Fixed points subgroups by two involutive automorphisms σ , γ of compact exceptional Lie groups F_4, E_6 and E_7

By

Toshikazu Miyashita

Introduction

For simply connected compact exceptional Lie groups $G = F_4$, E_6 and E_7 , we consider two involutions σ , γ and determine the group structure of subgroups $G^{\sigma,\gamma}$ of G which are the intersection $G^{\sigma} \cap G^{\gamma}$ of the fixed points subgroups of G^{σ} and G^{γ} . The motivation is as follows. In [1], we determine the group structure of $(F_4)^{\sigma,\sigma'}$, $(E_6)^{\sigma,\sigma'}$ and $(E_7)^{\sigma,\sigma'}$, and in [2], we also determine the group structure of $(G_2)^{\gamma,\gamma'}$, $(F_4)^{\gamma,\gamma'}$ and $(E_6)^{\gamma,\gamma'}$. So, in this paper, we try to determine the type of groups $(F_4)^{\sigma,\gamma}$, $(E_6)^{\sigma,\gamma}$ and $(E_7)^{\sigma,\gamma}$. Our results are the following second columns. The first columns are already known in [3],[4] or [5] and these play an important role to obtain our results. In Table 1, the results of the group structure of $G^{\sigma,\gamma}$ are obtained by the result of G^{γ} and in Table 2, ones are obtained by the result of G^{σ} . In this paper, we show the proof of the results of the first and the second line of Table 1 and the third line of Table 2.

ACKNOWLEDGMENT The author is grateful to Professor Ichiro Yokota for his valuable commentes.

		Table 1
G	G^{γ}	$G^{\sigma,\gamma}$
F_4	$(Sp(1) \times Sp(3))/\mathbf{Z}_2$	$(Sp(1) \times Sp(1) \times Sp(2))/\mathbf{Z}_2$
E_6	$(Sp(1) \times SU(6))/\mathbf{Z}_2$	$(Sp(1) \times S(U(2) \times U(4)))/\mathbf{Z}_2$
E_7	$(SU(2)\times Spin(12))/\boldsymbol{Z}_2$	$(SU(2) \times Spin(4) \times Spin(8))/(\boldsymbol{Z}_2 \times \boldsymbol{Z}_2)$
Table 2		
G	G^{σ}	$G^{\sigma,\gamma}$
F_4	Spin(9)	$(Spin(4) \times Spin(5))/\mathbf{Z}_2$
E_6	$(U(1) \times Spin(10))/\mathbf{Z}_4$	$(U(1) \times Spin(4) \times Spin(6))/\mathbf{Z}_2$
E_{7}	$(SU(2) \times Spin(10))/\mathbf{Z}_2$	$\frac{(SU(2) \times Spin(4) \times Spin(6))}{(SU(2) \times Spin(4) \times Spin(8))} / (\mathbf{Z}_2 \times \mathbf{Z}_2)$

As for the group $(E_8)^{\sigma,\gamma}$, we can not realize explicitly, however we conjecture

$$(E_8)^{\sigma,\gamma} \cong (Spin(4) \times Spin(12))/(\mathbf{Z}_2 \times \mathbf{Z}_2)$$

REMARK. In E_7 , since γ is conjugate to $-\sigma$, we have $(E_7)^{\gamma} \cong (E_7)^{\sigma}$. (In detail, see [4].) Note that the results of Table 1 and Table 2 are the same as a set, however they are different as realizations.

Notation

- (1) For a group G and an element s of G, we denote $\{g \in G \mid sg = gs\}$ by G^s .
- (2) For a transformation group G of a space M, the isotropy subgroup of G at $m_1, \dots, m_k \in M$ is denoted by $G_{m_1, \dots, m_k} = \{g \in G \mid gm_1 = m_1, \dots, gm_k = m_k\}.$
- (3) For a \mathbf{R} -vector space V, its complexification $\{u+iv \mid u,v \in V\}$ is denoted by V^C . The complex conjugation in V^C is denoted by $\tau: \tau(u+iv) = u-iv$. In particular, the complexification of \mathbf{R} is briefly denoted by $C: \mathbf{R}^C = C$.
- (4) For a Lie group G, the Lie algebra of G is denoted by the corresponding German small letter \mathfrak{g} . For example, $\mathfrak{so}(n)$ is the Lie algebra of the group SO(n).
- (5) Although we will give all definitions used in the following Sections, if in case of insufficiency, refer to [3],[4] or [5].

1. Group F_4

We use the same notation as in [1], [2] or [5] (however, some will be rewritten). For example, the Cayley algebra $\mathfrak{C} = H \oplus He_4$,

the exceptional Jordan algebra $\mathfrak{J} = \{X \in M(3,\mathfrak{C}) | X^* = X\}$, the Jordan multiplication $X \circ Y$, the inner product (X,Y) and the elements $E_1, E_2, E_3 \in \mathfrak{J}$,

the group
$$F_4 = \{ \alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{J}) \mid \alpha(X \circ Y) = \alpha X \circ \alpha Y \}.$$

We define **R**-linear transformations σ and γ of \mathfrak{J} by

$$\sigma X = \sigma \begin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \\ \overline{x}_3 & \xi_2 & x_1 \\ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix} = \begin{pmatrix} \xi_1 & -x_3 & -\overline{x}_2 \\ -\overline{x}_3 & \xi_2 & x_1 \\ -x_2 & \overline{x}_1 & \xi_3 \end{pmatrix}, \ \gamma X = \begin{pmatrix} \xi_1 & \gamma x_3 & \overline{\gamma} \overline{x}_2 \\ \overline{\gamma} \overline{x}_3 & \xi_2 & \gamma x_1 \\ \gamma x_2 & \overline{\gamma} \overline{x}_1 & \xi_3 \end{pmatrix},$$

respectively, where $\gamma x_k = \gamma(m_k + a_k e_4) = m_k - a_k e_4$, $x_k = m_k + a_k e_4 \in \mathbf{H} \oplus \mathbf{H} e_4 = \mathfrak{C}$. Then, $\sigma, \gamma \in F_4$ and $\sigma^2 = \gamma^2 = 1$. σ and γ are commutative. From $\sigma \gamma = \gamma \sigma$, we have

$$(F_4)^{\sigma} \cap (F_4)^{\gamma} = ((F_4)^{\sigma})^{\gamma} = ((F_4)^{\gamma})^{\sigma}.$$

Hence, this group will be denoted briefly by $(F_4)^{\sigma,\gamma}$.

PROPOSITION 1.1. $(F_4)^{\gamma} \cong (Sp(1) \times Sp(3))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1, E), (-1, -E)\}.$

PROOF. The isomorphism is induced by the homomorphism $\varphi: Sp(1)\times Sp(3) \to (F_4)^{\gamma}, \ \varphi(p,A)(M+\mathbf{a}) = AMA^* + p\mathbf{a}A^*, \ M+\mathbf{a} \in \mathfrak{J}(3,\mathbf{H}) \oplus \mathbf{H}^3 = \mathfrak{J}.$ (In detail, see [3], [5].)

