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Fixed points subgroups by two involutive
automorphisms o, v of compact exceptional

Lie groups F}y, Es and E;

By

Toshikazu MIYASHITA

Introduction

For simply connected compact exceptional Lie groups G = Fy, Eg and E7, we
consider two involutions o, and determine the group structure of subgroups G?7
of G which are the intersection G N G7 of the fixed points subgroups of G° and
G7. The motivation is as follows. In [1], we determine the group structure of
(Fy)™° , (Eg)”° and (E7)°° | and in [2], we also determine the group structure of
(G2)", (Fy)*"" and (Eg)". So, in this paper, we try to determine the type of
groups (F4)?7, (Eg)”7 and (E7)>7. Our results are the following second columns.
The first columns are already known in [3],[4] or [5] and these play an important
role to obtain our results. In Table 1, the results of the group structure of G*7
are obtained by the result of G” and in Table 2, ones are obtained by the result of
G?. In this paper, we show the proof of the results of the first and the second line
of Table 1 and the third line of Table 2.

ACKNOWLEDGMENT  The author is grateful to Professor Ichiro Yokota for his
valuable commentes.

Table 1
G G7 G
Fy  (Sp(1) x Sp(3))/Z2 (Sp(1) x Sp(1) x Sp(2))/Z>

(1)
Es  (Sp(1) x SU(6))/Z2 (Sp(1) x S(U(2) x U(4)))/ Z2
E; (SU(2) x Spin(12))/Zy (SU(2) x Spin(4) x Spin(8))/(Z2 x Z3)

Table 2
G G° G
F, Spin(9) (Spin(4) x Spin(5))/Z>

Es (U(1) x Spin(10))/Zy  (U(1) x Spin(4) x Spin(6))/Z
E; (SU(2) x Spin(12))/Z2 (SU(2) x Spin(4) x Spin(8))/(Z2 x Z2)
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As for the group (Eg)?7, we can not realize explicitly, however we conjecture
(Eg)?7 = (Spin(4) x Spin(12))/(Z2 x Z3)

REMARK. In E7, since v is conjugate to —o, we have (E7)Y & (E7)?. (In detail,
see [4].) Note that the results of Table 1 and Table 2 are the same as a set, however
they are different as realizations.

Notation

(1) For a group G and an element s of G, we denote {g € G| sg = gs} by G*.

(2) For a transformation group G of a space M, the isotropy subgroup of G at
mi,-+,my € M is denoted by Gy ,...om), = {9 € G | gm1 =ma, -+, gmy = my}.

(3) For a R-vector space V, its complexification {u + v | u,v € V} is denoted
by V. The complex conjugation in V¢ is denoted by 7 : 7(u +iv) = u — iv. In
particular, the complexification of R is briefly denoted by C' : R =C.

(4) For a Lie group G, the Lie algebra of G is denoted by the corresponding
German small letter g. For example, so(n) is the Lie algebra of the group SO(n).

(5) Although we will give all definitions used in the following Sections, if in case
of insufficiency, refer to [3],[4] or [5].

1. Group F;

We use the same notation as in [1], [2] or [5] (however, some will be rewritten).
For example, the Cayley algebra € = H & Hey,

the exceptional Jordan algebra J = {X € M(3,¢)|X* = X}, the Jordan
multiplication X oY, the inner product (X,Y) and the elements F1, Es, E5 € J,

the group Fy = {a € Isor(J) |a(X oY) = aX o aY}.

We define R-linear transformations o and v of J by

&1 23 T & —x3 —T &1 T3 YT,
oX=0|T3 & x| =|-T3 & x |, X =73 & oy |,
T2 T1 &3 —r2 T1 &3 YTy YT, &3

respectively, where ya,, = y(mr+ares) = mp—ares, xp = myp+ares € HOHey =
¢. Then, 0,7 € Fy and 02 =42 = 1. ¢ and ~ are commutative. From oy = vo, we
have

(F2)7 0 (Fa)” = ((Fa)7)" = ((F4)")”.

Hence, this group will be denoted briefly by (Fy)77.



PROPOSITION 1.1.  (Fy)Y 22 (Sp(1) x Sp(3))/Z2, Z2 ={(1,E),(—1,—E)}.

