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ON STABLY FREE MODULES OVER LAURENT POLYNOMIAL

RINGS

ABED ABEDELFATAH

Abstract. We prove constructively that for any finite-dimensional commu-
tative ring R and n ≥ dim(R) + 2, the group En(R[X,X−1]) acts transitively
on Umn(R[X,X−1]). In particular, we obtain that for any finite-dimensional
ring R, every finitely generated stably free module over R[X,X−1] of rank
> dimR is free, i.e., R[X,X−1] is (dimR)-Hermite.

1. Introduction

We denote by R a commutative ring with unity and N the set of non-negative
integers. Umn(R) is the set of unimodular rows of length n over R, that is all
(x0, . . . , xn−1) ∈ Rn such that x0R+ · · ·+xn−1R = R. If u, v ∈ Umn(R) and G is a
subgroup of GLn(R), we write u ∼G v if there exists g in G such that v = ug. Recall
that En(R) denotes the subgroup of GLn(R), generated by all Eij(a) := In + aeij
(where i 6= j, a ∈ R and eij denotes the n× n- matrix whose only non-zero entry
is 1 on the (i, j)- th place). We abbreviate the notation u ∼En(R) v to u ∼E v. We
say that a ring R is Hermite (resp. d-Hermite ) if any finitely generated stably free
R-module ( resp., any finitely generated stably free R-module of rank > d ) is free.

In [6], A.A.Suslin proved:

Theorem 1.1. (A.A.Suslin)
If R is a Noetherian ring and

A = R[X±1
1 , . . . , X±1

k , Xk+1, . . . , Xn].

Then for n ≥ max (3, dim(R) + 2) the group En(A) acts transitively on Umn(A).

In particular, we obtain that En(R[X,X−1]) acts transitively on Umn(R[X,X−1])
for any Noetherian ring R, where n ≥ max (3, dim(R) + 2). In [7], I.Yengui proved:

Theorem 1.2. (I.Yengui)
Let R be a ring of dimension d, n ≥ d+ 1, and let f ∈ Umn+1(R[X ]). Then there

exists E ∈ En+1(R[X ]) such that f · E = e1.

In this article we generalize by proving:

Theorem 1.3. For any finite-dimensional ring R, En(R[X,X−1]) acts transitively
on Umn(R[X,X−1]), where n ≥ dim(R) + 2.

This gives a positive answer to Yengui’s question (Question 9 of [7]). The proof
we give is a close adaptation of Yengui’s proof to the Laurent case.

Key words and phrases. Stably free modules, Hermite rings, Unimodular rows, Laurent poly-
nomial rings, Constructive Mathematics.

1

http://arxiv.org/abs/1012.3540v1
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2. Preliminary results on unimodular rows

A.A.Suslin proved in [6], that if f = (f0, . . . , fn) ∈ Umn+1(R[X ]), where f1
is unitary and n ≥ 1, then there exists w ∈ SL2(R[X ]) · En+1(R[X ]) such that
f ·w = e1. In fact, this theorem is a crucial point in his proof of Serre’s conjecture.
R.A.Rao generalized in [[4], Corollary 2.5] by proving:

Theorem 2.1. (R.A.Rao, [4])
Let f = (f0, . . . , fn) ∈ Umn+1(R[X ]), where n ≥ 2. If some fi is unitary, then f
is completable to a matrix in En(R[X ]).

Recall that the boundary ideal of an element a of a ring R is the ideal I(a) of
R generated by a and all y ∈ R such that ay is nilpotent. Moreover, dimR ≤ d ⇔
dim(R/I(a)) ≤ d− 1 for all a ∈ R [3].

