Fixed points subgroups by two involutive automorphisms σ, γ of compact exceptional Lie groups F_{4}, E_{6} and E_{7}

By
Toshikazu Miyashita

Introduction

For simply connected compact exceptional Lie groups $G=F_{4}, E_{6}$ and E_{7}, we consider two involutions σ, γ and determine the group structure of subgroups $G^{\sigma, \gamma}$ of G which are the intersection $G^{\sigma} \cap G^{\gamma}$ of the fixed points subgroups of G^{σ} and G^{γ}. The motivation is as follows. In [1], we determine the group structure of $\left(F_{4}\right)^{\sigma, \sigma^{\prime}},\left(E_{6}\right)^{\sigma, \sigma^{\prime}}$ and $\left(E_{7}\right)^{\sigma, \sigma^{\prime}}$, and in [2], we also determine the group structure of $\left(G_{2}\right)^{\gamma, \gamma^{\prime}},\left(F_{4}\right)^{\gamma, \gamma^{\prime}}$ and $\left(E_{6}\right)^{\gamma, \gamma^{\prime}}$. So, in this paper, we try to determine the type of groups $\left(F_{4}\right)^{\sigma, \gamma},\left(E_{6}\right)^{\sigma, \gamma}$ and $\left(E_{7}\right)^{\sigma, \gamma}$. Our results are the following second columns. The first columns are already known in [3],[4] or [5] and these play an important role to obtain our results. In Table 1, the results of the group structure of $G^{\sigma, \gamma}$ are obtained by the result of G^{γ} and in Table 2, ones are obtained by the result of G^{σ}. In this paper, we show the proof of the results of the first and the second line of Table 1 and the third line of Table 2.

Acknowledgment The author is grateful to Professor Ichiro Yokota for his valuable commentes.

Table 1

G	G^{γ}	$G^{\sigma, \gamma}$
F_{4}	$(S p(1) \times S p(3)) / \boldsymbol{Z}_{2}$	$(S p(1) \times S p(1) \times S p(2)) / \boldsymbol{Z}_{2}$
E_{6}	$(S p(1) \times S U(6)) / \boldsymbol{Z}_{2}$	$(S p(1) \times S(U(2) \times U(4))) / \boldsymbol{Z}_{2}$
E_{7}	$(S U(2) \times \operatorname{Spin}(12)) / \boldsymbol{Z}_{2}$	$(S U(2) \times \operatorname{Spin}(4) \times \operatorname{Spin}(8)) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right)$

Table 2
$G G^{\sigma} \quad G^{\sigma, \gamma}$

F_{4}	$\operatorname{Spin}(9)$	$(\operatorname{Spin}(4) \times \operatorname{Spin}(5)) / \boldsymbol{Z}_{2}$
E_{6}	$(U(1) \times \operatorname{Spin}(10)) / \boldsymbol{Z}_{4}$	$(U(1) \times \operatorname{Spin}(4) \times \operatorname{Spin}(6)) / \boldsymbol{Z}_{2}$
E_{7}	$(S U(2) \times \operatorname{Spin}(12)) / \boldsymbol{Z}_{2}$	$(S U(2) \times \operatorname{Spin}(4) \times \operatorname{Spin}(8)) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right)$

As for the group $\left(E_{8}\right)^{\sigma, \gamma}$, we can not realize explicitly, however we conjecture

$$
\left(E_{8}\right)^{\sigma, \gamma} \cong(S \operatorname{pin}(4) \times \operatorname{Spin}(12)) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right)
$$

REMARK. In E_{7}, since γ is conjugate to $-\sigma$, we have $\left(E_{7}\right)^{\gamma} \cong\left(E_{7}\right)^{\sigma}$. (In detail, see [4].) Note that the results of Table 1 and Table 2 are the same as a set, however they are different as realizations.

Notation

(1) For a group G and an element s of G, we denote $\{g \in G \mid s g=g s\}$ by G^{s}.
(2) For a transformation group G of a space M, the isotropy subgroup of G at $m_{1}, \cdots, m_{k} \in M$ is denoted by $G_{m_{1}, \cdots, m_{k}}=\left\{g \in G \mid g m_{1}=m_{1}, \cdots, g m_{k}=m_{k}\right\}$.
(3) For a \boldsymbol{R}-vector space V, its complexification $\{u+i v \mid u, v \in V\}$ is denoted by V^{C}. The complex conjugation in V^{C} is denoted by $\tau: \tau(u+i v)=u-i v$. In particular, the complexification of \boldsymbol{R} is briefly denoted by $C: \boldsymbol{R}^{C}=C$.
(4) For a Lie group G, the Lie algebra of G is denoted by the corresponding German small letter \mathfrak{g}. For example, $\mathfrak{s o}(n)$ is the Lie algebra of the group $S O(n)$.
(5) Although we will give all definitions used in the following Sections, if in case of insufficiency, refer to [3], [4] or [5].

1. Group F_{4}

We use the same notation as in [1], [2] or [5] (however, some will be rewritten). For example, the Cayley algebra $\mathfrak{C}=\boldsymbol{H} \oplus \boldsymbol{H} e_{4}$,
the exceptional Jordan algebra $\mathfrak{J}=\left\{X \in M(3, \mathfrak{C}) \mid X^{*}=X\right\}$, the Jordan multiplication $X \circ Y$, the inner product (X, Y) and the elements $E_{1}, E_{2}, E_{3} \in \mathfrak{J}$,
the group $F_{4}=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}(\mathfrak{J}) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\}$.

We define \boldsymbol{R}-linear transformations σ and γ of \mathfrak{J} by

$$
\sigma X=\sigma\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & -x_{3} & -\bar{x}_{2} \\
-\bar{x}_{3} & \xi_{2} & x_{1} \\
-x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \gamma X=\left(\begin{array}{ccc}
\xi_{1} & \gamma x_{3} & \overline{\gamma x}_{2} \\
\gamma x_{3} & \xi_{2} & \gamma x_{1} \\
\gamma x_{2} & \overline{\gamma x} & \xi_{3}
\end{array}\right)
$$

respectively, where $\gamma x_{k}=\gamma\left(m_{k}+a_{k} e_{4}\right)=m_{k}-a_{k} e_{4}, x_{k}=m_{k}+a_{k} e_{4} \in \boldsymbol{H} \oplus \boldsymbol{H} e_{4}=$ \mathfrak{C}. Then, $\sigma, \gamma \in F_{4}$ and $\sigma^{2}=\gamma^{2}=1$. σ and γ are commutative. From $\sigma \gamma=\gamma \sigma$, we have

$$
\left(F_{4}\right)^{\sigma} \cap\left(F_{4}\right)^{\gamma}=\left(\left(F_{4}\right)^{\sigma}\right)^{\gamma}=\left(\left(F_{4}\right)^{\gamma}\right)^{\sigma} .
$$

Hence, this group will be denoted briefly by $\left(F_{4}\right)^{\sigma, \gamma}$.

Proposition 1.1. $\left(F_{4}\right)^{\gamma} \cong(S p(1) \times S p(3)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1, E),(-1,-E)\}$.
Proof. The isomorphism is induced by the homomorphism $\varphi: S p(1) \times S p(3) \rightarrow$ $\left(F_{4}\right)^{\gamma}, \varphi(p, A)(M+\boldsymbol{a})=A M A^{*}+p \boldsymbol{a} A^{*}, M+\boldsymbol{a} \in \mathfrak{J}(3, \boldsymbol{H}) \oplus \boldsymbol{H}^{3}=\mathfrak{J}$. (In detail, see [3], [5].)