LEMMA 1.2. $\varphi: Sp(1) \times Sp(3) \to (F_4)^{\gamma}$ of Proposition 1.1 satisfies $\sigma \varphi(p, A) \sigma = \varphi(p, I_1 A I_1)$, where $I_1 = \text{diag}(-1, 1, 1)$.

PROOF. From $\sigma = \varphi(-1, I_1)$, we have the required one.

Now, we shall determine the group structure of $(F_4)^{\sigma,\gamma} = ((F_4)^{\gamma})^{\sigma} = ((F_4)^{\sigma})^{\gamma} = (F_4)^{\sigma} \cap (F_4)^{\gamma}$.

THEOREM 1.3. $(F_4)^{\sigma,\gamma} \cong (Sp(1) \times Sp(1) \times Sp(2))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1,1,E), (-1,-1,-E)\}.$

PROOF. We define a map $\varphi_4: Sp(1) \times Sp(1) \times Sp(2) \to (F_4)^{\sigma,\gamma}$ by

$$\varphi_4(p,q,B)(M+\boldsymbol{a}) = \begin{pmatrix} q & 0 & 0 \\ \hline 0 & B \\ 0 & B \end{pmatrix} M \begin{pmatrix} q & 0 & 0 \\ \hline 0 & B \\ 0 & B \end{pmatrix}^* + p\boldsymbol{a} \begin{pmatrix} q & 0 & 0 \\ \hline 0 & B \\ 0 & B \end{pmatrix}^*,$$

 $M + \boldsymbol{a} \in \mathfrak{J}(3, \boldsymbol{H}) \oplus \boldsymbol{H}^3 = \mathfrak{J}$, as the restriction of Proposition 1.1. By Lemma 1.2, φ_4 is well-defined and a homomorphism. We shall show that φ_4 is onto. Let $\alpha \in (F_4)^{\sigma,\gamma}$. Since $(F_4)^{\sigma,\gamma} \subset (F_4)^{\gamma}$, there exist $p \in Sp(1)$ and $A \in Sp(3)$ such that $\alpha = \varphi(p, A)$ (Proposition 1.1). From $\sigma\alpha\sigma = \alpha$, we have $\varphi(p, I_1AI_1) = \varphi(p, A)$ (Lemma 1.2). Hence,

$$\begin{cases} p = p \\ I_1 A I_1 = A \end{cases} \quad \text{or} \quad \begin{cases} p = -p \\ I_1 A I_1 = -A \end{cases}$$

The latter case is impossible because p=0 is false. In the former case, from $I_1AI_1=A$, we have

$$A = \begin{pmatrix} q & 0 & 0 \\ \hline 0 & B \\ 0 & B \end{pmatrix}, \ q \in Sp(1), \ B \in Sp(2). \text{ Hence,}$$

$$\alpha = \varphi(q, \begin{pmatrix} q & 0 & 0 \\ \hline 0 & B \end{pmatrix}) = \varphi_4(p, q, B),$$

that is, φ_4 is onto. And $\operatorname{Ker}\varphi_4 = \{(1,1,E), (-1,-1,-E)\} = \mathbb{Z}_2$. Thus, we have the required isomorphism $(Sp(1) \times Sp(1) \times Sp(2))/\mathbb{Z}_2 \cong (F_4)^{\sigma,\gamma}$.

2. Group E_6

We use the same notation as in [1], [2] or [5] (however, some will be rewritten). For example, the complex exceptional Jordan algebra $\mathfrak{J}^C = \{X \in M(3, \mathfrak{C}^C) \mid X^* = X\}$, the Freudenthal multiplication $X \times Y$ and the Hermitian inner product $\langle X, Y \rangle$,

the group $E_6 = \{ \alpha \in \text{Iso}_C(\mathfrak{J}^C) \mid \alpha X \times \alpha Y = \tau \alpha \tau(X \times Y), \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle \}$, and the natural inclusion $F_4 \subset E_6$.

Proposition 2.1. $(E_6)^{\gamma} \cong (Sp(1) \times SU(6))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1, E), (-1, -E)\}.$

PROOF. The isomorphism is induced by the homomorphism $\varphi: Sp(1) \times SU(6) \to (E_6)^{\gamma}$, $\varphi(p,A)(M+\mathbf{a}) = k_J^{-1}(Ak_J(M)^tA) + p\mathbf{a}k^{-1}(A^*)$, $M+\mathbf{a} \in \mathfrak{J}(3,\mathbf{H})^C \oplus (\mathbf{H}^3)^C = \mathfrak{J}^C$. (In detail, see [3], [5].)

LEMMA 2.2. $\varphi: Sp(1) \times SU(6) \to (E_6)^{\gamma}$ of Proposition 2.1 satisfies $\sigma\varphi(p, A)\sigma = \varphi(p, I_2AI_2)$, where $I_2 = \text{diag}(-1, -1, 1, 1, 1, 1)$.

PROOF. From $\sigma = \varphi(-1, I_2)$, we have the required one.

Now, we shall determine the group structure of $(E_6)^{\sigma,\gamma} = ((E_6)^{\gamma})^{\sigma} = ((E_6)^{\sigma})^{\gamma} = (E_6)^{\sigma} \cap (E_6)^{\gamma}$.

Theorem 2.3. $(E_6)^{\sigma,\gamma} \cong (Sp(1) \times S(U(2) \times U(4)))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1,E), (-1,-E)\}.$

PROOF. We define a map $\varphi_6: Sp(1) \times S(U(2) \times U(4)) \to (E_6)^{\sigma,\gamma}$ by

$$\varphi_6(p, A)(M + \mathbf{a}) = k_J^{-1}(Ak_J(M)^t A) + p\mathbf{a}k^{-1}(A^*),$$

 $M + \boldsymbol{a} \in \mathfrak{J}(3, \boldsymbol{H})^C \oplus (\boldsymbol{H}^3)^C = \mathfrak{J}^C$, as the restriction of φ of Proposition 2.1. By Lemma 2.2, φ_6 is well-defined and a homomorphism. We shall show that φ_6 is onto. Let $\alpha \in (E_6)^{\sigma,\gamma}$. Since $(E_6)^{\sigma,\gamma} \subset (E_6)^{\gamma}$, there exist $p \in Sp(1)$ and $A \in SU(6)$ such that $\alpha = \varphi(p, A)$ (Proposition 2.1). From $\sigma\alpha\sigma = \alpha$, we have $\varphi(p, I_2AI_2) = \varphi(p, A)$ (Lemma 2.2). Hence,

$$\begin{cases} p = p \\ I_2 A I_2 = A \end{cases} \quad \text{or} \quad \begin{cases} p = -p \\ I_2 A I_2 = -A \end{cases}$$

The latter case is impossible because p=0 is false. In the former case, we have $A \in S(U(2) \times U(4))$. Therefore, φ_6 is onto. $\text{Ker}\varphi_6 = \{(1, E), (-1, -E)\} = \mathbb{Z}_2$. Thus, we have the required isomorphism $(Sp(1) \times S(U(2) \times U(4)))/\mathbb{Z}_2 \cong (E_6)^{\sigma,\gamma}$.