Theorem 2.2. [[2], Theorem 2.4]
Let R be a ring of dimension ≤ d and a = (a0, . . . , an) ∈ Umn+1(R) where n ≥ d+1,
then there exist b1, . . . , bn ∈ R such that

〈a1 + b1a0, . . . , an + bna0〉 = R

In fact, we can obtain a stronger result if f ∈ Umn+1(RS), where S is a multi-
plicative subset of R:

Proposition 2.3. Let S be a multiplicative subset of R such that S−1R has dimen-

sion d. Let (a0, . . . , an) ∈ Mn+1(R) be a row such that (a0

1 , . . . , an

1 ) ∈ Umn+1(S
−1R),

where n > d. Then there exist b1, . . . , bn ∈ R and s ∈ S such that

s ∈ (a1 + b1a0)R+ · · ·+ (an + bna0)R.

Proof. By induction on d, if d = 0 then RS/I(
an

1 ) ∼= (R/J)S is trivial, where

S = {s+ J | s ∈ S}, J = i−1(I(an

1 )), and i : R → RS is the natural homo-

morphism. So 1 ∈ 〈an

1 , bn
1 〉 in RS , where bn ∈ R and anbn

1 is nilpotent. Since

1 ∈ 〈a1

1 , . . . , an−1

1 , an

1 , bna0

1 〉, so by [[2], Lemma 2.3], 1 ∈ 〈a1

1 , . . . , an−1

1 , an+bna0

1 〉,
i.e., there exist s ∈ S such that s ∈ a1R+ · · ·+ an−1R+ (an + bna0)R.

Assume now d > 0. By the induction assumption with respect to the ring
RS/I(

an

1 ) ∼= (R/J)S we can find b̄1, . . . , b̄n−1 ∈ R/J such that

〈
ā1 + b̄1ā0

1
, . . . ,

ān−1 + b̄n−1ā0

1
〉 = (R/J)S .

So 〈a1+b1a0

1 , . . . , an−1+bn−1a0

1 〉 = RS/I(
an

1 ), this means that

〈
a1 + b1a0

1
, . . . ,

an−1 + bn−1a0
1

,
an
1
,
bn
1
〉 = RS

where anbn
1 is nilpotent. So by [[2], Lemma 2.3]

〈
a1 + b1a0

1
, . . . ,

an−1 + bn−1a0
1

,
an + bna0

1
〉 = RS .

�

Let f ∈ Umn+1(R[X ]), where n ≥ d
2 + 1, with R a local ring of dimension d.

M.Roitman’s argument in [[5], Theorem 5], shows how one could decrease the degree
of all but one (special) co-ordinate of f . In the absence of a monic polynomial as
a co-ordinate of f he uses a Euclid’s algorithm and this is achieved via,
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Lemma 2.4. (M.Roitman, [[5], Lemma 1])
Let (x0, . . . , xn) ∈ Umn+1(R), n ≥ 2, and let t be an element of R which is invertible

mod(Rx0 + · · ·+Rxn−2). Then

(x0, . . . , xn) ∼En+1(R) (x0, . . . , t
2xn) ∼En+1(R) (x0, . . . , txn−1, txn).

3. The main results

Definitions 3.1. Let f ∈ R[X,X−1] be a nonzero Laurent polynomial. We denote
deg(f) = hdeg(f) − ldeg(f), where hdeg(f) and ldeg(f) denote respectively the
highest and the lowest degree of f .

Let hc(f) and lc(f) denote respectively the coefficients of the highest and the
lowest degree term of f . An element f ∈ R[X,X−1] is called a doubly unitary if
hc(f), lc(f) ∈ U(R).

For example, deg(X−3 +X2) = 5.

Lemma 3.2. Let f1, . . . , fn ∈ R[X,X−1] such that hdeg(fi) ≤ k−1, ldeg(fi) ≥ −m
for all 1 ≤ i ≤ n. Let f ∈ R[X,X−1] with hdeg(f) = k, ldeg(f) ≥ −m, where

k,m ∈ N. Assume that hc(f) ∈ U(R) and the coefficients of f1, . . . , fn generate the

ideal (1) of R, then I = 〈f1, . . . , fn, f〉 contains a polynomial h of hdeg(h) = k− 1,
ldeg(h) ≥ −m and hc(h) ∈ U(R).