PROOF. The isomorphism is induced by the homomorphism ¢ : Sp(1)xSp(3) —
(F1)?, @(p, A)(M +a) = AMA* 4+ paA*, M +a € J(3, H)® H*> = 3. (In detail,
see [3], [5].)

LEMMA 1.2. ¢ : Sp(1)x Sp(3) — (F4)” of Proposition 1.1 satisfies op(p, A)o =
o(p, 1 AlL), where I; = diag(—1,1,1).

PROOF. From o = ¢(—1, 1), we have the required one.

Now, we shall determine the group structure of (Fy)®7 = ((Fy)7)? = ((F4)°)" =
(Fa)7 0 (Fa)”.

THEOREM 1.3. (Fy4)7" = (Sp(1)xSp(1)xSp(2))/Z2, Z2 ={(1,1, E), (-1, -1,
—E)}.
PROOF. We define a map ¢4 : Sp(1) x Sp(1) x Sp(2) — (F4)?" by

g |00 g |00 \~© g |00 \~©
¢4(p, ¢, B)(M+a) = 8 B M 8 B +pa 8 B :

M +a € J(3,H)® H® = 3, as the restriction of Proposition 1.1. By Lemma
1.2, ¢4 is well-defined and a homomorphism. We shall show that ¢4 is onto. Let
a € (Fy)?7. Since (Fy)?Y C (F4)7, there exist p € Sp(1) and A € Sp(3) such
that o = ¢(p, A) (Proposition 1.1). From ocao = «, we have o(p, I1 Al1) = p(p, A)
(Lemma 1.2). Hence,

bp=p or bp=-p

LAL =A LAL =-A
The latter case is impossible because p = 0 is false. In the former case, from
I1AI = A, we have

qg |00
A=1 0 B , ¢ € Sp(1), B € Sp(2). Hence,
0
q 00
a = SD( q, 0 B ) = 904(]97%3)7
0

that is, ¢4 is onto. And Kerps = {(1,1, E), (-1, —1,—FE)} = Z5. Thus, we have
the required isomorphism (Sp(1) x Sp(1) x Sp(2))/Z2 = (Fy)77.

2. Group Ej



We use the same notation as in [1], [2] or [5] (however, some will be rewritten).
For example, the complex exceptional Jordan algebra 3¢ = {X € M(3,¢%)| X* =
X}, the Freudenthal multiplication X x Y and the Hermitian inner product (X,Y),

the group Eg = {a € Isoc(J%) | aX x aY = rar(X x V), (aX,aY) = (X,Y)},
and the natural inclusion Fy C FEg.

PROPOSITION 2.1. (Eg)Y = (Sp(1) x SU(6))/Z2, Z2 ={(1,E),(-1,—FE)}.

PRrROOF. The isomorphism is induced by the homomorphism ¢ : Sp(1) x
SU6) = (E¢), ¢(p, A)(M + a) = k;~'(Ak;(M)'A) + pak™(A*), M + a €
33, H)C & (H*)C = 3°. (In detail, see [3], [5].)

LEMMA 2.2. ¢ : Sp(1) x SU(6) — (Eg)" of Proposition 2.1 satisfies op(p, A)o
= ¢(p, [, ALL), where Iy = diag(—1,—-1,1,1,1,1).

PROOF. From o = p(—1,I3), we have the required one.

Now, we shall determine the group structure of (Eg)?" = ((Eg)")’ = ((Eg)?)”
= (E6)” N (E5)”.

THEOREM 2.3. (Eg)”7 =2 (Sp(1) x S(U(2) x U(4)))/Z2, Z> = {(1,E), (-1,
—E)}.

PROOF. We define a map ¢g : Sp(1) x S(U(2) x U(4)) — (Eg)”" by

w6 (p, A)(M + a) = k;~*(Ak;(M)'A) + pak 1 (A*),

M +a €33, H)C @ (H*C =3, as the restriction of ¢ of Proposition 2.1. By
Lemma 2.2, @g is well-defined and a homomorphism. We shall show that ¢g is onto.
Let o € (Eg)?7. Since (Eg)7Y C (Eg)7, there exist p € Sp(1) and A € SU(6) such
that o = ¢(p, A) (Proposition 2.1). From ocao = «, we have ¢(p, I;Aly) = p(p, A)
(Lemma 2.2). Hence,

p=p or bp=-—-p
LA, =A LA, =—-A
The latter case is impossible because p = 0 is false. In the former case, we have

A € S(U(2) x U(4)). Therefore, @g is onto. Kerpg = {(1,E),(—1,—FE)} = Zs.
Thus, we have the required isomorphism (Sp(1) x S(U(2) x U(4)))/Z2 =2 (Fg)°".