Lemma 1.2. $\varphi: S p(1) \times S p(3) \rightarrow\left(F_{4}\right)^{\gamma}$ of Proposition 1.1 satisfies $\sigma \varphi(p, A) \sigma=$ $\varphi\left(p, I_{1} A I_{1}\right)$, where $I_{1}=\operatorname{diag}(-1,1,1)$.

Proof. From $\sigma=\varphi\left(-1, I_{1}\right)$, we have the required one.
Now, we shall determine the group structure of $\left(F_{4}\right)^{\sigma, \gamma}=\left(\left(F_{4}\right)^{\gamma}\right)^{\sigma}=\left(\left(F_{4}\right)^{\sigma}\right)^{\gamma}=$ $\left(F_{4}\right)^{\sigma} \cap\left(F_{4}\right)^{\gamma}$.

THEOREM 1.3. $\left(F_{4}\right)^{\sigma, \gamma} \cong(S p(1) \times S p(1) \times S p(2)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1,1, E),(-1,-1$, $-E)\}$.

Proof. We define a map $\varphi_{4}: S p(1) \times S p(1) \times S p(2) \rightarrow\left(F_{4}\right)^{\sigma, \gamma}$ by
$\varphi_{4}(p, q, B)(M+\boldsymbol{a})=\left(\begin{array}{c|cc}q & 0 & 0 \\ \hline 0 & B \\ 0 & B\end{array}\right) M\left(\begin{array}{c|cc}q & 0 & 0 \\ \hline 0 & B \\ 0 & *\end{array}\right)^{*}+p \boldsymbol{a}\left(\begin{array}{c|cc}q & 0 & 0 \\ \hline 0 & B \\ 0 & *\end{array}\right.$,
$M+\boldsymbol{a} \in \mathfrak{J}(3, \boldsymbol{H}) \oplus \boldsymbol{H}^{3}=\mathfrak{J}$, as the restriction of Proposition 1.1. By Lemma 1.2, φ_{4} is well-defined and a homomorphism. We shall show that φ_{4} is onto. Let $\alpha \in\left(F_{4}\right)^{\sigma, \gamma}$. Since $\left(F_{4}\right)^{\sigma, \gamma} \subset\left(F_{4}\right)^{\gamma}$, there exist $p \in S p(1)$ and $A \in S p(3)$ such that $\alpha=\varphi(p, A)\left(\right.$ Proposition 1.1). From $\sigma \alpha \sigma=\alpha$, we have $\varphi\left(p, I_{1} A I_{1}\right)=\varphi(p, A)$ (Lemma 1.2). Hence,

$$
\left\{\begin{array} { l }
{ p = p } \\
{ I _ { 1 } A I _ { 1 } = A }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
p=-p \\
I_{1} A I_{1}=-A
\end{array}\right.\right.
$$

The latter case is impossible because $p=0$ is false. In the former case, from $I_{1} A I_{1}=A$, we have
$A=\left(\begin{array}{c|cc}q & 0 & 0 \\ \hline 0 & B\end{array}\right), q \in S p(1), B \in S p(2)$. Hence,
$\alpha=\varphi\left(q,\left(\begin{array}{c|cc}q & 0 & 0 \\ \hline 0 & B\end{array}\right)\right)=\varphi_{4}(p, q, B)$,
that is, φ_{4} is onto. And $\operatorname{Ker} \varphi_{4}=\{(1,1, E),(-1,-1,-E)\}=\boldsymbol{Z}_{2}$. Thus, we have the required isomorphism $(S p(1) \times S p(1) \times S p(2)) / \boldsymbol{Z}_{2} \cong\left(F_{4}\right)^{\sigma, \gamma}$.

2. Group E_{6}

We use the same notation as in [1], [2] or [5] (however, some will be rewritten). For example, the complex exceptional Jordan algebra $\mathfrak{J}^{C}=\left\{X \in M\left(3, \mathfrak{C}^{C}\right) \mid X^{*}=\right.$ $X\}$, the Freudenthal multiplication $X \times Y$ and the Hermitian inner product $\langle X, Y\rangle$,
the group $E_{6}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{J}^{C}\right) \mid \alpha X \times \alpha Y=\tau \alpha \tau(X \times Y),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}$, and the natural inclusion $F_{4} \subset E_{6}$.

Proposition 2.1. $\left(E_{6}\right)^{\gamma} \cong(S p(1) \times S U(6)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1, E),(-1,-E)\}$.
Proof. The isomorphism is induced by the homomorphism $\varphi: S p(1) \times$ $S U(6) \rightarrow\left(E_{6}\right)^{\gamma}, \varphi(p, A)(M+\boldsymbol{a})=k_{J}^{-1}\left(A k_{J}(M)^{t} A\right)+p \boldsymbol{a} k^{-1}\left(A^{*}\right), M+\boldsymbol{a} \in$ $\mathfrak{J}(3, \boldsymbol{H})^{C} \oplus\left(\boldsymbol{H}^{3}\right)^{C}=\mathfrak{J}^{C}$. (In detail, see [3], [5].)

Lemma 2.2. $\varphi: S p(1) \times S U(6) \rightarrow\left(E_{6}\right)^{\gamma}$ of Proposition 2.1 satisfies $\sigma \varphi(p, A) \sigma$ $=\varphi\left(p, I_{2} A I_{2}\right)$, where $I_{2}=\operatorname{diag}(-1,-1,1,1,1,1)$.

Proof. From $\sigma=\varphi\left(-1, I_{2}\right)$, we have the required one.
Now, we shall determine the group structure of $\left(E_{6}\right)^{\sigma, \gamma}=\left(\left(E_{6}\right)^{\gamma}\right)^{\sigma}=\left(\left(E_{6}\right)^{\sigma}\right)^{\gamma}$ $=\left(E_{6}\right)^{\sigma} \cap\left(E_{6}\right)^{\gamma}$.

THEOREM 2.3. $\left(E_{6}\right)^{\sigma, \gamma} \cong(S p(1) \times S(U(2) \times U(4))) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1, E),(-1$, $-E)\}$.

Proof. We define a map $\varphi_{6}: S p(1) \times S(U(2) \times U(4)) \rightarrow\left(E_{6}\right)^{\sigma, \gamma}$ by

$$
\varphi_{6}(p, A)(M+\boldsymbol{a})=k_{J}^{-1}\left(A k_{J}(M)^{t} A\right)+p \boldsymbol{a} k^{-1}\left(A^{*}\right)
$$

$M+\boldsymbol{a} \in \mathfrak{J}(3, \boldsymbol{H})^{C} \oplus\left(\boldsymbol{H}^{3}\right)^{C}=\mathfrak{J}^{C}$, as the restriction of φ of Proposition 2.1. By Lemma 2.2, φ_{6} is well-defined and a homomorphism. We shall show that φ_{6} is onto. Let $\alpha \in\left(E_{6}\right)^{\sigma, \gamma}$. Since $\left(E_{6}\right)^{\sigma, \gamma} \subset\left(E_{6}\right)^{\gamma}$, there exist $p \in S p(1)$ and $A \in S U(6)$ such that $\alpha=\varphi(p, A)\left(\right.$ Proposition 2.1). From $\sigma \alpha \sigma=\alpha$, we have $\varphi\left(p, I_{2} A I_{2}\right)=\varphi(p, A)$ (Lemma 2.2). Hence,

$$
\left\{\begin{array} { l }
{ p = p } \\
{ I _ { 2 } A I _ { 2 } = A }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
p=-p \\
I_{2} A I_{2}=-A
\end{array}\right.\right.
$$

The latter case is impossible because $p=0$ is false. In the former case, we have $A \in S(U(2) \times U(4))$. Therefore, φ_{6} is onto. $\operatorname{Ker} \varphi_{6}=\{(1, E),(-1,-E)\}=\boldsymbol{Z}_{2}$. Thus, we have the required isomorphism $(\operatorname{Sp}(1) \times S(U(2) \times U(4))) / \boldsymbol{Z}_{2} \cong\left(E_{6}\right)^{\sigma, \gamma}$.