Proof. Since Xmf1, . . . , X
mfn, X

mf ∈ R[X ], by [[1], §4, Lemma 1(b)], I contains
a polynomial h1 ∈ R[X ] of degree m+ k − 1 which is unitary. So h = X−mh1 ∈ I
of hdeg(h) = k − 1, ldeg(h) ≥ −m and hc(h) ∈ U(R). �

Proposition 3.3. Let I E R[X,X−1] be an ideal, J E R, such that I contains a

doubly unitary polynomial. If I + J [X,X−1] = R[X,X−1] then (I ∩R) + J = R.

Proof. Let us denote by h1 a doubly unitary polynomial in I. Since I+J [X,X−1] =
R[X,X−1], there exist h2 ∈ I and h3 ∈ J [X,X−1] such that h2 + h3 = 1. Let

gi = X− ldeg(hi)hi, for i = 1, 2, 3. Since X l ∈
∑3

i=1 giR[X ], for some l ≥ 0, and
g1 ≡ u mod XR[X ], where u ∈ U(R), we obtain that 〈g1, g2, g3〉 = 〈1〉 in R[X ]. By
[[8], Lemma 2], we obtain (〈g1, g2〉 ∩R) + J = R. So (I ∩R) + J = R. �

Theorem 3.4. Let f = (f0, . . . , fn) ∈ Umn+1(R[X,X−1]), where n ≥ 2. Assume

that f0 is a doubly unitary polynomial, then

f ∼En+1(R[X,X−1]) (1, 0, . . . , 0).

Proof. By (2.4), f ∼E (X− ldeg(f0)f0, X
− ldeg(f0)f1, f2, . . . , fn) ∼E

(X− ldeg(f0)f0, X
− ldeg(f0)+2kf1, X

2kf2, . . . , X
2kfn) = (g0, . . . , gn) where k ∈ N. For

sufficiently big k, we obtain that g0, . . . , gn ∈ R[X ]. Clearly, X l ∈
∑n

i=0 giR[X ] for

some l ≥ 0. But g0 ≡ u mod XR[X ], where u ∈ U(R), then X lR[X ] + g0R[X ] =
R[X ], so g ∈ Umn(R[X ]). By (2.1), g ∼E e1. �

Remark 3.5. Let a = (a1, . . . , an) ∈ Umn+1(R), where n ≥ 2. If

a ∼En(R/Nil(R)) e1

then a ∼En(R) e1.

Proposition 3.6. If R is a zero-dimensional ring and f = (f0, . . . , fn)
∈ Umn+1(R[X,X−1]), where n ≥ 1. Then

f ∼E e1.
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Proof. We prove by induction on deg f0+deg f1. We may assume that R is reduced
ring. Let a = hc(f0) and b = lc(f0). Assume that ab ∈ U(R), then by elementary
transformations of the form

f1 −X ldeg(f1)−ldeg(f0)b−1 lc(f1)f0

we obtain that f ∼E (f0, h1, f2, . . . , fn), where ldeg(h1) > ldeg(f0). By elementary
transformations of the form

f1 −Xhdeg(f1)−hdeg(f0)a−1 hc(f1)f0

we obtain that f ∼E (f0, g1, f2, . . . , fn), where ldeg(g1) ≥ ldeg(f0) and hdeg(g1) <
hdeg(f0). So we may assume that deg f0 ≤ deg f1 and ab /∈ U(R). Assume that
a /∈ U(R). We have Ra = Re for some idempotent e. Let c = hc(f1). Since e ∈ Ra,
we may assume that c 6= 0 and that c ∈ R(1− e). Note that

(1− e)f = (f0(1− e), . . . , fn(1− e)) ∈ Umn+1(R(1− e)[X,X−1]) and
ef = (f0e, . . . , fne) ∈ Umn+1(Re[X,X−1]).