3. Group E;



We use the same notation as in [1],[4] or [5] (however, some will be rewritten).
For example, the Freudenthal C-vector space B¢ = 3¢ @I @ C®C, the Hermitian
inner product (P, Q), the C-linear map P x Q : B¢ — P (P, Q € B°),

the group Er = {a € Isoc(P) |a(X xY)a~! = aP xaQ, (aP,aQ) = (P,Q)},
the natural inclusion Eg C E; and elements 0,0’ € Fy C Eg C E7, A\ € E7.

We shall consider the following subgroup of Fy.
(F)7 ) pny) = {a € (Fa)”7 |aF1(h) = F1(h) for all h € H}.

PROPOSITION 3.1. (F1)”Y)py ) =2 Sp(1) x Sp(1)(= Spin(4)).
PrOOF. We define a map ¢ : Sp(1) x Sp(1) = ((F4)”7)F, (n) by

g |00 g |00 \" g |00 \"
e, )M +a)=1| 0 | o MO0 g tpaf 0 | o :
0 0 0
0 0 O
as the restriction of ¢4 of Theorem 1.3. By Fi(h)= |0 0 h | + O, ¢ is well-
0 h 0O

defined and homomorphism. We shall show that ¢ is onto. Let o € ((F4)77)p, (1)-
Since ((F4)7Y)p (n) C (F4)77, there exist p,q € Sp(1) and B € Sp(2) such that

a = @4(p,q, B)(Theorem 1.3). From aFi(h) = Fi(h), we have B <9 h) B* =

h O
0 h
<E O>,sothat

a=¢4(p,q,E) or a=pip,q—FE).
In the former case, we have a = @4(p, q, E) = ¢(p, ¢). In the latter case, we have
a = 904(177 q, _E) = @4(_17, —q, E)(pﬁl(_lu _17 _E)

Hence, ¢ is onto. Kerp = {(1,1)}. Thus, we have the required isomorphism
Sp(1) x Sp(1) = ((F1)7) py (n)-

Hereafter, in ’IJC, we use the following notations.

(F1(h),0,0,0) = Fy(h), (0,E1,0,1) = Ey,
(07E1707_1):E—17 (E2+E3707070):E23'

We shall consider a subgroup (((E7)"*)") g, () 2.5 .55 Of E7-



LEMMA 3.2. The Lie algebra (((W)N’H)W)Fl(h),El,E,l,Em of the group

(((E7)H7M)’Y)F1(h),El,E,l,EQS is given by

(((27)“’”)7)}1(h),El,E,l,E’zg

- {qs(( 8 fgi ),0,0,0)’ (%%) € s0(8), D, 650(4)}.

In particular, we have

dim((((eﬂmu)’y)f;‘l(h),E~'1,E71,E.23) = 6.

Hereafter, ( 8 l;)’ ) will be denoted by D), and also ¢(D},0,0,0) will be
4
denoted by @4.

PROPOSITION 3.3. (((E7)"#)? )pl(h)jl,é,hgzs = ((F1)") py (n)-

PrOOF. Let a € ((F4)”) gy (ny- Since ((Fu)™Y) gy ny) C (F1)7 = (Fu)p, (as for
(Fy)? = (F4)g,, see [3], [5]), we see aFy = Ey. As a result, because x and p are
defined using by F; (see [1], [4] or [5]), we see that ko = ax and pa = ap. From
aF = E (see [3], [5]), we have a(Ey + F3) = Ey + Es. Hence, aFy3 = Fos.
Moreover, from «(0,0,0,1) = (0,0, 0, 1) (see [4], [5]), we have aFE; = E; and
aF_; = E_,. Obviously aF}(h) = Fy(h). Thus, a € (((E7)"*)” )Fl(h) By By g
Conversely, let a € (((E7)"*)" By (h), By By, Brag-  FTOM aF, = Ey and aF_; =
E_1, we have «(0, E1,0,0) = (0,F1,0,0) and «(0,0,0,1) = (0,0,0,1). Hence,

€ ((B6)")ri(h), b1, B2 s (see [4], [5]). Thus, (F)e) ey = (F0)”) k)
Therefore, the proof of this proposition is completed.