3. Group E_{7}

We use the same notation as in [1], [4] or [5] (however, some will be rewritten). For example, the Freudenthal C-vector space $\mathfrak{P}^{C}=\mathfrak{J}^{C} \oplus \mathfrak{J}^{C} \oplus C \oplus C$, the Hermitian inner product $\langle P, Q\rangle$, the C-linear map $P \times Q: \mathfrak{P}^{C} \rightarrow \mathfrak{P}^{C}\left(P, Q \in \mathfrak{P}^{C}\right)$,
the group $E_{7}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{P}^{C}\right) \mid \alpha(X \times Y) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle=\langle P, Q\rangle\right\}$, the natural inclusion $E_{6} \subset E_{7}$ and elements $\sigma, \sigma^{\prime} \in F_{4} \subset E_{6} \subset E_{7}, \lambda \in E_{7}$.

We shall consider the following subgroup of F_{4}.

$$
\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)}=\left\{\alpha \in\left(F_{4}\right)^{\sigma, \gamma} \mid \alpha F_{1}(h)=F_{1}(h) \text { for all } h \in \boldsymbol{H}\right\} .
$$

PROPOSITION 3.1. $\quad\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)} \cong \operatorname{Sp}(1) \times \operatorname{Sp}(1)(=\operatorname{Spin}(4))$.
Proof. We define a map $\varphi: S p(1) \times S p(1) \rightarrow\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)}$ by

$$
\varphi(p, q)(M+\boldsymbol{a})=\left(\begin{array}{c|cc}
q & 0 & 0 \\
\hline 0 & E \\
0 & E
\end{array}\right) M\left(\begin{array}{c|cc}
q & 0 & 0 \\
\hline 0 & E \\
0 & E
\end{array}\right)^{*}+p \boldsymbol{a}\left(\begin{array}{c|cc}
q & 0 & 0 \\
\hline 0 & E \\
0 & *
\end{array}\right)^{*}
$$

as the restriction of φ_{4} of Theorem 1.3. By $F_{1}(h)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & h \\ 0 & \frac{h}{2} & 0\end{array}\right)+\varnothing, \varphi$ is welldefined and homomorphism. We shall show that φ is onto. Let $\alpha \in\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)}$. Since $\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)} \subset\left(F_{4}\right)^{\sigma, \gamma}$, there exist $p, q \in S p(1)$ and $B \in S p(2)$ such that $\alpha=\varphi_{4}(p, q, B)\left(\right.$ Theorem 1.3). From $\alpha F_{1}(h)=F_{1}(h)$, we have $B\left(\begin{array}{cc}0 & h \\ h & 0\end{array}\right) B^{*}=$ $\left(\begin{array}{cc}0 & h \\ h & 0\end{array}\right)$, so that

$$
\alpha=\varphi_{4}(p, q, E) \quad \text { or } \quad \alpha=\varphi_{4}(p, q,-E)
$$

In the former case, we have $\alpha=\varphi_{4}(p, q, E)=\varphi(p, q)$. In the latter case, we have

$$
\begin{aligned}
\alpha & =\varphi_{4}(p, q,-E)=\varphi_{4}(-p,-q, E) \varphi_{4}(-1,-1,-E) \\
& =\varphi_{4}(-p,-q, E) 1=\varphi(-p,-q)
\end{aligned}
$$

Hence, φ is onto. $\operatorname{Ker} \varphi=\{(1,1)\}$. Thus, we have the required isomorphism $S p(1) \times S p(1) \cong\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)}$.

Hereafter, in \mathfrak{P}^{C}, we use the following notations.

$$
\begin{aligned}
& \left(F_{1}(h), 0,0,0\right)=\dot{F}_{1}(h), \quad\left(0, E_{1}, 0,1\right)=\tilde{E}_{1} \\
& \left(0, E_{1}, 0,-1\right)=\tilde{E}_{-1}, \quad\left(E_{2}+E_{3}, 0,0,0\right)=\dot{E}_{23}
\end{aligned}
$$

We shall consider a subgroup $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}$ of E_{7}.

LEMmA 3.2. The Lie algebra $\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}$ of the group

$$
\begin{aligned}
& \left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}} \text { is given by } \\
& \quad\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}} \\
& \quad=\left\{\Phi\left(\left(\begin{array}{c|c|c}
0 & 0 \\
\hline 0 & D_{4}^{\prime}
\end{array}\right), 0,0,0\right) \left\lvert\,\left(\begin{array}{c|c}
0 & 0 \\
\hline 0 & D_{4}^{\prime}
\end{array}\right) \in \mathfrak{s o}(8)\right., D_{4}^{\prime} \in \mathfrak{s o}(4)\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left(\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}\right)=6
$$

Hereafter, $\left(\begin{array}{c|c}0 & 0 \\ \hline 0 & D_{4}^{\prime}\end{array}\right)$ will be denoted by D_{4}^{\prime}, and also $\Phi\left(D_{4}^{\prime}, 0,0,0\right)$ will be denoted by Φ_{4}.

Proposition 3.3. $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}=\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)}$.
Proof. Let $\alpha \in\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)}$. Since $\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)} \subset\left(F_{4}\right)^{\sigma}=\left(F_{4}\right)_{E_{1}}$ (as for $\left(F_{4}\right)^{\sigma}=\left(F_{4}\right)_{E_{1}}$, see [3], [5]), we see $\alpha E_{1}=E_{1}$. As a result, because κ and μ are defined using by E_{1} (see [1], [4] or [5]), we see that $\kappa \alpha=\alpha \kappa$ and $\mu \alpha=\alpha \mu$. From $\alpha E=E \quad($ see $[3],[5])$, we have $\alpha\left(E_{2}+E_{3}\right)=E_{2}+E_{3}$. Hence, $\alpha \dot{E}_{23}=\dot{E}_{23}$. Moreover, from $\alpha(0,0,0,1)=(0,0,0,1)$ (see [4], [5]), we have $\alpha \tilde{E}_{1}=\tilde{E}_{1}$ and $\alpha \tilde{E}_{-1}=\tilde{E}_{-1}$. Obviously $\alpha \dot{F}_{1}(h)=\dot{F}_{1}(h)$. Thus, $\alpha \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}$. Conversely, let $\alpha \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}$. From $\alpha \tilde{E}_{1}=\tilde{E}_{1}$ and $\alpha \tilde{E}_{-1}=$ \tilde{E}_{-1}, we have $\alpha\left(0, E_{1}, 0,0\right)=\left(0, E_{1}, 0,0\right)$ and $\alpha(0,0,0,1)=(0,0,0,1)$. Hence, $\alpha \in\left(\left(E_{6}\right)^{\gamma}\right)_{F_{1}(h), E_{1}, E_{2}+E_{3}}$ (see [4], [5]). Thus, $\left(\left(\left(F_{4}\right)_{E_{1}}\right)^{\gamma}\right)_{F_{1}(h)}=\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}(h)}$. Therefore, the proof of this proposition is completed.