3. Group E_7

We use the same notation as in [1],[4] or [5] (however, some will be rewritten). For example, the Freudenthal C-vector space $\mathfrak{P}^C = \mathfrak{J}^C \oplus \mathfrak{J}^C \oplus C \oplus C$, the Hermitian inner product $\langle P, Q \rangle$, the C-linear map $P \times Q : \mathfrak{P}^C \to \mathfrak{P}^C(P, Q \in \mathfrak{P}^C)$,

the group $E_7 = \{ \alpha \in \text{Iso}_C(\mathfrak{P}^C) \mid \alpha(X \times Y)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \},$ the natural inclusion $E_6 \subset E_7$ and elements $\sigma, \sigma' \in F_4 \subset E_6 \subset E_7$, $\lambda \in E_7$.

We shall consider the following subgroup of F_4 .

$$((F_4)^{\sigma,\gamma})_{F_1(h)} = \{ \alpha \in (F_4)^{\sigma,\gamma} \mid \alpha F_1(h) = F_1(h) \text{ for all } h \in \mathbf{H} \}.$$

PROPOSITION 3.1. $((F_4)^{\sigma,\gamma})_{F_1(h)} \cong Sp(1) \times Sp(1) (= Spin(4)).$

PROOF. We define a map $\varphi: Sp(1) \times Sp(1) \to ((F_4)^{\sigma,\gamma})_{F_1(h)}$ by

$$\varphi(p,q)(M+\boldsymbol{a}) = \begin{pmatrix} q & 0 & 0 \\ 0 & E \\ 0 & E \end{pmatrix} M \begin{pmatrix} q & 0 & 0 \\ 0 & E \\ 0 & E \end{pmatrix}^* + p\boldsymbol{a} \begin{pmatrix} q & 0 & 0 \\ 0 & E \\ 0 & E \end{pmatrix}^*,$$

as the restriction of φ_4 of Theorem 1.3. By $F_1(h) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & h \\ 0 & \overline{h} & 0 \end{pmatrix} + \emptyset$, φ is well-defined and homomorphism. We shall show that φ is onto. Let $\alpha \in ((F_4)^{\sigma,\gamma})_{F_1(h)}$. Since $((F_4)^{\sigma,\gamma})_{F_1(h)} \subset (F_4)^{\sigma,\gamma}$, there exist $p,q \in Sp(1)$ and $B \in Sp(2)$ such that $\alpha = \varphi_4(p,q,B)$ (Theorem 1.3). From $\alpha F_1(h) = F_1(h)$, we have $B\begin{pmatrix} 0 & h \\ \overline{h} & 0 \end{pmatrix} B^* = \begin{pmatrix} 0 & h \\ \overline{h} & 0 \end{pmatrix}$, so that

$$\alpha = \varphi_4(p, q, E)$$
 or $\alpha = \varphi_4(p, q, -E)$.

In the former case, we have $\alpha = \varphi_4(p, q, E) = \varphi(p, q)$. In the latter case, we have

$$\alpha = \varphi_4(p, q, -E) = \varphi_4(-p, -q, E)\varphi_4(-1, -1, -E)$$

= $\varphi_4(-p, -q, E)1 = \varphi(-p, -q).$

Hence, φ is onto. Ker $\varphi = \{(1,1)\}$. Thus, we have the required isomorphism $Sp(1) \times Sp(1) \cong ((F_4)^{\sigma,\gamma})_{F_1(h)}$.

Hereafter, in \mathfrak{P}^C , we use the following notations.

$$(F_1(h), 0, 0, 0) = \dot{F}_1(h), \quad (0, E_1, 0, 1) = \tilde{E}_1,$$

 $(0, E_1, 0, -1) = \tilde{E}_{-1}, \quad (E_2 + E_3, 0, 0, 0) = \dot{E}_{23}.$

We shall consider a subgroup $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}}$ of E_7 .

LEMMA 3.2. The Lie algebra $(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}}$ of the group

$$\begin{split} &(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}} \text{ is given by} \\ &(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}} \\ &= \Big\{ \varPhi(\left(\begin{array}{c|c} 0 & 0 \\ \hline 0 & D_4' \end{array}\right),0,0,0) \,\Big|\, \left(\begin{array}{c|c} 0 & 0 \\ \hline 0 & D_4' \end{array}\right) \in \mathfrak{so}(8), \ D_4' \in \mathfrak{so}(4) \Big\}. \end{split}$$

In particular, we have

$$\dim(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}}) = 6.$$

Hereafter, $\left(\begin{array}{c|c} 0 & 0 \\ \hline 0 & D_4' \end{array}\right)$ will be denoted by D_4' , and also $\Phi(D_4',0,0,0)$ will be denoted by Φ_4 .

Proposition 3.3.
$$(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}} = ((F_4)^{\sigma,\gamma})_{F_1(h)}$$
.

PROOF. Let $\alpha \in ((F_4)^{\sigma,\gamma})_{F_1(h)}$. Since $((F_4)^{\sigma,\gamma})_{F_1(h)} \subset (F_4)^{\sigma} = (F_4)_{E_1}$ (as for $(F_4)^{\sigma} = (F_4)_{E_1}$, see [3], [5]), we see $\alpha E_1 = E_1$. As a result, because κ and μ are defined using by E_1 (see [1], [4] or [5]), we see that $\kappa \alpha = \alpha \kappa$ and $\mu \alpha = \alpha \mu$. From $\alpha E = E$ (see [3], [5]), we have $\alpha (E_2 + E_3) = E_2 + E_3$. Hence, $\alpha \dot{E}_{23} = \dot{E}_{23}$. Moreover, from $\alpha (0,0,0,1) = (0,0,0,1)$ (see [4], [5]), we have $\alpha \tilde{E}_1 = \tilde{E}_1$ and $\alpha \tilde{E}_{-1} = \tilde{E}_{-1}$. Obviously $\alpha \dot{F}_1(h) = \dot{F}_1(h)$. Thus, $\alpha \in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}}$. Conversely, let $\alpha \in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}}$. From $\alpha \tilde{E}_1 = \tilde{E}_1$ and $\alpha \tilde{E}_{-1} = \tilde{E}_{-1}$, we have $\alpha (0, E_1, 0, 0) = (0, E_1, 0, 0)$ and $\alpha (0, 0, 0, 1) = (0, 0, 0, 1)$. Hence, $\alpha \in ((E_6)^{\gamma})_{F_1(h),E_1,E_2+E_3}$ (see [4], [5]). Thus, $(((F_4)_{E_1})^{\gamma})_{F_1(h)} = ((F_4)^{\sigma,\gamma})_{F_1(h)}$. Therefore, the proof of this proposition is completed.