Next, we shall consider the following subgroup of Fj.

(Fa)” ") Fy (hes) = {a € (F1)77 | aF1(hes) = Fi(heq) for all h € H}.

PROPOSITION 3.4.  ((F4)”7)p, (hes) = SP(2)(= Spin(5)).

PrOOF. We define a map ¢ : Sp(2) — ((F4)77) p, (hey) DY

* *

|00 1|00

|OO 1
M 0 +a 0 ,
0

B

B B

1
e(B)(M +a)=1{ 0
0 0

as the restriction of ¢4 of Theorem 1.3. Obviously ¢ is well-defined and ho-
momorphism. We shall show that ¢ is onto. Let a € ((F4)”™7)p, (hes). Since
(F)?Y) Py (hesy C (Fu)77, there exist p,qg € Sp(1) and B € Sp(2) such that



a = @4(p,q, B)(Theorem 1.3). From aF}i(hes) = Fi(hes)(= O + (h,0,0)), we
have phq = h(h € H), so that

a=94(1,1,B) or a=p4(-1,—1,B).
In the former case, we have a = ¢4(1,1, B) = ¢(B). In the latter case, we have
a = p4(=1,-1,B) = p4(1,1,=B)ps(-1,-1,-E)
= 4(1,1,—B)1 = p(—B).

Hence, ¢ is onto. Kergp = {E}. Thus, we have the required isomorphism Sp(2) =
(Fa)”7) Py (hea) -

Then, we have the following proposition.

PROPOSITION 3.5. (((B7)™™)") f\ (hew).fn. v itns = (F2)77) By (hea) -
PROOF. This proof is in the way similar to Proposition 3.3.

We shall consider the subgroup (((E7)""“)'Y)Fl(he4) 5.5, of Er.

LEMMA 3.6. The Lie algebra (((W)N’H)W)Fl(he4),E1,E,1 of the group
(((E7)N)H)’Y)F1(he4),E‘1,E,1 is given by

(€)™ ) £ (hew). 1.5

:{¢(< 134 8 >+Zl(p)+i §

~

0
Dy |0
q 707070)‘ ( 0 0)650(8),

—€

2 N O

Dyeso(d),ee R, p,q€ H}.
In particular, we have
dim((((e7)™")") £ (nea). 21.5_,) = 15-

Hereafter, < Da |0

0 To > will be denoted by Dy.

LEMMA 3.7. (1) For a € H, we define a map &,(a) of 3¢ by

G==6&
& = & ;53 + &2 ;53 cos |al +i(a|’;|1) sin |a|
&= & 553 + &2 —553 cos|al +i(a|’;il) sin |al



(&2 +8&)a 2(a,z1)a . |al
x) =z + ZT sin |a| — W(sm 7)2
! zxgcosM—!—i@s,inM
2 2 |al 2
Th =2 COSM+i@SiHM
37T |a 2
Then, &1(a) € ((B7)™")7) §, (hew) Br B -
(2) Fort € R, we define a map da3(t) of 3¢ by
& w5 T 13 eit/2p,  =it/2g,
ags(t) | Tz & an | = | e'Pm5 e T
T2 T1 &3 e My T e "3

Then, G23(t) € (B7)™")7) gy (hew) B By -

PROOF.(1) For a € H, we have iF} (a) € (((e7)“’“)7)pl(he4)£1Eil(Lemma 3.6).
Hence, &1 (a) = expiFi(a) € (E7)™")") §, (he).5r. 51

(2) For t € R, we have it(Ey — E3)™ € (((87)'{’#)7)151(he4),E1,E,1(Lemma 3.6).
Hence, da3(t) = expit(Ey — FE3)™ € (((E7)K7#>7)F1(he4),E1,E,1'

We define a 6 dimensional R-vector space V¢ by

Ve = {P e kP = P,urAP = P,yP = P,(P,E1) = 0,(P,E_;) = 0}
0 O
- {P:( 0 & h ,o,o,o)‘gec, heH}
0 h —7¢
with the norm (see [5] for the definition of { , }’s)
1 1 —
(P.P)y = {nP.P} = L(uP,AP) = (r&)¢ + T

Then, % = {P € VS| (P, P), =1} is a 5 dimensional sphere.