Next, we shall consider the following subgroup of F_{4}.

$$
\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}\left(h e_{4}\right)}=\left\{\alpha \in\left(F_{4}\right)^{\sigma, \gamma} \mid \alpha F_{1}\left(h e_{4}\right)=F_{1}\left(h e_{4}\right) \text { for all } h \in \boldsymbol{H}\right\} .
$$

PROPOSITION 3.4. $\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}\left(h e_{4}\right)} \cong S p(2)(=\operatorname{Spin}(5))$.
Proof. We define a map $\varphi: S p(2) \rightarrow\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}\left(h e_{4}\right)}$ by

$$
\varphi(B)(M+\boldsymbol{a})=\left(\begin{array}{c|cc}
1 & 0 & 0 \\
\hline 0 & B \\
0 & B
\end{array}\right) M\left(\begin{array}{c|cc}
1 & 0 & 0 \\
\hline 0 & B \\
0 & *
\end{array}\right)^{*}+\boldsymbol{a}\left(\begin{array}{c|cc}
1 & 0 & 0 \\
\hline 0 & B \\
0 & B
\end{array}\right)^{*}
$$

as the restriction of φ_{4} of Theorem 1.3. Obviously φ is well-defined and homomorphism. We shall show that φ is onto. Let $\alpha \in\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}\left(h e_{4}\right)}$. Since $\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}\left(h e_{4}\right)} \subset\left(F_{4}\right)^{\sigma, \gamma}$, there exist $p, q \in S p(1)$ and $B \in S p(2)$ such that
$\alpha=\varphi_{4}(p, q, B)\left(\right.$ Theorem 1.3). From $\alpha F_{1}\left(h e_{4}\right)=F_{1}\left(h e_{4}\right)(=O+(h, 0,0))$, we have $p h \bar{q}=h(h \in \boldsymbol{H})$, so that

$$
\alpha=\varphi_{4}(1,1, B) \quad \text { or } \quad \alpha=\varphi_{4}(-1,-1, B)
$$

In the former case, we have $\alpha=\varphi_{4}(1,1, B)=\varphi(B)$. In the latter case, we have

$$
\begin{aligned}
\alpha & =\varphi_{4}(-1,-1, B)=\varphi_{4}(1,1,-B) \varphi_{4}(-1,-1,-E) \\
& =\varphi_{4}(1,1,-B) 1=\varphi(-B)
\end{aligned}
$$

Hence, φ is onto. $\operatorname{Ker} \varphi=\{E\}$. Thus, we have the required isomorphism $\operatorname{Sp}(2) \cong$ $\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}\left(h e_{4}\right)}$.

Then, we have the following proposition.
Proposition 3.5. $\quad\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}=\left(\left(F_{4}\right)^{\sigma, \gamma}\right)_{F_{1}\left(h e_{4}\right)}$.
Proof. This proof is in the way similar to Proposition 3.3.
We shall consider the subgroup $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ of E_{7}.
Lemma 3.6. The Lie algebra $\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ of the group $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ is given by

$$
\begin{aligned}
& \left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}} \\
& =\left\{\left.\Phi\left(\left(\begin{array}{c|c}
D_{4} & 0 \\
\hline 0 & 0
\end{array}\right)+\widetilde{A}_{1}(p)+i\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \epsilon & q \\
0 & \bar{q} & -\epsilon
\end{array}\right)^{\sim}, 0,0,0\right) \right\rvert\,\left(\begin{array}{c|c}
D_{4} & 0 \\
\hline 0 & 0
\end{array}\right) \in \mathfrak{s o}(8),\right. \\
& \left.D_{4} \in \mathfrak{s o}(4), \epsilon \in \boldsymbol{R}, p, q \in \boldsymbol{H}\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left(\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}\right)=15
$$

Hereafter, $\left(\begin{array}{c|c}D_{4} & 0 \\ \hline 0 & 0\end{array}\right)$ will be denoted by D_{4}.
Lemma 3.7. (1) For $a \in \boldsymbol{H}$, we define a map $\widetilde{\alpha}_{1}(a)$ of \mathfrak{J}^{C} by

$$
\left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1} \\
\xi_{2}^{\prime}=\frac{\xi_{2}-\xi_{3}}{2}+\frac{\xi_{2}+\xi_{3}}{2} \cos |a|+i \frac{\left(a, x_{1}\right)}{|a|} \sin |a| \\
\xi_{3}^{\prime}=-\frac{\xi_{2}-\xi_{3}}{2}+\frac{\xi_{2}+\xi_{3}}{2} \cos |a|+i \frac{\left(a, x_{1}\right)}{|a|} \sin |a|
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}+i \frac{\left(\xi_{2}+\xi_{3}\right) a}{|a|} \sin |a|-\frac{2\left(a, x_{1}\right) a}{|a|^{2}}\left(\sin \frac{|a|}{2}\right)^{2} \\
x_{2}^{\prime}=x_{2} \cos \frac{|a|}{2}+i \frac{\overline{x_{3} a}}{|a|} \sin \frac{|a|}{2} \\
x_{3}^{\prime}=x_{3} \cos \frac{|a|}{2}+i \frac{\overline{a x_{2}}}{|a|} \sin \frac{|a|}{2}
\end{array}\right.
$$

Then, $\widetilde{\alpha}_{1}(a) \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$.
(2) For $t \in \boldsymbol{R}$, we define a map $\widetilde{\alpha}_{23}(t)$ of \mathfrak{J}^{C} by

$$
\widetilde{\alpha}_{23}(t)\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & e^{i t / 2} x_{3} & e^{-i t / 2} \bar{x}_{2} \\
e^{i t / 2} \bar{x}_{3} & e^{i t} \xi_{2} & x_{1} \\
e^{-i t / 2} x_{2} & \bar{x}_{1} & e^{-i t} \xi_{3}
\end{array}\right) .
$$

Then, $\widetilde{\alpha}_{23}(t) \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$.
Proof.(1) For $a \in \boldsymbol{H}$, we have $i \widetilde{F}_{1}(a) \in\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ (Lemma 3.6). Hence, $\widetilde{\alpha}_{1}(a)=\exp i \widetilde{F}_{1}(a) \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$.
(2) For $t \in \boldsymbol{R}$, we have $i t\left(E_{2}-E_{3}\right)^{\sim} \in\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ (Lemma 3.6). Hence, $\widetilde{\alpha}_{23}(t)=\exp i t\left(E_{2}-E_{3}\right)^{\sim} \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$.