By the inductive assumption, there are matrices

A ∈ En+1(R(1 − e)[X,X−1]), B ∈ En+1(Re[X,X−1])

so that (1 − e)fA = (1− e, 0, . . . , 0) and efB = (e, 0, . . . , 0). Let

A =

k
∏

s=1

Eij(hs), B =

t
∏

s=1

Eij(gs)

where

Eij(hs) = (1− e)In+1 + hseij , Eij(gs) = eIn+1 + gseij

and i 6= j ∈ {1, . . . , n+ 1}, hs ∈ R(1− e)[X,X−1], gs ∈ Re[X,X−1]. Let

A′ =

k
∏

s=1

(In+1 + hseij), B′ =

t
∏

s=1

(In+1 + gseij).

Clearly, (1 − e)A′ = A, eB′ = B and A′, B′ ∈ En+1(R[X,X−1]). Let C = A′B′,
then C ∈ En+1(R[X,X−1]) and

(1− e)C = (1− e)A′(1− e)B′ = A(1 − e)In+1 = (1− e)A′ = A.

Similarly, we have eC = B. Let fC = (g0, . . . , gn) = g. Thus

g0(1− e) = 1− e and g1e = e.

So

f ∼En+1(R[X,X−1]) (g0, . . . , gn) ∼En+1(R[X,X−1]) (g0 + e, . . . , gn) =
(1 + g0e, . . . , gn) ∼En+1(R[X,X−1]) (1 + g0e,−g0e, . . . , gn) ∼En+1(R[X,X−1]) e1.

Similarly, if b /∈ U(R), then f ∼E e1. �

Proposition 3.7. If R is a zero-dimensional ring, then

SLn(R[X,X−1]) = En(R[X,X−1])

for all n ≥ 2.
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Proof. Clearly, En(R[X,X−1]) ⊆ SLn(R[X,X−1]). Let M ∈ SLn(R[X,X−1]). By
(3.6), we can perform suitable elementary transformations to bring M to M1 with
first row (1, 0, . . . , 0). Now a sequence of row transformations bring M1 to

M2 =

(

1 0
0 M ′

)

where M ′ ∈ SLn−1(R[X,X−1]). The proof now proceeds by induction on n. �

Lemma 3.8. Let (f0, . . . , fn) ∈ Umn+1(R[X,X−1]), where n ≥ 2. Assume that

hc(f0) is invertible modulo f0. Then

f ∼E (f0, g1, . . . , gn)

where hdeg(gi) < hdeg(f0), ldeg(gi) ≥ ldeg(f0), for all 1 ≤ i ≤ n.

Proof. By (2.4), f ∼E (f0, X
2kf1, . . . , X

2kfn) for all k ∈ Z. So we may assume
that ldeg(fi) > ldeg(f0). Let a = hc(f0). By (2.4) we have

f ∼E (f0, a
2f1, . . . , a

2fn).

Using elementary transformations of the form

a2fi − aXhdeg(fi)−hdeg(f0) hc(fi)f0

we lower the degrees of fi, for all 1 ≤ i ≤ n, and obtain the required row. �

Lemma 3.9. Let R be a ring of dimension d > 0 and

f = (r, f1, . . . , fn) ∈ Umn+1(R[X,X−1])

where r ∈ R, n ≥ d+ 1. Assume that for every ring T of dimension < d and n ≥
dim(T ) + 1, the group En+1(T [X,X−1]) acts transitively on Umn+1(T [X,X−1]).
Then f ∼E(R[X,X−1]) e1.

Proof. Since dim(R/I(r)) < dim(R) so over R/I(r), we can complete (f1, . . . , fn)
to a matrix in En(R/I(r)[X,X−1]). If we lift this matrix, we obtain that

(r, f1, . . . , fn) ∼En+1(R[X,X−1]) (r, 1 + rw1 + h1, . . . , rwn + hn) ∼En+1(R[X,X−1])

(r, 1 + h1, . . . , hn)

where hi, wi ∈ R[X,X−1] and rhi = 0 for all 1 ≤ i ≤ n. Then

f ∼En+1(R[X,X−1]) (r − r(1 + h1), 1 + h1, . . . , hn) ∼En+1(R[X,X−1]) e1.