LEMMA 3.8 (((E7)K7#)’Y)F1(he4),ﬁ‘1,E,l/Spin(5) ~ S5,
In particular, (((E7)N)H)V)F1(he4),E1,E~,1 is connected.

. . . . s ’Y . _ ~
PROOF. Since E7 is commutative with 7A, the group (((E7)™*)") g, (hes) 51,5,
acts on S°. We shall show that this action is transitive. To show this, it is sufficient
to show that any element P € S® can be transformed to (i(E2 + E3),0,0,0) € S°
under the action of (((E7)N)”)’Y)F1(he4),E‘1,E,1' Now, for a given

00 0 5
P:( 8 % _1;5 ,o,o,o)es,



choose t € R such that e®¢ € R. For this t € R, operate aa3(t) (Lemma 3.7(2)) €
(((E7)N)H)’Y)F1(he4),E1,E~',1 on P. Then, we have

00 0
a23(t)P:( 0 r h ,0,0,0)zPl,reR.
0 h -—r

In the case of h # 0, operate a1 (wh/2|h|) (Lemma 3.7(1)) € (((E7)H7M)’Y)F1(he4),E‘1,E,1
on P;. Then, we have

00 0
al(Lh)plz( 0 ¢ 0 ,0,0,0):P2€S5, gec
2|h| 0 0 —r¢

Here, from (7¢/)¢' =1, ¢ € C, we can put & = e, 0 < 0 < 27. Operate da3(—0)
on P,. Then,
dig3(—0) P2 = (E2 — F3,0,0,0) = Ps.

Moreover, operate aias(m/2) on P,
-~ ﬂ- . .
Go3 () Py = (i( Bz + E3),0,0,0) = iFins.

This shows the transitivity. The isotropy subgroup (((E7)™")")g ne,) 1.5, ot
Ebs is (((E7)K’#)V)Fl(he4),E1,E,1,E23 = Sp(2) (Propositions 3.4, 3.5) = Spin(5).
Therefore, we have the homeomorphism
((B2)™)) gy (hewy .1 o/ SPIn(5) = S°.

PROPOSITION 3.9. (B ) by hewy, 5, = SPin(6).

PrOOF. Since (((E7)H)H)’Y>F‘1(he4),E1,E‘,1 is connected (Lemma 3.8), we can
define a homormorphism 7 : ((E7)™*)") g, (hes) 1.5, — SO(6) = SO(V) by
7(a) = a|VE.
It is not difficult to see that Kerp = {1,0} = Z5. Since
dim((((EﬁK’#)’y)Fl(he4),E1,E,1) = 15 (Lemma 3.6) = dim(s0(6)), 7 is onto. Hence,
(B ")) By (hea). v B,/ Z2 = SO(6). Therefore, ((E2)™")")f, (hey) .5, 1
isomorphism to Spin(6) as a double covering group of SO(6).

We shall consider a subgroup (((E7)*)") of Ey.

Fi(hea), B
LEMMA 3.10. The Lie algebra (((87)&”)7)151(}184),1@1 of the group
(((E7)N’H)’Y)pl(he4)ﬁl s gwen by

(€))7 £y (hea). B

N 00 0 00 0 0 0 0
:{@(D4+A1(p)+z’ 0 g 10 a izl|l,—rl0 a i ,o)
0 g —e 0 iz Ta 0 iz Ta



Dy eso(4) Cs0(8),ee R,a € C,p,q,x € H}
In particular, we have
dim((((e7)™")") £, (hes).2,) = 21

LEMMA 3.11. For a € R, we define maps ap(a),k = 2,3 of B by

X (14 (cosa—1)pg)X —2(sina)Ey, x Y 4+ n(sina)Ey

Y 2(sina)Er X X + (1 + (cosa — 1)pg)Y — £(sina) By,
ax(a) ¢ - ((sina)Ey,Y) + (cosa)é ’

n (—(sina)Ey, X) + (cosa)n

where py, JC — 30 is defined by
(X)) = (X, Ep)E 4+ 4B, x (B x X), X € 3°.

Then, ay € E7 and az(a), asz(b)(a,b € R) commute with each other.

PRrROOF. For &y(a) = &(0,aEy, —aEy,0) € e7, we have ay(a) = expPy(a) € Er.
Since [P2(a), P3(b)] = 0, az(a) and az(b) are commutative.