We define a 6 dimensional \boldsymbol{R}-vector space V^{6} by

$$
\begin{aligned}
V^{6} & =\left\{P \in \mathfrak{P}^{C} \mid \kappa P=P, \mu \tau \lambda P=P, \gamma P=P,\left\langle P, \tilde{E}_{1}\right\rangle=0,\left\langle P, \tilde{E}_{-1}\right\rangle=0\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & h \\
0 & \frac{h}{2} & -\tau \xi
\end{array}\right), 0,0,0\right) \right\rvert\, \xi \in C, h \in \boldsymbol{H}\right\}
\end{aligned}
$$

with the norm (see [5] for the definition of \{ , \}'s)

$$
(P, P)_{\mu}=\frac{1}{2}\{\mu P, P\}=\frac{1}{2}(\mu P, \lambda P)=(\tau \xi) \xi+\bar{h} h .
$$

Then, $S^{5}=\left\{P \in V^{6} \mid(P, P)_{\mu}=1\right\}$ is a 5 dimensional sphere.
LEMMA $3.8 \quad\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}} / \operatorname{Spin}(5) \simeq S^{5}$.
In particular, $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ is connected.
Proof. Since E_{7} is commutative with $\tau \lambda$, the group $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ acts on S^{5}. We shall show that this action is transitive. To show this, it is sufficient to show that any element $P \in S^{5}$ can be transformed to $\left(i\left(E_{2}+E_{3}\right), 0,0,0\right) \in S^{5}$ under the action of $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$. Now, for a given

$$
P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & h \\
0 & \frac{h}{h} & -\tau \xi
\end{array}\right), 0,0,0\right) \in S^{5}
$$

choose $t \in \boldsymbol{R}$ such that $e^{i t} \xi \in \boldsymbol{R}$. For this $t \in \boldsymbol{R}$, operate $\widetilde{\alpha}_{23}(t)($ Lemma $3.7(2)) \in$ $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ on P. Then, we have

$$
\widetilde{\alpha}_{23}(t) P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & r & h \\
0 & \frac{h}{2} & -r
\end{array}\right), 0,0,0\right)=P_{1}, r \in \boldsymbol{R}
$$

In the case of $h \neq 0$, operate $\widetilde{\alpha}_{1}(\pi h / 2|h|)($ Lemma $3.7(1)) \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ on P_{1}. Then, we have

$$
\widetilde{\alpha}_{1}\left(\frac{\pi h}{2|h|}\right) P_{1}=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi^{\prime} & 0 \\
0 & 0 & -\tau \xi^{\prime}
\end{array}\right), 0,0,0\right)=P_{2} \in S^{5}, \xi^{\prime} \in C
$$

Here, from $\left(\tau \xi^{\prime}\right) \xi^{\prime}=1, \xi^{\prime} \in C$, we can put $\xi^{\prime}=e^{i \theta}, 0 \leq \theta<2 \pi$. Operate $\widetilde{\alpha}_{23}(-\theta)$ on P_{2}. Then,

$$
\widetilde{\alpha}_{23}(-\theta) P_{2}=\left(E_{2}-E_{3}, 0,0,0\right)=P_{3}
$$

Moreover, operate $\widetilde{\alpha}_{23}(\pi / 2)$ on P_{3},

$$
\widetilde{\alpha}_{23}\left(\frac{\pi}{2}\right) P_{3}=\left(i\left(E_{2}+E_{3}\right), 0,0,0\right)=i \dot{E}_{23} .
$$

This shows the transitivity. The isotropy subgroup $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ at \dot{E}_{23} is $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}=S p(2)$ (Propositions 3.4, 3.5) $=\operatorname{Spin}(5)$. Therefore, we have the homeomorphism $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}} / \operatorname{Spin}(5) \simeq S^{5}$.

Proposition 3.9. $\quad\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}} \cong \operatorname{Spin}(6)$.
Proof. Since $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ is connected (Lemma 3.8), we can define a homormorphism $\pi:\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}} \rightarrow S O(6)=S O\left(V^{6}\right)$ by

$$
\pi(\alpha)=\alpha \mid V^{6}
$$

It is not difficult to see that $\operatorname{Ker} \varphi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since
$\operatorname{dim}\left(\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}\right)=15$ (Lemma 3.6) $=\operatorname{dim}(\mathfrak{s o}(6)), \pi$ is onto. Hence, $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}} / \boldsymbol{Z}_{2} \cong S O(6)$. Therefore, $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ is isomorphism to $\operatorname{Spin}(6)$ as a double covering group of $S O(6)$.

We shall consider a subgroup $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{F_{1}\left(\dot{h e} e_{4}\right), \tilde{E}_{1}}$ of E_{7}.
Lemma 3.10. The Lie algebra $\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}$ of the group $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}$ is given by

$$
\begin{aligned}
& \left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}} \\
& =\left\{\Phi\left(D_{4}+\widetilde{A}_{1}(p)+i\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \epsilon & q \\
0 & \bar{q} & -\epsilon
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{\alpha}{i x} & i x \\
0 & \tau \alpha
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{\alpha}{i x} & i x \\
0 & \tau \alpha
\end{array}\right), 0\right)\right.
\end{aligned}
$$

$$
\left.\mid D_{4} \in \mathfrak{s o}(4) \subset \mathfrak{s o}(8), \epsilon \in \boldsymbol{R}, \alpha \in C, p, q, x \in \boldsymbol{H}\right\} .
$$

In particular, we have

$$
\operatorname{dim}\left(\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}\right)=21
$$

Lemma 3.11. For $a \in \boldsymbol{R}$, we define maps $\alpha_{k}(a), k=2,3$ of \mathfrak{P}^{C} by

$$
\alpha_{k}(a)\left(\begin{array}{c}
X \\
Y \\
\xi \\
\eta
\end{array}\right)=\left(\begin{array}{c}
\left(1+(\cos a-1) p_{k}\right) X-2(\sin a) E_{k} \times Y+\eta(\sin a) E_{k} \\
2(\sin a) E_{k} \times X+\left(1+(\cos a-1) p_{k}\right) Y-\xi(\sin a) E_{k} \\
\left((\sin a) E_{k}, Y\right)+(\cos a) \xi \\
\left(-(\sin a) E_{k}, X\right)+(\cos a) \eta
\end{array}\right)
$$

where $p_{k}: \mathfrak{J}^{C} \rightarrow \mathfrak{J}^{C}$ is defined by

$$
p_{k}(X)=\left(X, E_{k}\right) E_{k}+4 E_{k} \times\left(E_{k} \times X\right), \quad X \in \mathfrak{J}^{C}
$$

Then, $\alpha_{k} \in E_{7}$ and $\alpha_{2}(a), \alpha_{3}(b)(a, b \in \boldsymbol{R})$ commute with each other.
Proof. For $\Phi_{k}(a)=\Phi\left(0, a E_{k},-a E_{k}, 0\right) \in \mathfrak{e}_{7}$, we have $\alpha_{k}(a)=\exp \Phi_{k}(a) \in E_{7}$. Since $\left[\Phi_{2}(a), \Phi_{3}(b)\right]=0, \alpha_{2}(a)$ and $\alpha_{3}(b)$ are commutative.