Next, we shall consider the following subgroup of F_4 .

$$((F_4)^{\sigma,\gamma})_{F_1(he_4)} = \{ \alpha \in (F_4)^{\sigma,\gamma} \mid \alpha F_1(he_4) = F_1(he_4) \text{ for all } h \in \mathbf{H} \}.$$

PROPOSITION 3.4. $((F_4)^{\sigma,\gamma})_{F_1(he_4)} \cong Sp(2) (= Spin(5)).$

PROOF. We define a map $\varphi: Sp(2) \to ((F_4)^{\sigma,\gamma})_{F_1(he_4)}$ by

$$\varphi(B)(M+\boldsymbol{a}) = \left(\begin{array}{c|c} 1 & 0 & 0 \\ \hline 0 & B \\ \end{array}\right) M \left(\begin{array}{c|c} 1 & 0 & 0 \\ \hline 0 & B \\ \end{array}\right)^* + \boldsymbol{a} \left(\begin{array}{c|c} 1 & 0 & 0 \\ \hline 0 & B \\ \end{array}\right)^*,$$

as the restriction of φ_4 of Theorem 1.3. Obviously φ is well-defined and homomorphism. We shall show that φ is onto. Let $\alpha \in ((F_4)^{\sigma,\gamma})_{F_1(he_4)}$. Since $((F_4)^{\sigma,\gamma})_{F_1(he_4)} \subset (F_4)^{\sigma,\gamma}$, there exist $p,q \in Sp(1)$ and $B \in Sp(2)$ such that

 $\alpha = \varphi_4(p,q,B)$ (Theorem 1.3). From $\alpha F_1(he_4) = F_1(he_4) (= O + (h,0,0))$, we have $ph\overline{q} = h(h \in \mathbf{H})$, so that

$$\alpha = \varphi_4(1, 1, B)$$
 or $\alpha = \varphi_4(-1, -1, B)$.

In the former case, we have $\alpha = \varphi_4(1,1,B) = \varphi(B)$. In the latter case, we have

$$\alpha = \varphi_4(-1, -1, B) = \varphi_4(1, 1, -B)\varphi_4(-1, -1, -E)$$
$$= \varphi_4(1, 1, -B)1 = \varphi(-B).$$

Hence, φ is onto. Ker $\varphi = \{E\}$. Thus, we have the required isomorphism $Sp(2) \cong ((F_4)^{\sigma,\gamma})_{F_1(he_4)}$.

Then, we have the following proposition.

Proposition 3.5.
$$(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}} = ((F_4)^{\sigma,\gamma})_{F_1(he_4)}.$$

PROOF. This proof is in the way similar to Proposition 3.3.

We shall consider the subgroup $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_a),\tilde{E}_1,\tilde{E}_{-1}}$ of E_7 .

Lemma 3.6. The Lie algebra $(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ of the group $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ is given by

$$\begin{split} &(((\mathfrak{e}_7)^{\kappa,\mu})^\gamma)_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}} \\ &= \Big\{ \varPhi\Big(\left(\begin{array}{c|c} D_4 & 0 \\ \hline 0 & 0 \end{array} \right) + \tilde{A}_1(p) + i \begin{pmatrix} 0 & 0 & 0 \\ 0 & \epsilon & q \\ 0 & \overline{q} & -\epsilon \end{pmatrix}^\sim, 0,0,0 \Big) \, \Big| \, \left(\begin{array}{c|c} D_4 & 0 \\ \hline 0 & 0 \end{array} \right) \in \mathfrak{so}(8), \\ &D_4 \in \mathfrak{so}(4), \, \epsilon \in \mathbf{R}, \, p,q \in \mathbf{H} \Big\}. \end{split}$$

In particular, we have

$$\dim((((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}) = 15.$$

Hereafter, $\begin{pmatrix} D_4 & 0 \\ \hline 0 & 0 \end{pmatrix}$ will be denoted by D_4 .

Lemma 3.7. (1) For $a \in \mathbf{H}$, we define a map $\widetilde{\alpha}_1(a)$ of \mathfrak{J}^C by

$$\begin{cases} \xi_1' = \xi_1 \\ \xi_2' = \frac{\xi_2 - \xi_3}{2} + \frac{\xi_2 + \xi_3}{2} \cos|a| + i \frac{(a, x_1)}{|a|} \sin|a| \\ \xi_3' = -\frac{\xi_2 - \xi_3}{2} + \frac{\xi_2 + \xi_3}{2} \cos|a| + i \frac{(a, x_1)}{|a|} \sin|a| \end{cases}$$

$$\begin{cases} x_1' = x_1 + i \frac{(\xi_2 + \xi_3)a}{|a|} \sin|a| - \frac{2(a, x_1)a}{|a|^2} (\sin\frac{|a|}{2})^2 \\ x_2' = x_2 \cos\frac{|a|}{2} + i \frac{\overline{x_3 a}}{|a|} \sin\frac{|a|}{2} \\ x_3' = x_3 \cos\frac{|a|}{2} + i \frac{\overline{ax_2}}{|a|} \sin\frac{|a|}{2} \end{cases}$$

Then, $\widetilde{\alpha}_1(a) \in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$.

(2) For $t \in \mathbf{R}$, we define a map $\widetilde{\alpha}_{23}(t)$ of \mathfrak{J}^C by

$$\widetilde{\alpha}_{23}(t) \begin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \\ \overline{x}_3 & \xi_2 & x_1 \\ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix} = \begin{pmatrix} \xi_1 & e^{it/2}x_3 & e^{-it/2}\overline{x}_2 \\ e^{it/2}\overline{x}_3 & e^{it}\xi_2 & x_1 \\ e^{-it/2}x_2 & \overline{x}_1 & e^{-it}\xi_3 \end{pmatrix}.$$

Then, $\widetilde{\alpha}_{23}(t) \in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$.

PROOF.(1) For $a \in \mathbf{H}$, we have $i\widetilde{F}_1(a) \in (((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ (Lemma 3.6). Hence, $\widetilde{\alpha}_1(a) = \exp i\widetilde{F}_1(a) \in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$.

(2) For $t \in \mathbf{R}$, we have $it(E_2 - E_3)^{\sim} \in (((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ (Lemma 3.6). Hence, $\widetilde{\alpha}_{23}(t) = \exp it(E_2 - E_3)^{\sim} \in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$.