�

Lemma 3.10. Let R be a ring of dimension d > 0 and

f = (f0, . . . , fn) ∈ Umn+1(R[X,X−1])

such that n ≥ d + 1, f0 = ag and at = hc(f0), where a ∈ R \ U(R), 0 6= t ∈ N.

Assume that for every ring T of dimension < d and n ≥ dim(T ) + 1, the group

En+1(T [X,X−1]) acts transitively on Umn+1(T [X,X−1]). Then f ∼E(R[X,X−1]) e1.

Proof. We prove by induction on the number M of non-zero coefficients of the
polynomial f0, that f ∼E e1. If M = 1, so f0 = rXm where r ∈ R,m ∈ Z. By
(2.4), f ∼E (r,X−mf1, f2, . . . , fn). So by (3.9), we obtain that f ∼E e1. Assume
now that M > 1. Let S be the multiplicative subset of R generated by a, b, where
b = lc(g), i.e., S =

{

ak1bk2

∣

∣ k1, k2 ∈ N
}

. By the inductive step, with respect to

the ring R/abR, we obtain from f a row ≡ (1, 0, . . . , 0) mod abR[X,X−1], also
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we can perform such transformation so that at every stage the row contains a
doubly unitary polynomial in RS [X,X−1], indeed, if we have to perform, e.g., the
elementary transformation

(g0, . . . , gn) → (g0, g1 + hg0, . . . , gn)

and g1 is a doubly unitary polynomial in RS [X,X−1], then we replace this elemen-
tary transformation by the two transformations:

(g0, . . . , gn) → (g0 + abXmg1 + abXkg1, g1, . . . , gn) →
(g0 + abXmg1 + abXkg1, g1 + h(g0 + abXmg1 + abX−kg1), . . . , gn)

where m > hdeg(g0), k < ldeg(g0). So we may assume that

(f0, . . . , fn) ≡ (1, 0, . . . , 0) mod abR[X,X−1]

and f0 is a doubly unitary polynomial in RS [X,X−1]. By (3.8), we may assume
that hdeg(fi) < hdeg(f0), ldeg(fi) ≥ ldeg(f0).

We prove that f can be transformed by elementary transformation into a row
with one constant entry. We use an argument similar to that in the proof of [[5],
Theorem 5].

Assume that the number of the coefficients of f2, . . . , fn is ≥ 2(n − 1). Since
d > 0, we obtain that 2(n − 1) ≥ d + 1. Let a1, . . . , at be the coefficients of
f2, . . . , fn and J = a1

1 RS + · · · + at

1 RS . Let I = RS [X,X−1]f0 + RS [X,X−1]f1.

Since I + J [X,X−1] = RS [X,X−1] and f0 is a doubly unitary in RS [X,X−1], by

(3.3), we obtain that (I ∩ RS) + J = RS . So ( f0h0+f1h1

s ) + r1
s1

a1

1 + · · · + rt
st

at

1 = 1
1

,where h0, h1 ∈ R[X,X−1] and ri ∈ R, s, si ∈ S for all 1 ≤ i ≤ t. This means that

( f0h0+f1h1

1 , a1

1 , . . . , at

1 ) ∈ Umt+1(RS). By (2.3), there exist s ∈ S and b1, . . . , bt ∈ R,
such that

s ∈ (a1 + b1(f0h0 + f1h1))R+ · · ·+ (at + bt(f0h0 + f1h1))R.

Using elementary transformations, we may assume that J = RS . By (3.2), the ideal
〈f0, f2, . . . , fn〉 contains a polynomial h such that ak1bk2 = hc(h) and hdeg(h) =
hdeg(f0)− 1, ldeg(h) ≥ ldeg(f0) where k1, k2 ∈ N. Let r = hc(f1), So

f ∼E (f0, a
2k1b2k2f1, f2, . . . , fn) ∼E (f0, a

2k1b2k2f1 + (1− ak1bk2r)h, f2, . . . , fn).