We define a 7 dimensional \boldsymbol{R}-vector space V^{7} by

$$
\begin{aligned}
V^{7} & =\left\{P \in \mathfrak{P}^{C} \mid \kappa P=P, \mu \tau \lambda P=P, \gamma P=P,\left\langle P, \tilde{E}_{1}\right\rangle=0\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & h \\
0 & \frac{h}{h} & -\tau \xi
\end{array}\right),\left(\begin{array}{ccc}
i \eta & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0,-i \eta\right) \right\rvert\, \xi \in C, h \in \boldsymbol{H}, \eta \in \boldsymbol{R}\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=\frac{1}{2}(\mu P, \lambda P)=(\tau \xi) \xi+\bar{h} h+\eta^{2} .
$$

Then, $S^{6}=\left\{P \in V^{7} \mid(P, P)_{\mu}=1\right\}$ is a 6 dimensional sphere.
Lemma $3.12 \quad\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}} / \operatorname{Spin}(6) \simeq S^{6}$.
In particular, $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}$ is connected.
Proof. The group $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}$ acts on S^{6}. We shall show that this action is transitive. To show this, it is sufficient to show that any element $P \in S^{6}$ can be transformed to $\left(0,-i E_{1}, 0, i\right) \in S^{6}$ under the action of $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}, \tilde{E}_{1}$. Now, for a given

$$
P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & h \\
0 & \frac{h}{2} & -\tau \xi
\end{array}\right),\left(\begin{array}{ccc}
i \eta & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0,-i \eta\right) \in S^{6}
$$

choose $a \in \boldsymbol{R}, 0 \leq a<\pi / 2$ such that $\tan 2 a=\frac{i 2 \eta}{\tau \xi-\xi}($ if $\tau \xi-\xi=0$, then let $a=\pi / 4)$. Operate $\alpha_{23}(a):=\alpha_{2}(a) \alpha_{3}(a)=\exp \left(\Phi\left(0, a\left(E_{2}+E_{3}\right),-a\left(E_{2}+\right.\right.\right.$ $\left.\left.E_{3}\right), 0\right)$) (Lemma 3.11) $\in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}($ Lemma 3.10) on P. Then, the $\eta-$ term of $\alpha_{23}(a) P$ is $(1 / 2)(\xi-\tau \xi) \sin 2 a+i \eta \cos 2 a=0$. Hence,

$$
\alpha_{23}(a) P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \zeta & m \\
0 & \bar{m} & -\tau \zeta
\end{array}\right), 0,0,0\right)=P_{1} \in S^{5} \subset S^{6}
$$

Since $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}\left(\subset\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}\right)$ acts transitivity on S^{5} (Lemma 3.8), there exist $\beta \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}$ such that $\beta P_{1}=\left(i\left(E_{2}+\right.\right.$ $\left.\left.E_{3}\right), 0,0,0\right)=P_{2} \in S^{5} \subset S^{6}$. Moreover, operate $\alpha_{23}(-\pi / 4)$ on P_{2},

$$
\alpha_{23}\left(-\frac{\pi}{4}\right) P_{2}=\left(0,-i E_{1}, 0, i\right)=-i \tilde{E}_{-1}
$$

This shows the transitivity. The isotropy subgroup $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}$ at \tilde{E}_{-1} is $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}, \tilde{E}_{-1}}=\operatorname{Spin}(6)$ (Proposition 3.9). Thus, we have the homeomorphism $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}} / \operatorname{Spin}(6) \simeq S^{6}$.

Proposition 3.13. $\quad\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}} \cong \operatorname{Spin}(7)$.
Proof. Since $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}$ is connected (Lemma 3.12), we can define a homormorphism $\pi:\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}} \rightarrow S O(7)=S O\left(V^{7}\right)$ by

$$
\pi(\alpha)=\alpha \mid V^{7}
$$

It is not difficult to see that $\operatorname{Ker} \varphi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since $\operatorname{dim}\left(\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}\right)=21($ Lemma 3.10) $=\operatorname{dim}(\mathfrak{s o}(7)), \pi$ is onto. Hence, $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}} / \boldsymbol{Z}_{2} \cong S O(7)$. Therefore, $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}$ is isomorphism to $\operatorname{Spin}(7)$ as a double covering group of $S O(7)$.

We shall consider the subgroup $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ of E_{7}.
Lemma 3.14. The Lie algebra $\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ of the group $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ is given by

$$
\begin{aligned}
& \left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)} \\
& =\left\{\Phi \left(D_{4}+\widetilde{A}_{1}(p)+i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & q \\
0 & \bar{q} & \epsilon_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \alpha_{2} & x \\
0 & \bar{x} & \alpha_{3}
\end{array}\right),-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \alpha_{2} & x \\
0 & \bar{x} & \alpha_{3}
\end{array}\right)\right.\right. \\
& \left.\left.-\frac{3}{2} i \epsilon_{1}\right) \mid D_{4} \in \mathfrak{s o}(4) \subset \mathfrak{s o}(8), \alpha_{k} \in C, p, q \in \boldsymbol{H}, x \in \boldsymbol{H}^{C}, \epsilon_{k} \in \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left(\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}\right)=28
$$

Hereafter, any element of the Lie algebra $\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ will be denoted by Φ_{8}.
Lemma 3.15. For $t \in \boldsymbol{R}$, we define a map $\alpha(t)$ of \mathfrak{P}^{C} by

$$
\begin{aligned}
& \alpha(t)(X, Y, \xi, \eta) \\
& \quad=\left(\left(\begin{array}{ccc}
e^{2 i t} \xi_{1} & e^{i t} x_{3} & e^{i t} \bar{x}_{2} \\
e^{i t} \bar{x}_{3} & \xi_{2} & x_{1} \\
e^{i t} x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
e^{-2 i t} \eta_{1} & e^{-i t} y_{3} & e^{-i t} \bar{y}_{2} \\
e^{-i t} \bar{y}_{3} & \eta_{2} & y_{1} \\
e^{-i t} y_{2} & \bar{y}_{1} & \eta_{3}
\end{array}\right), e^{-2 i t} \xi, e^{2 i t} \eta\right) .
\end{aligned}
$$

Then, $\alpha(t) \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$.
Proof. For $\Phi=\Phi\left(2 i t E_{1} \vee E_{1}, 0,0,-2 i t\right) \in\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ (Lemma 3.14), we have $\alpha(t)=\exp \Phi \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ by $E_{1} \vee E_{1}=(1 / 3)\left(2 E_{1}-E_{2}-E_{3}\right)^{\sim}$.

We define an 8 dimensional \boldsymbol{R}-vector space V^{8} by

$$
\begin{aligned}
V^{8} & =\left\{P \in \mathfrak{P}^{C} \mid \kappa P=P, \mu \tau \lambda P=P, \gamma P=P\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & h \\
0 & \frac{h}{2} & -\tau \xi
\end{array}\right),\left(\begin{array}{ccc}
\eta & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \eta\right) \right\rvert\, \xi, \eta \in C, h \in \boldsymbol{H}\right\}
\end{aligned}
$$

with the norm

$$
(P, P)_{\mu}=\frac{1}{2}(\mu P, \lambda P)=(\tau \xi) \xi+\bar{h} h+(\tau \eta) \eta
$$