We define a 6 dimensional \mathbf{R} -vector space V^6 by

$$\begin{split} V^6 &= \left\{P \in \mathfrak{P}^C \mid \kappa P = P, \mu \tau \lambda P = P, \gamma P = P, \langle P, \tilde{E}_1 \rangle = 0, \langle P, \tilde{E}_{-1} \rangle = 0\right\} \\ &= \left\{P = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \underline{\xi} & h \\ 0 & \overline{h} & -\tau \xi \end{pmatrix}, 0, 0, 0\right) \middle| \xi \in C, \ h \in \boldsymbol{H}\right\} \end{split}$$

with the norm (see [5] for the definition of { , }'s)

$$(P,P)_{\mu}=\frac{1}{2}\{\mu P,P\}=\frac{1}{2}(\mu P,\lambda P)=(\tau\xi)\xi+\overline{h}h.$$

Then, $S^5 = \{P \in V^6 \mid (P, P)_{\mu} = 1\}$ is a 5 dimensional sphere.

LEMMA 3.8
$$(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1,\tilde{E}_{-1}}/Spin(5) \simeq S^5$$
. In particular, $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ is connected.

PROOF. Since E_7 is commutative with $\tau\lambda$, the group $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ acts on S^5 . We shall show that this action is transitive. To show this, it is sufficient to show that any element $P \in S^5$ can be transformed to $(i(E_2 + E_3), 0, 0, 0) \in S^5$ under the action of $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$. Now, for a given

$$P = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi & h \\ 0 & \overline{h} & -\tau \xi \end{pmatrix}, 0, 0, 0 \right) \in S^5,$$

choose $t \in \mathbf{R}$ such that $e^{it}\xi \in \mathbf{R}$. For this $t \in \mathbf{R}$, operate $\widetilde{\alpha}_{23}(t)$ (Lemma 3.7(2)) $\in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ on P. Then, we have

$$\widetilde{\alpha}_{23}(t)P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & r & h \\ 0 & \overline{h} & -r \end{pmatrix}, 0, 0, 0 \end{pmatrix} = P_1, \ r \in \mathbf{R}.$$

In the case of $h \neq 0$, operate $\tilde{\alpha}_1(\pi h/2|h|)$ (Lemma 3.7(1)) $\in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ on P_1 . Then, we have

$$\widetilde{\alpha}_1\left(\frac{\pi h}{2|h|}\right)P_1 = \left(\begin{pmatrix} 0 & 0 & 0\\ 0 & \xi' & 0\\ 0 & 0 & -\tau \xi' \end{pmatrix}, 0, 0, 0\right) = P_2 \in S^5, \ \xi' \in C.$$

Here, from $(\tau \xi')\xi' = 1$, $\xi' \in C$, we can put $\xi' = e^{i\theta}$, $0 \le \theta < 2\pi$. Operate $\widetilde{\alpha}_{23}(-\theta)$ on P_2 . Then,

$$\widetilde{\alpha}_{23}(-\theta)P_2 = (E_2 - E_3, 0, 0, 0) = P_3.$$

Moreover, operate $\widetilde{\alpha}_{23}(\pi/2)$ on P_3 ,

$$\widetilde{\alpha}_{23}(\frac{\pi}{2})P_3 = (i(E_2 + E_3), 0, 0, 0) = i\dot{E}_{23}.$$

This shows the transitivity. The isotropy subgroup $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ at \dot{E}_{23} is $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}} = Sp(2)$ (Propositions 3.4, 3.5) = Spin(5). Therefore, we have the horomorphism $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}/Spin(5) \simeq S^5$.

Proposition 3.9.
$$(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E_1},\tilde{E}_{-1}} \cong Spin(6).$$

PROOF. Since $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ is connected (Lemma 3.8), we can define a homormorphism $\pi:(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1,\tilde{E}_{-1}}\to SO(6)=SO(V^6)$ by

$$\pi(\alpha) = \alpha | V^6.$$

It is not difficult to see that $\operatorname{Ker}\varphi=\{1,\sigma\}=\mathbf{Z}_2$. Since $\dim((((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}})=15$ (Lemma 3.6) = $\dim(\mathfrak{so}(6))$, π is onto. Hence, $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}/\mathbf{Z}_2\cong SO(6)$. Therefore, $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ is isomorphism to Spin(6) as a double covering group of SO(6).

We shall consider a subgroup $(((E_7)^{\kappa,\mu})^{\gamma})_{F_1(he_4),\tilde{E}_1}$ of E_7 .

Lemma 3.10. The Lie algebra $(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1}$ of the group $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1}$ is given by

$$(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E_1}}$$

$$= \left\{ \Phi \left(D_4 + \widetilde{A}_1(p) + i \begin{pmatrix} 0 & 0 & 0 \\ 0 & \epsilon & q \\ 0 & \overline{q} & -\epsilon \end{pmatrix}^{\sim}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & \underline{\alpha} & ix \\ 0 & \overline{ix} & \tau \underline{\alpha} \end{pmatrix}, -\tau \begin{pmatrix} 0 & 0 & 0 \\ 0 & \underline{\alpha} & ix \\ 0 & \overline{ix} & \tau \underline{\alpha} \end{pmatrix}, 0 \right)$$

$$|D_4 \in \mathfrak{so}(4) \subset \mathfrak{so}(8), \epsilon \in \mathbf{R}, \alpha \in C, p, q, x \in \mathbf{H} \}.$$

In particular, we have

$$\dim(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1}) = 21.$$

LEMMA 3.11. For $a \in \mathbf{R}$, we define maps $\alpha_k(a), k = 2, 3$ of \mathfrak{P}^C by

$$\alpha_k(a) \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix} = \begin{pmatrix} (1 + (\cos a - 1)p_k)X - 2(\sin a)E_k \times Y + \eta(\sin a)E_k \\ 2(\sin a)E_k \times X + (1 + (\cos a - 1)p_k)Y - \xi(\sin a)E_k \\ ((\sin a)E_k, Y) + (\cos a)\xi \\ (-(\sin a)E_k, X) + (\cos a)\eta \end{pmatrix},$$

where $p_k: \mathfrak{J}^C \to \mathfrak{J}^C$ is defined by

$$p_k(X) = (X, E_k)E_k + 4E_k \times (E_k \times X), \quad X \in \mathfrak{J}^C.$$

Then, $\alpha_k \in E_7$ and $\alpha_2(a), \alpha_3(b)(a, b \in \mathbf{R})$ commute with each other.

PROOF. For $\Phi_k(a) = \Phi(0, aE_k, -aE_k, 0) \in \mathfrak{e}_7$, we have $\alpha_k(a) = \exp \Phi_k(a) \in E_7$. Since $[\Phi_2(a), \Phi_3(b)] = 0, \alpha_2(a)$ and $\alpha_3(b)$ are commutative.