We define a 7 dimensional R-vector space V7 by

VT = {PepY|kP = P,urAP = P,yP = P,(P,E,) = 0}

00 0 in 0 0 |
:{p:( 8 % _1;5 , 8 8 8 ,O,—m)‘geC,heH,neR}

with the norm ]
(P, P)y = 5(nPAP) = (r€)€ + hh + 1.

Then, S = {P € V7| (P, P),, = 1} is a 6 dimensional sphere.
LEMMA 3.12 (((B))T) By (hew) B, [ SPIT(6) = S6.
In particular, (((E7)“’“)V)Fl(h84)ﬁl is connected.

PROOF. The group (((E7)"7“)7)F1(h64) 5, acts on S%. We shall show that this
action is transitive. To show this, it is sufficient to show that any element P € S°
can be transformed to (0, —iE1, 0,i) € S° under the action of (((E7)K7#)’Y)F1(he4),E~'1'

Now, for a given

00 0 in 0 0
P:( 0 ¢& h|,l0 00 ,o,—m)esﬁ,
0 h —r¢ 0 0 0

10



2
choose ¢ € R,0 < a < 7/2 such that tan2a = il (if 7€ — ¢ = 0, then
€ —

let a = w/4). Operate asz(a) := az(a)asz(a) = exp(P(0,a(F2 + E3),—a(F2 +
Es),0)) (Lemma 3.11) € (((E7)”’”)V)Fl(h84)ﬁl (Lemma 3.10) on P. Then, the n—
term of agz(a)P is (1/2)(€ — 7€) sin 2a + in cos 2a = 0. Hence,

0 O 0
a23(a)P:( 0 ¢ m ,O,O,O)=P1655CSG.
0 m —7C

Since (((E7)"")7) g, (hew). v 5, (C ((B7)™) ") gy (hesy.5,) Acts transitivity on S°
(Lemma 3.8), there exist 8 € (((E7)H7M)V)F‘1(he4),E~'1,E,1 such that SP, = (i(E2 +
E3),0,0,0) = P, € S° C S°. Moreover, operate ags(—m/4) on Ps,

T _ . e
Q23 (_Z)PQ = (O, —ZEl, O, Z) = —ZEfl.
This shows the transitivity. The isotropy subgroup (((E7)“*“)7)F1(h84)ﬁ1 at E_;
is (((E7)H7M)’Y)F1(he4),E‘1,E,1 = Spin(6)(Proposition 3.9). Thus, we have the home-
omorphism (((E7)™*)") g, ne,y 5,/ Spin(6) =~ S°.
PROPOSITION 3.13. (((B)™)) by hewy, 5y = SPin(T).

PROOF. Since (((E7)N)H)’Y)F1(he4),ﬁ‘1 is connected (Lemma 3.12), we can define

a homormorphism 7 : (((E7)’”"*“)7)Fl(he4)7E1 — S0(7) = SO(V7) by
m(a) = alV".

It is not difficult to see that Kerp = {1,0} = Z3. Since
dim((((E7)"‘7“)’Y)F1(h64))E1) = 21 (Lemma 3.10) = dim(s0(7)), 7 is onto. Hence,
((BD)™)") gy (hewy, i/ Z2 = SO(T). Therefore, (((E7)™")")g, (hey), 5, 18 isomor-
phism to Spin(7) as a double covering group of SO(7).

We shall consider the subgroup (((E7)"*)”) g, 1.,y of Er.

LEMMA 3.14. The Lie algebra (((e7)”’”)7)pl(he4) of the group
(((E7)”’“)’Y)Fl(he4) is given by

()™ ) ") £y (hea)
ee 0 0\ /0 0 O 0 0 0
{@(D4+A1( YJ+i| 0 e ¢ 0 ao x|, -7 0 ay = |,
0 G e3 0 = a3 0 T a3

——zel) ‘D4€50( ) Cs0(8),ar € C,p,q € H, r € HY ¢, € R, €1+€2+63—0}
In particular, we have

dim((((e7)™)") 5, ery) = 28-

11



Hereafter, any element of the Lie algebra (((e7)“’“)V)F-l(he4) will be denoted by Ps.