Then, $S^{7}=\left\{P \in V^{8} \mid(P, P)_{\mu}=1\right\}$ is a 7 dimensional sphere.
LEMMA 3.16. $\quad\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)} / \operatorname{Spin}(7) \simeq S^{7}$.
In particular, $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ is connected.
Proof. The group $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ acts on S^{7}. We shall show that this action is transitive. To show this, it is sufficient to show that any element $P \in S^{7}$ can be transformed to $\left(0, E_{1}, 0,1\right) \in S^{7}$ under the action of $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$. Now, for a given

$$
P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & h \\
0 & \frac{h}{2} & -\tau \xi
\end{array}\right),\left(\begin{array}{ccc}
\eta & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0, \tau \eta\right) \in S^{7}
$$

choose $t \in \boldsymbol{R}$ such that $e^{-2 i t} \eta \in i \boldsymbol{R}$. Operate $\alpha(t)\left(\right.$ Lemma 3.15) $\in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ on P. Then,

$$
\alpha(t) P=\left(\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi & h \\
0 & h & -\tau \xi
\end{array}\right),\left(\begin{array}{ccc}
i \eta^{\prime} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), 0,-i \eta^{\prime}\right)=P_{1} \in S^{6} \subset S^{7}, \eta^{\prime} \in \boldsymbol{R}
$$

Since $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}\left(\subset\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}\right)$ acts transitivity on S^{6} (Lemma 3.12), there exists $\beta \in\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}$ such that $\beta P_{1}=\left(0,-i E_{1}, 0, i\right)=P_{2} \in$
$S^{6} \subset S^{7}$. Moreover, operate $\alpha(-\pi / 4)($ Lemma 3.15$)$ on P_{2},

$$
\alpha\left(-\frac{\pi}{4}\right) P_{2}=\left(0, E_{1}, 0,1\right)=\tilde{E}_{1}
$$

This shows the transitivity. The isotropy subgroup $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ at \tilde{E}_{1} is $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right), \tilde{E}_{1}}=\operatorname{Spin}(7)$ (Proposition 3.12). Thus, we have the homeomor$\operatorname{phism}\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)} / \operatorname{Spin}(7) \simeq S^{7}$.

Proposition 3.17. $\quad\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)} \cong \operatorname{Spin}(8)$.
Proof. Since $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ is connected (Lemma 3.16), we can define a homormorphism $\pi:\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)} \rightarrow S O(8)=S O\left(V^{8}\right)$ by

$$
\pi(\alpha)=\alpha \mid V^{8}
$$

It is not difficult to see that $\operatorname{Ker} \varphi=\{1, \sigma\}=\boldsymbol{Z}_{2}$. Since $\operatorname{dim}\left(\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}\right)=$ $28($ Lemma 3.14$)=\operatorname{dim}(\mathfrak{s o}(8)), \pi$ is onto. Hence, $\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)} / \boldsymbol{Z}_{2} \cong S O$ (8). Therefore, $\left.\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ is isomorphism to $\operatorname{Spin}(8)$ as a double covering group of $S O(8)$.

We shall determine the group structre of $\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}$.
Lemma 3.18. The Lie algebra $\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}$ of the group $\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}$ is given by

$$
\begin{aligned}
& \left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma} \\
& =\left\{\Phi \left(D_{4}+D_{4}^{\prime}+\widetilde{A}_{1}(p)+i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & q \\
0 & \bar{q} & \epsilon_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \alpha_{2} & x \\
0 & \bar{x} & \alpha_{3}
\end{array}\right)\right.\right. \\
& \left.-\tau\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \alpha_{2} & x \\
0 & \bar{x} & \alpha_{3}
\end{array}\right),-\frac{3}{2} i \epsilon_{1}\right) \mid D_{4}, D_{4}^{\prime} \in \mathfrak{s o}(4) \subset \mathfrak{s o}(8), \alpha_{k} \in C, p, q \in \boldsymbol{H}, \\
& \left.x \in \boldsymbol{H}^{C}, \epsilon_{k} \in \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0\right\} .
\end{aligned}
$$

In particular, we have

$$
\operatorname{dim}\left(\left(\left(\mathfrak{e}_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)=34
$$

Proposition 3.19. $\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma} \cong(\operatorname{Spin}(4) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1,1),(-1$, $-1)\}$.

Proof. For $\operatorname{Spin}(4)=S p(1) \times S p(1)=\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}($ Propositions 3.1, 3.3) and $\operatorname{Spin}(8)=\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ (Proposition 3.17), we define a $\operatorname{map} \phi_{1}: \operatorname{Spin}(4) \times \operatorname{Spin}(8) \rightarrow\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}$ by

$$
\phi_{1}(\alpha, \beta)=\alpha \beta .
$$

Then, ϕ_{1} is well-defined. For $\Phi_{4} \in \mathfrak{s p i n}(4)$ (Lemma 3.2) and $\Phi_{8} \in \mathfrak{s p i n}(8)$ (Lemma 3.14), since $\left[\Phi_{4}, \Phi_{8}\right]=0$, we have $\alpha \beta=\beta \alpha$. Hence, ϕ_{1} is a homomorphism. It is not difficult to see that $\operatorname{Ker} \phi_{1}=\{(1,1),(-1,-1)\}=\boldsymbol{Z}_{2}$. Since $\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}(\cong$ $(\operatorname{Spin}(12))^{\gamma}($ see $\left.[4],[5])\right)$ is connected and $\operatorname{dim}\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)=34($ Lemma 3.18 $)=$ $6+28=\operatorname{dim}(\mathfrak{s p i n}(4) \oplus \mathfrak{s p i n}(8)), \phi_{1}$ is onto. Thus, we have the required isomorphism $(\operatorname{Spin}(4) \times \operatorname{Spin}(8)) / \boldsymbol{Z}_{2} \cong\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}$.

Now, we shall determine the group structure of $\left(E_{7}\right)^{\sigma, \gamma}$.
Lemma 3.20. The Lie algebra $\left(\mathfrak{e}_{7}\right)^{\sigma, \gamma}$ of the group $\left(E_{7}\right)^{\sigma, \gamma}$ is given by

$$
\begin{gathered}
\left(\mathfrak{e}_{7}\right)^{\sigma, \gamma} \\
=\left\{\Phi \left(D_{4}+D_{4}^{\prime}+\widetilde{A}_{1}(p)+i\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & q \\
0 & \bar{q} & \epsilon_{3}
\end{array}\right)^{\sim},\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2} & x \\
0 & \bar{x} & \alpha_{3}
\end{array}\right)\right.\right. \\
\left.-\tau\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2} & x \\
0 & \bar{x} & \alpha_{3}
\end{array}\right), \nu\right) \mid D_{4}, D_{4}^{\prime} \in \mathfrak{s o}(4) \subset \mathfrak{s o}(8), \alpha_{k} \in C, p, q \in \boldsymbol{H}, x \in \boldsymbol{H}^{C} \\
\left.\epsilon_{k} \in \boldsymbol{R}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0, \nu \in i \boldsymbol{R}\right\}
\end{gathered}
$$

In particular, we have

$$
\operatorname{dim}\left(\left(\mathfrak{e}_{7}\right)^{\sigma, \gamma}\right)=37
$$