We define a 7 dimensional \mathbf{R} -vector space V^7 by

$$\begin{split} V^7 &= \left\{P \in \mathfrak{P}^C \,\middle|\, \kappa P = P, \mu \tau \lambda P = P, \gamma P = P, \langle P, \tilde{E_1} \rangle = 0\right\} \\ &= \left\{P = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi & h \\ 0 & h & -\tau \xi \end{pmatrix}, \begin{pmatrix} i\eta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, -i\eta\right) \,\middle|\, \xi \in C, \ h \in \boldsymbol{H}, \ \eta \in \boldsymbol{R}\right\} \end{split}$$

with the norm

$$(P,P)_{\mu} = \frac{1}{2}(\mu P, \lambda P) = (\tau \xi)\xi + \overline{h}h + \eta^{2}.$$

Then, $S^6 = \{P \in V^7 \mid (P, P)_{\mu} = 1\}$ is a 6 dimensional sphere.

$$\begin{array}{ll} \text{Lemma 3.12} & (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1}/Spin(6) \simeq S^6. \\ In \ particular, \ (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1} \ \ is \ connected. \end{array}$$

PROOF. The group $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1}$ acts on S^6 . We shall show that this action is transitive. To show this, it is sufficient to show that any element $P \in S^6$ can be transformed to $(0,-iE_1,0,i) \in S^6$ under the action of $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E_1}}$. Now, for a given

$$P = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi & h \\ 0 & \overline{h} & -\tau \xi \end{pmatrix}, \begin{pmatrix} i\eta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, -i\eta \right) \in S^6,$$

choose $a \in \mathbb{R}, 0 \leq a < \pi/2$ such that $\tan 2a = \frac{i2\eta}{\tau\xi - \xi}$ (if $\tau\xi - \xi = 0$, then let $a = \pi/4$). Operate $\alpha_{23}(a) := \alpha_2(a)\alpha_3(a) = \exp(\varPhi(0, a(E_2 + E_3), -a(E_2 + E_3), 0))$ (Lemma 3.11) $\in (((E_7)^{\kappa, \mu})^{\gamma})_{\dot{F}_1(he_4), \tilde{E}_1}$ (Lemma 3.10) on P. Then, the η -term of $\alpha_{23}(a)P$ is $(1/2)(\xi - \tau\xi)\sin 2a + i\eta\cos 2a = 0$. Hence,

$$\alpha_{23}(a)P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \zeta & m \\ 0 & \overline{m} & -\tau\zeta \end{pmatrix}, 0, 0, 0 = P_1 \in S^5 \subset S^6.$$

Since $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}} (\subset (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1})$ acts transitivity on S^5 (Lemma 3.8), there exist $\beta \in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1,\tilde{E}_{-1}}$ such that $\beta P_1 = (i(E_2 + E_3), 0, 0, 0) = P_2 \in S^5 \subset S^6$. Moreover, operate $\alpha_{23}(-\pi/4)$ on P_2 ,

$$\alpha_{23}\left(-\frac{\pi}{4}\right)P_2 = (0, -iE_1, 0, i) = -i\tilde{E}_{-1}.$$

This shows the transitivity. The isotropy subgroup $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1}$ at \tilde{E}_{-1} is $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1,\tilde{E}_{-1}} = Spin(6)$ (Proposition 3.9). Thus, we have the homeomorphism $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1}/Spin(6) \simeq S^6$.

Proposition 3.13. $(((E_7)^{\kappa,\mu})^{\gamma})_{E_1(he_4),\tilde{E}_1} \cong Spin(7).$

PROOF. Since $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1}$ is connected (Lemma 3.12), we can define a homormorphism $\pi:(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1}\to SO(7)=SO(V^7)$ by

$$\pi(\alpha) = \alpha | V^7.$$

It is not difficult to see that $\operatorname{Ker}\varphi=\{1,\sigma\}=\mathbf{Z}_2$. Since $\dim((((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1})=21$ (Lemma 3.10) = $\dim(\mathfrak{so}(7))$, π is onto. Hence, $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1}/\mathbf{Z}_2\cong SO(7)$. Therefore, $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1}$ is isomorphism to Spin(7) as a double covering group of SO(7).

We shall consider the subgroup $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}$ of E_7 .

LEMMA 3.14. The Lie algebra $(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4)}$ of the group $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4)}$ is given by

$$(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}$$

$$= \left\{ \Phi \left(D_4 + \widetilde{A}_1(p) + i \begin{pmatrix} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_2 & q \\ 0 & \overline{q} & \epsilon_3 \end{pmatrix}^{\sim}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha_2 & x \\ 0 & \overline{x} & \alpha_3 \end{pmatrix}, -\tau \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha_2 & x \\ 0 & \overline{x} & \alpha_3 \end{pmatrix}, \right.$$

$$-\frac{3}{2}i\epsilon_1\Big)\Big|D_4\in\mathfrak{so}(4)\subset\mathfrak{so}(8),\alpha_k\in C,p,q\in \boldsymbol{H},x\in \boldsymbol{H}^C,\epsilon_k\in\boldsymbol{R},\epsilon_1+\epsilon_2+\epsilon_3=0\Big\}.$$

In particular, we have

$$\dim((((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}) = 28.$$

Hereafter, any element of the Lie algebra $(((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4)}$ will be denoted by Φ_8 .

LEMMA 3.15. For $t \in \mathbf{R}$, we define a map $\alpha(t)$ of \mathfrak{P}^C by

$$\begin{split} &\alpha(t)(X,Y,\xi,\eta) \\ &= \left(\begin{pmatrix} e^{2it}\xi_1 & e^{it}x_3 & e^{it}\overline{x}_2 \\ e^{it}\overline{x}_3 & \xi_2 & x_1 \\ e^{it}x_2 & \overline{x}_1 & \xi_3 \end{pmatrix}, \begin{pmatrix} e^{-2it}\eta_1 & e^{-it}y_3 & e^{-it}\overline{y}_2 \\ e^{-it}\overline{y}_3 & \eta_2 & y_1 \\ e^{-it}y_2 & \overline{y}_1 & \eta_3 \end{pmatrix}, e^{-2it}\xi, e^{2it}\eta \right). \end{aligned}$$

Then,
$$\alpha(t) \in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}$$
.

PROOF. For $\Phi = \Phi(2itE_1 \vee E_1, 0, 0, -2it) \in (((\mathfrak{e}_7)^{\kappa, \mu})^{\gamma})_{\dot{F}_1(he_4)}$ (Lemma 3.14), we have $\alpha(t) = \exp \Phi \in (((E_7)^{\kappa, \mu})^{\gamma})_{\dot{F}_1(he_4)}$ by $E_1 \vee E_1 = (1/3)(2E_1 - E_2 - E_3)^{\sim}$.