LEMMA 3.15. Fort € R, we define a map a(t) of BC by

a(t)(X,Y,€,n)

62“51 6“173 eiiff2 672“7’]1 e*ityg e*ity2
_ it= —it= —2it 24t
= "7z & x|, | e "Ys 72 Y1 e " e 77)-
it = —it =
ery Ty &3 e "yo U1 n3

Then, a(t) € ((E7)™")7) gy (hew)-
PROOF. For @ = ¢(2itEy V E1,0,0,-2it) € (((e7)™")7) g, (e, (Lemma 3.14),
we have a(t) = exp® € ((E7)"")") g, (heyy bY E1V E1 = (1/3)(2E1 — B> — E3)™.

h84

We define an 8 dimensional R-vector space V8 by

V8 = {PepY|kP = P,urAP = P,yP = P}

00 0 n 00
:{P:( 8 % _f;g , 8 8 8 ,O,m)‘ﬁ,neaheH}

with the norm

1 -
(P.P)y = 5(uP.AP) = (r€)€ + Fh + (7).
Then, S” = {P € V8| (P, P),, = 1} is a 7 dimensional sphere.

LEMMA 3.16.  (((E7)™")7) g, e,/ Spin(7) = ST.
In particular, (((E7)“*“)7)Fl(he4) is connected.

PRrROOF. The group (((E7)”’”)7)F-1(h84) acts on S7. We shall show that this
action is transitive. To show this, it is sufficient to show that any element P € S”
can be transformed to (0, E1,0,1) € S7 under the action of (((E7)“*“)'Y)Fl(he4).

Now, for a given

00 0 n 0 0
P:( 0o ¢ n |, [0o0 0 ,o,m)es7,
0 h —r¢ 0 0 0
choose t € R such that e =%y € iR. Operate a(t) (Lemma 3.15) € (((E7)""“)7)Fl(he4)
on P. Then,
00 0 i 0 0
a(t)P:( 0¢ n ). [o 0o ,0,—2'77’):P1686CS7,77’6R
0 h —r¢ 0 0 0

Since (((B7)™")") g, neay, 5 (C ((E7)™)7) £, (hey)) acts transitivity on S (Lemma
3.12), there exists 8 € (((E7)K’#)’Y)F1(he4),E1 such that SP; = (0, —iE1,0,i) = Py €

12



S6 c S7. Moreover, operate a(—7/4) (Lemma 3.15) on P,
a(_g)PQ = (OaElaov 1) = El
This shows the transitivity. The isotropy subgroup (((E7)**)7) (hes) 8L E, is

(((E7)”’”)7)F1(h84)ﬁ1 = Spin(7) (Proposition 3.12). Thus, we have the homeomor-
phism (((E7)™")") f, (ne,)/ Spin(7) ~ S7.

PROPOSITION 3.17. (((B7)™)7) by (hewy = Spin(8).

PROOF. Since (((E7)"‘7“)7)F1(h64) is connected (Lemma 3.16), we can define a
homormorphism 7 : (((E7)™")") g, e,y — SO(8) = SO(V®) by

7(a) = a|VE.

It is not difficult to see that Kerp = {1,0} = Z. Since dim((((E7)™")") g, (he,)) =
28 (Lemma 3.14) = dim(so(8)), 7 is onto. Hence, (((E7)"7“)V)Fl(he4)/zg =~ S50(8).
Therefore, ((E7)“’“)7)F1(h84) is isomorphism to Spin(8) as a double covering group

of SO(8).
We shall determine the group structre of ((E7)®*)".

LEMMA 3.18.The Lie algebra ((e7)™")" of the group ((E7)™")" is given by

((ez)"r)”

~

N € 0 0 0
:{@(D4+D§1+A1(p)+i 0 & ¢ ,|0 ar =
0 q €3 0 T a3z
0O 0 O 3
70 ay = ,—52'61)‘D4,DQ650(4)C50(8),CM;§EC,p,qEH,
0 = a3

T € Hc,ek ER,e1+63+€e3= O}.
In particular, we have
dim(((e7)"™*)7) = 34.
PROPOSITION 3.19. ((E7)®*)” 2 (Spin(4) x Spin(8))/Z2, Z2> = {(1,1), (-1,
-1}

PROOF. For Spin(4) = Sp(1) x Sp(1) = (((E7)™")") f, (1), .51, s (PTOPOSI-
tions 3.1, 3.3) and Spin(8) = (((E7)"**)")p Fy(hey) (PrOpOsition 3.17), we define a
map ¢ : Spin(4) x Spin(8) — ((E7)"")” by

¢1(a, B) = af.