Proposition 3.21. For $A \in S U(2)=\left\{A \in M(2, C) \mid\left(\tau^{t} A\right) A=E, \operatorname{det} A=1\right\}$, we define C-linear transformations $\phi(A)$ of \mathfrak{P}^{C} by

$$
\begin{gathered}
\phi(A)\left(\left(\begin{array}{lll}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
\eta_{1} & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & \eta_{2} & y_{1} \\
y_{2} & \bar{y}_{1} & \eta_{3}
\end{array}\right), \xi, \eta\right) \\
=\left(\left(\begin{array}{ccc}
\xi_{1}^{\prime}, & x_{3}^{\prime} & \bar{x}_{2}{ }^{\prime} \\
\bar{x}_{3}{ }^{\prime} & \xi_{2}^{\prime} & x_{1}^{\prime} \\
x_{2}^{\prime} & \bar{x}_{1}{ }^{\prime} & \xi_{3}^{\prime}
\end{array}\right),\left(\begin{array}{ccc}
\eta_{1}^{\prime} & y_{3}^{\prime} & \bar{y}_{2}{ }^{\prime} \\
\bar{y}_{3}{ }^{\prime} & \eta_{2}^{\prime} & y_{1}^{\prime} \\
y_{2}^{\prime} & \bar{y}_{1}{ }^{\prime} & \eta_{3}^{\prime}
\end{array}\right), \xi^{\prime}, \eta^{\prime}\right) \\
\binom{\xi_{1}{ }^{\prime}}{\eta^{\prime}}=A\binom{\xi_{1}}{\eta},\binom{\xi^{\prime}}{\eta_{1}^{\prime}}=A\binom{\xi}{\eta_{1}},\binom{\eta_{2}^{\prime}}{\xi_{3}^{\prime}}=A\binom{\eta_{2}}{\xi_{3}}, \\
\binom{\eta_{3}^{\prime}}{\xi_{2}^{\prime}}=A\binom{\eta_{3}}{\xi_{2}},\binom{x_{1}^{\prime}}{y_{1}^{\prime}}=(\tau A)\binom{x_{1}}{y_{1}} \\
\binom{x_{2}^{\prime}}{y_{2}^{\prime}}=\binom{x_{2}}{y_{2}},\binom{x_{3}^{\prime}}{y_{3}^{\prime}}=\binom{x_{3}}{y_{3}} .
\end{gathered}
$$

Then, $\phi(A) \in\left(E_{7}\right)^{\sigma, \gamma}$.

Proof. Let $\Phi=\Phi\left(2 \nu E_{1} \vee E_{1}, a E_{1},-\tau a E_{1}, \nu\right), a \in C, \nu \in i \boldsymbol{R}$. Then, $\Phi \in$ $\left(\mathfrak{e}_{7}\right)^{\sigma, \gamma}\left(\right.$ Lemma 3.20). Therefore, for $A=\exp \left(\begin{array}{cc}\nu & a \\ -\tau a & -\nu\end{array}\right) \in S U(2)$, we have $\phi(A)=\exp \Phi \in\left(E_{7}\right)^{\sigma, \gamma}$.

Proposition 3.22. $\left(E_{7}\right)^{\sigma} \cong(S U(2) \times \operatorname{Spin}(12)) / \boldsymbol{Z}_{2}, \quad \boldsymbol{Z}_{2}=\{(E, 1),(-E$, $-\sigma)\}$.

Proof. The isomorphism is induced by the homomorphism $\varphi_{1}: S U(2) \times$ $\operatorname{Spin}(12) \rightarrow\left(E_{7}\right)^{\sigma}$ by $\varphi_{1}(A, \delta)=\phi(A) \delta$. (In detail, see [4], [5].)

THEOREM 3.23. $\left(E_{7}\right)^{\sigma, \gamma} \cong(S U(2) \times \operatorname{Spin}(4) \times \operatorname{Spin}(8)) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right), \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}=$ $\{(E, 1,1),(E, \sigma, \sigma)\} \times\{(E, 1,1),(-E, \gamma,-\sigma \gamma)\}$.

Proof. For $S U(2)$ (Proposition 3.21), $\operatorname{Spin}(4)=\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}(h), \tilde{E}_{1}, \tilde{E}_{-1}, \dot{E}_{23}}$ (Propositions 3.1, 3.3) and $\operatorname{Spin}(8)=\left(\left(\left(E_{7}\right)^{\kappa, \mu}\right)^{\gamma}\right)_{\dot{F}_{1}\left(h e_{4}\right)}$ (Proposition 3.17), we define a map $\varphi: S U(2) \times \operatorname{Spin}(4) \times \operatorname{Spin}(8) \rightarrow\left(E_{7}\right)^{\sigma, \gamma}$ by

$$
\varphi(A, \alpha, \beta)=\phi(A) \alpha \beta
$$

Then, φ is well-defined. From Propositions 3.19, 3.22, φ is a homomorphim. We shall show that φ is onto. Let $\rho \in\left(E_{7}\right)^{\sigma, \gamma}$. Since $\left(E_{7}\right)^{\sigma, \gamma} \subset\left(E_{7}\right)^{\sigma}$, there exist $A \in S U(2)$ and $\delta \in \operatorname{Spin}(12)$ such that $\rho=\varphi_{1}(A, \delta)$ (Proposition 3.22). Now, From $\gamma \rho \gamma=\rho$, we have $\phi(A)(\gamma \delta \gamma)=\phi(A) \delta$. Hence,

$$
\left\{\begin{array} { l }
{ A = A } \\
{ \gamma \delta \gamma = \delta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
A=-A \\
\gamma \delta \gamma=-\sigma \delta
\end{array}\right.\right.
$$

The latter case is impossible because $A=0$ is false. In the former case, from Proposition 3.19, there exist $\alpha \in \operatorname{Spin}(4)$ and $\beta \in \operatorname{Spin}(8)$ such that $\delta=\phi_{1}(\alpha, \beta)$. Hence, we have

$$
\begin{aligned}
\rho & =\varphi_{1}(A, \delta)=\phi(A) \delta=\phi(A) \phi_{1}(\alpha, \beta) \\
& =\phi(A) \alpha \beta=\varphi(A, \alpha, \beta)
\end{aligned}
$$

It is not difficult to see that

$$
\begin{aligned}
\operatorname{Ker} \varphi & =\{(E, 1,1),(E, \sigma, \sigma),(-E, \gamma,-\sigma \gamma),(-E, \sigma \gamma,-\gamma)\} \\
& =\{(E, 1,1),(E, \sigma, \sigma)\} \times\{(E, 1,1),(-E, \gamma,-\sigma \gamma)\} \\
& =\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}
\end{aligned}
$$

Thus, we have the required isomorphism $(S U(2) \times \operatorname{Spin}(4) \times \operatorname{Spin}(8)) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right) \cong$ $\left(E_{7}\right)^{\sigma, \gamma}$.

References

[1] T. Miyashita and I. Yokota, Fixed points subgroups $G^{\sigma, \sigma^{\prime}}$ by two involutive automorphisms σ, σ^{\prime} of compact exceptional Lie group $G=F_{4}, E_{6}$ and $E_{7},(2001)$, preprint.
[2] T. Miyashita and I. Yokota, Fixed points subgroups $G^{\gamma, \gamma^{\prime}}$ by two involutive automorphisms γ, γ^{\prime} of compact exceptional Lie group $G=G_{2}, F_{4}$ and E_{6} (in Japanese),(2001), preprint.
[3] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G=G_{2}, F_{4}$ and E_{6}, Tsukuba J. Math., 4(1990), 185-223.
[4] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part II, $G=E_{7}$, Tsukuba, J. Math., 14(1990), 379-404.
[5] I. Yokota, Exceptional simple Lie groups (in Japanese), Gendaisuugakusya, Kyoto, 1992.

Toshikazu Miyashita
Tohbu High School
Agata, Tohbu, 389-0517, Japan
E-mail: serano@janis.or.jp