We define an 8 dimensional R-vector space V^8 by

$$V^{8} = \{ P \in \mathfrak{P}^{C} \mid \kappa P = P, \mu \tau \lambda P = P, \gamma P = P \}$$

$$= \{ P = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi & h \\ 0 & h & -\tau \xi \end{pmatrix}, \begin{pmatrix} \eta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, \tau \eta \right) \mid \xi, \eta \in C, \ h \in \mathbf{H} \}$$

with the norm

$$(P,P)_{\mu} = \frac{1}{2}(\mu P, \lambda P) = (\tau \xi)\xi + \overline{h}h + (\tau \eta)\eta.$$

Then, $S^7 = \{P \in V^8 \mid (P, P)_{\mu} = 1\}$ is a 7 dimensional sphere.

LEMMA 3.16. $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4)}/Spin(7) \simeq S^7$. In particular, $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4)}$ is connected.

PROOF. The group $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}$ acts on S^7 . We shall show that this action is transitive. To show this, it is sufficient to show that any element $P \in S^7$ can be transformed to $(0, E_1, 0, 1) \in S^7$ under the action of $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}$. Now, for a given

$$P = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi & h \\ 0 & \overline{h} & -\tau \xi \end{pmatrix}, \begin{pmatrix} \eta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, \tau \eta \right) \in S^7,$$

choose $t \in \mathbf{R}$ such that $e^{-2it}\eta \in i\mathbf{R}$. Operate $\alpha(t)$ (Lemma 3.15) $\in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}$ on P. Then,

$$\alpha(t)P = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi & h \\ 0 & h & -\tau \xi \end{pmatrix}, \begin{pmatrix} i\eta' & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, -i\eta' \right) = P_1 \in S^6 \subset S^7, \, \eta' \in \mathbf{R}$$

Since $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1} (\subset (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)})$ acts transitivity on S^6 (Lemma 3.12), there exists $\beta \in (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4),\tilde{E}_1}$ such that $\beta P_1 = (0, -iE_1, 0, i) = P_2 \in$

 $S^6 \subset S^7$. Moreover, operate $\alpha(-\pi/4)$ (Lemma 3.15) on P_2 ,

$$\alpha\left(-\frac{\pi}{4}\right)P_2 = (0, E_1, 0, 1) = \tilde{E}_1.$$

This shows the transitivity. The isotropy subgroup $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4)}$ at \tilde{E}_1 is $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4),\tilde{E}_1} = Spin(7)$ (Proposition 3.12). Thus, we have the homeomorphism $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4)}/Spin(7) \simeq S^7$.

Proposition 3.17. $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)} \cong Spin(8).$

PROOF. Since $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4)}$ is connected (Lemma 3.16), we can define a homormorphism $\pi:(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F_1}(he_4)}\to SO(8)=SO(V^8)$ by

$$\pi(\alpha) = \alpha | V^8.$$

It is not difficult to see that $\operatorname{Ker}\varphi = \{1, \sigma\} = \mathbb{Z}_2$. Since $\dim((((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}) = 28$ (Lemma 3.14) = $\dim(\mathfrak{so}(8))$, π is onto. Hence, $(((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}/\mathbb{Z}_2 \cong SO(8)$. Therefore, $((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}$ is isomorphism to Spin(8) as a double covering group of SO(8).

We shall determine the group structre of $((E_7)^{\kappa,\mu})^{\gamma}$.

LEMMA 3.18. The Lie algebra $((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma}$ of the group $((E_7)^{\kappa,\mu})^{\gamma}$ is given by

$$((\mathfrak{e}_{7})^{\kappa,\mu})^{\gamma} = \left\{ \Phi \left(D_{4} + D'_{4} + \widetilde{A}_{1}(p) + i \begin{pmatrix} \epsilon_{1} & 0 & 0 \\ 0 & \epsilon_{2} & q \\ 0 & \overline{q} & \epsilon_{3} \end{pmatrix}^{\sim}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha_{2} & x \\ 0 & \overline{x} & \alpha_{3} \end{pmatrix} - \tau \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha_{2} & x \\ 0 & \overline{x} & \alpha_{3} \end{pmatrix}, -\frac{3}{2} i \epsilon_{1} \right) \middle| D_{4}, D'_{4} \in \mathfrak{so}(4) \subset \mathfrak{so}(8), \alpha_{k} \in C, p, q \in \mathbf{H},$$

$$x \in \mathbf{H}^C, \epsilon_k \in \mathbf{R}, \epsilon_1 + \epsilon_2 + \epsilon_3 = 0$$
.

In particular, we have

$$\dim((\mathfrak{e}_7)^{\kappa,\mu})^{\gamma}) = 34.$$

PROPOSITION 3.19. $((E_7)^{\kappa,\mu})^{\gamma} \cong (Spin(4) \times Spin(8))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1,1), (-1, -1)\}.$

PROOF. For $Spin(4) = Sp(1) \times Sp(1) = (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}}$ (Propositions 3.1, 3.3) and $Spin(8) = (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}$ (Proposition 3.17), we define a map $\phi_1 : Spin(4) \times Spin(8) \to ((E_7)^{\kappa,\mu})^{\gamma}$ by

$$\phi_1(\alpha, \beta) = \alpha \beta.$$

Then, ϕ_1 is well-defined. For $\Phi_4 \in \mathfrak{spin}(4)$ (Lemma 3.2) and $\Phi_8 \in \mathfrak{spin}(8)$ (Lemma 3.14), since $[\Phi_4, \Phi_8] = 0$, we have $\alpha\beta = \beta\alpha$. Hence, ϕ_1 is a homomorphism. It is not difficult to see that $\operatorname{Ker}\phi_1 = \{(1,1),(-1,-1)\} = \mathbb{Z}_2$. Since $((E_7)^{\kappa,\mu})^{\gamma} (\cong (Spin(12))^{\gamma}$ (see [4],[5])) is connected and $\dim(((E_7)^{\kappa,\mu})^{\gamma}) = 34$ (Lemma 3.18)= $6+28 = \dim(\mathfrak{spin}(4) \oplus \mathfrak{spin}(8)), \phi_1$ is onto. Thus, we have the required isomorphism $(Spin(4) \times Spin(8))/\mathbb{Z}_2 \cong ((E_7)^{\kappa,\mu})^{\gamma}$.

Now, we shall determine the group structure of $(E_7)^{\sigma,\gamma}$.