13



Then, ¢ is well-defined. For @4 € spin(4) (Lemma 3.2) and Pg € spin(8) (Lemma
3.14), since [@4,Pg] = 0, we have a8 = Sa. Hence, ¢1 is a homomorphism. It
is not difficult to see that Kerg; = {(1,1),(=1,—1)} = Zs. Since ((E7)"H)" (=
(Spin(12)) (see [4],[5])) is connected and dim(((E7)"*)") = 34 (Lemma 3.18)=
6+28 = dim(spin(4) @spin(8)), ¢1 is onto. Thus, we have the required isomorphism
(Spin(4) x Spin(8))/ Z> = ((Er)*+)".

Now, we shall determine the group structure of (E7)?7.

LEMMA 3.20.The Lie algebra (e7)”7 of the group (E7)”" is given by

(e7)77
N e 0 0\ [ O O
:{@(D4+Dg+Al(p)+i 0 e q| [0 a =],
0 q e3 0 T O3
(651 0
-7 0 ar =x ,1/)‘D4,D§1€50(4)C50(8),akeC,p,qEH,xEHC,
€T a3

€r € Rye1 + €3+ €3 :O,VEiR}.
In particular, we have

dim((e7)77) = 37.

PROPOSITION 3.21. For A € SU(2) ={A € M(2,C)|(m'A)A = E,detA = 1},
we define C-linear transformations ¢(A) of B by

&1 x3 o mo Yz Yo
o7 & o | (3 m ow|.en)

r2 Ty &3 Y2 Y1 M

il xy  To ’I ys Yo'
=( zs & o2 || T om Yl ,5’,77’),
/

_7 / — /
Ty T & Y2 Y1 73

(7)=2(5) () =(0) (8)-2(2)
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PrROOF. Let & = ®(2vEy V Eq,aEq, —TaFy,v),a € C,v € iR. Then, ¢ €

(e7)”7(Lemma 3.20). Therefore, for A = exp< _ay) € SU(2), we have
$(A) = expd € (E7)77.

—TaQ

PROPOSITION 3.22. (E7)° = (SU(2) x Spin(12))/Z2, Z2 = {(E,1),(—E,
—o)}.

PROOF. The isomorphism is induced by the homomorphism ¢ : SU(2) x
Spin(12) = (E7)? by p1(A,0) = ¢(A)d. (In detail, see [4], [5].)

THEOREM 3.23. (E7)77 22 (SU(2) x Spin(4) x Spin(8))/(Zax Z2), Zax Zs =
{(E,1,1),(E,0,0)} x {(E,1,1), (=E,7, —07)}.

PRrOOF. For SU(2) (Proposition 3.21), Spin(4 (((E7)K7#)’Y)F1(h),El,E,l,Ezg

)=
(Propositions 3.1, 3.3) and Spin(8) = (((E7)™")")p Fi (he) (Proposition 3.17), we
define a map ¢ : SU(2) x Spin(4) x Spin(8) — (E7)”" by

o(A, . B) = ¢(A)ap.

Then, ¢ is well-defined. From Propositions 3.19, 3.22, ¢ is a homomorphim. We
shall show that ¢ is onto. Let p € (E7)?7. Since (E7)°" C (E7)°, there exist
A € SU(2) and 6 € Spin(12) such that p = ¢1(A, ) (Proposition 3.22). Now,
From ~ypvy = p, we have ¢(A)(ydvy) = ¢(A)d. Hence,

A=A A=—-A
Yoy =0 or ~oy = —0d

The latter case is impossible because A = 0 is false. In the former case, from
Proposition 3.19, there exist o € Spin(4) and 8 € Spin(8) such that § = ¢1(a, 5).
Hence, we have
p = ¢1(A,0) = ¢(A)d = ¢(A)¢1(a, B)
= Qb(A)O‘ﬂ = @(Avavﬂ)'

It is not difficult to see that

Kerp = {(Evlvl)v(E g, U)v(_E777_07)7(_E70’77 _’7)}
= {(E 1 1)7( )} X {(Ealvl)a(_Ea’Yv _07)}
= Z2 X Z2.

Thus, we have the required isomorphism (SU(2) x Spin(4) x Spin(8))/(Z2 x Z3) =
(E7)77.
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