Then we may assume that ak1bk2 = hc(f1). By the proof of Lemma (3.8), we can
decrease the hdeg(fi) for all 2 ≤ i ≤ n.

Repeating the argument above, we obtain that

f ∼E (rXm, g1, . . . , gn) ∼E (r, g1X
−m, g2, . . . , gn)

where r ∈ R,m ∈ Z, g1, . . . , gn ∈ R[X,X−1]. By (3.9), f ∼E e1. �

Lemma 3.11. Let R be a ring of dimension d > 0 and

f = (f0, . . . , fn) ∈ Umn+1(R[X,X−1])

such that n ≥ d + 1, f0 = cg and ct = lc(f0), where c ∈ R \ U(R), 0 6= t ∈ N.

Assume that for every ring T of dimension < d and n ≥ dim(T ) + 1, the group

En+1(T [X,X−1]) acts transitively on Umn+1(T [X,X−1]). Then f ∼E(R[X,X−1]) e1.

Proof. By making the change of variable: X → X−1 and Proposition (3.10), we
obtain that f ∼E(R[X,X−1]) e1. �
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Theorem 3.12. Let R be a ring of dimension d and n ≥ d+1, then En+1(R[X,X−1])
acts transitively on Umn+1(R[X,X−1]).

Proof. Let f = (f0, . . . , fn) ∈ Umn+1(R[X,X−1). We prove the theorem by induc-
tion on d, we may assume that R is reduced ring. If d = 0, by (3.6), we are done.
Assume that the theorem is true for the dimensions 0, 1, . . . , d − 1, where d > 0.
We prove by induction on the number N of nonzero coefficients of the polynomials
f0, . . . , fn, that f ∼E e1 if dimR = d. Starting with N = 1. Let N > 1. Let
a = hc(f0) and c = lc(f0), if ac ∈ U(R) then by (3.4), we are done. Otherwise,
assume that a /∈ U(R), by the inductive step, with respect to the ring R/aR, we
obtain from f a row ≡ (1, 0, . . . , 0) mod aR[X,X−1] using elementary transforma-
tions. We can perform such transformations so that at every stage the row contains
a polynomial g ∈ R[X,X−1] such that hc(g) = at, where t ∈ N. Indeed, if we have
to perform, e.g., the elementary transformation

(g0, . . . , gn) → (g0, g1 + hg0, . . . , gn)

and hc(g1) ∈ U(Ra), then we replace this elementary transformation by the two
transformations:

(g0, . . . , gn) → (g0+aXmg1, g1, . . . , gn) → (g0+aXmg1, g1+h(g0+aXmg1), . . . , gn)

where m > hdeg(g0).
So we have f0 = ag, and at = hc(f0), where 0 6= t ∈ N. By (3.10), f ∼E e1.

Similarly, if c /∈ U(R), by (3.11) we obtain that f ∼E e1. �

Corollary 3.13. For any ring R with Krull dimension ≤ d, all finitely generated

stably free modules over R[X,X−1] of rank > d are free.

The following conjecture is the analogue of Conjecture 8 of [7] in the Laurent
case:

Conjecture 3.14. For any ring R with Krull dimension ≤ d, all finitely generated

stably free modules over R[X±1
1 , . . . , X±1

k , Xk+1, . . . , Xn] of rank > d are free.

Acknowledgments. I would like to thank Professor Moshe Roitman, my M.Sc.
thesis advisor, for his interest in this project.

References

1. H. Bass, Libération des modules projectifs sur certains anneaux de polynômes, Sém. Bourbaki
1973/74 exp. 448, Lecture Notes in Math., vol. 431, Springer-Verlag, Berlin and New York
(1975) 228-254.
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