where x, y lie in two intervals of length ≪ M .

Without loss of generality we can assume that D is square-free. Otherwise D = D1k2, for some
square-free integer D1, and solutions (x, y) of our equation would lead us to solutions (x, ky) of
x2 − D1(ky)2 ≡ µ (mod p), where ky would lie in some interval of length ≪ M . The case D = 1
corresponds to the problem x2 − y2 = UV ≡ µ (mod p), where U = (x + y) and V = (x − y) still
lie in some intervals of length ≪ M and (µ, p) = 1, otherwise UV − µ will be reducible modulo p.
Once more this case was already studied in [3].

By the previous arguments it is enough to prove the result for

(3) x2 − Dy2 ≡ λ (mod p),

ß

K + 1 ≤ x ≤ K + M,
L + 1 ≤ y ≤ L + M,

where D is some square-free integer 6= 0, 1 and λ ∈ Z.

This equation is equivalent to
(

x2 + 2Kx
)

− D
(

y2 + 2Ly
)

≡ µ (mod p), 1 ≤ x, y ≤ M,

where µ = λ − (K2 − DL2). By the pigeon hole principle we have that for every positive integer
T < p, there exists a positive integer t < T 2 such that tK ≡ k0 (mod p) and tL ≡ ℓ0 (mod p) with
|k0|, |ℓ0| < p/T . Thus we can always rewrite the equation (3) as

(

tx2 + 2k0x
)

− D
(

ty2 + 2ℓ0y
)

≡ µ0 (mod p), 1 ≤ x, y ≤ M,

where |µ0| < p/2. This modular equation lead us to the following Diophantine equation

(4)
(

tx2 + 2k0x
)

− D
(

ty2 + 2ℓ0y
)

= µ0 + pz, 1 ≤ x, y ≤ M, z ∈ Z,

where z must satisfy

|z| =

∣

∣

∣

∣

∣

(

tx2 + 2k0x
)

− D
(

ty2 + 2ℓ0y
)

− µ0

p

∣

∣

∣

∣

∣

<
(1 + |D|)T 2M2

p
+

2(1 + |D|)M
T

+
1

2
.

For each integer z on the previous range the equation defined in (4) is equivalent to:

(5) (tx + k0)2 − D(ty + ℓ0)2 = nz, 1 ≤ x, y ≤ M,

where nz = t(µ0 + pz) + (k2
0 − Dℓ2

0). We will now study the number of solutions in terms of nz.

If nz = 0, since D is not a square, we have that tx + k0 = ty + ℓ0 = 0 and there is at most one
solution (x, y).

Let now focus on the case nz 6= 0. We will split the problem in two different cases, depending on
how big M is compared to p.

• Case M < p1/4

4 4
√

(1+|D|)3
. In this case we take T = 8(1 + |D|)M in order to get |z| < 1.

Therefore it suffices to study solutions of

(tx + k0)2 − D(ty + ℓ0)2 = n0, 1 ≤ x, y ≤ M.

If n0 > 248(1 + |D|)12M18, the integers |tx + k0| and |ty + ℓ0| will lie in two intervals of
length T 2M = 26(1 + |D|)2M3 and solutions to (3) will come from lattice points in an arc

of length smaller than 28(1 + |D|)2M3 < n
1/6
0 (by hypothesis). From Lemma 1 it follows

that there will be no more than two lattice points in such an arc.

If n0 ≤ 248(1 + |D|)12M18, Lemma 2 assures that the number of solutions will be Mo(1).
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• Case M ≥ p1/4

4 4
√

(1+|D|)3
. In this case we take T = (p/M)1/3 and hence |z| ≪ M4/3

p1/3
.

Since nz = t(µ0 +pz)+(k2
0 −Dℓ2

0) ≪ p2 ≪ M8 we can apply Lemma 2 to conclude that for
every z in the range above there will be Mo(1) solutions to its related Diophantine equation.

We have proved that in all cases, the number of solutions to (5) is Mo(1) for each nz . On the other
hand, the number of possible values of z is O(M4/3p−1/3 + 1). It follows that

IQ(M ; K, L) ≪
Ä

M4/3p−1/3 + 1
ä

Mo(1).
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