LEMMA 3.20. The Lie algebra $(\mathfrak{e}_7)^{\sigma,\gamma}$ of the group $(E_7)^{\sigma,\gamma}$ is given by

$$\begin{split} &(\mathfrak{e}_7)^{\sigma,\gamma}\\ &= \Big\{ \varPhi \Big(D_4 + D_4' + \widetilde{A}_1(p) + i \begin{pmatrix} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_2 & q \\ 0 & \overline{q} & \epsilon_3 \end{pmatrix}^{\sim}, \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & x \\ 0 & \overline{x} & \alpha_3 \end{pmatrix}, \\ &-\tau \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & x \\ 0 & \overline{x} & \alpha_3 \end{pmatrix}, \nu \Big) \, \Big| \, D_4, D_4' \in \mathfrak{so}(4) \subset \mathfrak{so}(8), \\ &\alpha_k \in \mathbf{R}, \epsilon_1 + \epsilon_2 + \epsilon_3 = 0, \nu \in i\mathbf{R} \Big\}. \end{split}$$

In particular, we have

$$\dim((\mathfrak{e}_7)^{\sigma,\gamma}) = 37.$$

PROPOSITION 3.21. For $A \in SU(2) = \{A \in M(2, C) \mid (\tau^t A)A = E, \det A = 1\}$, we define C-linear transformations $\phi(A)$ of \mathfrak{P}^C by

$$\phi(A) \left(\begin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \\ \overline{x}_3 & \xi_2 & x_1 \\ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix}, \begin{pmatrix} \eta_1 & y_3 & \overline{y}_2 \\ \overline{y}_3 & \eta_2 & y_1 \\ y_2 & \overline{y}_1 & \eta_3 \end{pmatrix}, \xi, \eta \right)$$

$$= \left(\begin{pmatrix} \xi_1' & x_3' & \overline{x}_2' \\ \overline{x}_3' & \xi_2' & x_1' \\ x_2' & \overline{x}_1' & \xi_3' \end{pmatrix}, \begin{pmatrix} \eta_1' & y_3' & \overline{y}_2' \\ \overline{y}_3' & \eta_2' & y_1' \\ y_2' & \overline{y}_1' & \eta_3' \end{pmatrix}, \xi', \eta' \right),$$

$$\begin{pmatrix} \xi_1' \\ \eta' \end{pmatrix} = A \begin{pmatrix} \xi_1 \\ \eta \end{pmatrix}, \begin{pmatrix} \xi' \\ \eta_1' \end{pmatrix} = A \begin{pmatrix} \xi \\ \eta_1 \end{pmatrix}, \begin{pmatrix} \eta_2' \\ \xi_3' \end{pmatrix} = A \begin{pmatrix} \eta_2 \\ \xi_3 \end{pmatrix},$$

$$\begin{pmatrix} \eta_3' \\ \xi_2' \end{pmatrix} = A \begin{pmatrix} \eta_3 \\ \xi_2 \end{pmatrix}, \begin{pmatrix} x_1' \\ y_1' \end{pmatrix} = (\tau A) \begin{pmatrix} x_1 \\ y_1 \end{pmatrix},$$

Then, $\phi(A) \in (E_7)^{\sigma,\gamma}$.

 $\begin{pmatrix} x_2' \\ y_2' \end{pmatrix} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} x_3' \\ y_3' \end{pmatrix} = \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}.$

PROOF. Let $\Phi = \Phi(2\nu E_1 \vee E_1, aE_1, -\tau aE_1, \nu), a \in C, \nu \in i\mathbf{R}$. Then, $\Phi \in (\mathfrak{e}_7)^{\sigma,\gamma}$ (Lemma 3.20). Therefore, for $A = \exp\begin{pmatrix} \nu & a \\ -\tau a & -\nu \end{pmatrix} \in SU(2)$, we have $\phi(A) = \exp\Phi \in (E_7)^{\sigma,\gamma}$.

Proposition 3.22. $(E_7)^{\sigma} \cong (SU(2) \times Spin(12))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(E,1), (-E, -\sigma)\}.$

PROOF. The isomorphism is induced by the homomorphism $\varphi_1: SU(2) \times Spin(12) \to (E_7)^{\sigma}$ by $\varphi_1(A, \delta) = \varphi(A)\delta$. (In detail, see [4], [5].)

Theorem 3.23. $(E_7)^{\sigma,\gamma} \cong (SU(2) \times Spin(4) \times Spin(8))/(\mathbf{Z}_2 \times \mathbf{Z}_2), \mathbf{Z}_2 \times \mathbf{Z}_2 = \{(E,1,1),(E,\sigma,\sigma)\} \times \{(E,1,1),(-E,\gamma,-\sigma\gamma)\}.$

PROOF. For SU(2) (Proposition 3.21), $Spin(4) = (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(h),\tilde{E}_1,\tilde{E}_{-1},\dot{E}_{23}}$ (Propositions 3.1, 3.3) and $Spin(8) = (((E_7)^{\kappa,\mu})^{\gamma})_{\dot{F}_1(he_4)}$ (Proposition 3.17), we define a map $\varphi : SU(2) \times Spin(4) \times Spin(8) \to (E_7)^{\sigma,\gamma}$ by

$$\varphi(A, \alpha, \beta) = \phi(A)\alpha\beta.$$

Then, φ is well-defined. From Propositions 3.19, 3.22, φ is a homomorphim. We shall show that φ is onto. Let $\rho \in (E_7)^{\sigma,\gamma}$. Since $(E_7)^{\sigma,\gamma} \subset (E_7)^{\sigma}$, there exist $A \in SU(2)$ and $\delta \in Spin(12)$ such that $\rho = \varphi_1(A,\delta)$ (Proposition 3.22). Now, From $\gamma \rho \gamma = \rho$, we have $\phi(A)(\gamma \delta \gamma) = \phi(A)\delta$. Hence,

$$\begin{cases} A = A \\ \gamma \delta \gamma = \delta \end{cases} \quad \text{or} \quad \begin{cases} A = -A \\ \gamma \delta \gamma = -\sigma \delta \end{cases}$$

The latter case is impossible because A=0 is false. In the former case, from Proposition 3.19, there exist $\alpha \in Spin(4)$ and $\beta \in Spin(8)$ such that $\delta = \phi_1(\alpha, \beta)$. Hence, we have

$$\rho = \varphi_1(A, \delta) = \phi(A)\delta = \phi(A)\phi_1(\alpha, \beta)$$
$$= \phi(A)\alpha\beta = \varphi(A, \alpha, \beta).$$

It is not difficult to see that

$$\operatorname{Ker}\varphi = \{(E, 1, 1), (E, \sigma, \sigma), (-E, \gamma, -\sigma\gamma), (-E, \sigma\gamma, -\gamma)\}$$
$$= \{(E, 1, 1), (E, \sigma, \sigma)\} \times \{(E, 1, 1), (-E, \gamma, -\sigma\gamma)\}$$
$$= \mathbf{Z}_{2} \times \mathbf{Z}_{2}.$$

Thus, we have the required isomorphism $(SU(2) \times Spin(4) \times Spin(8))/(\mathbf{Z}_2 \times \mathbf{Z}_2) \cong (E_7)^{\sigma,\gamma}$.

References

- [1] T. Miyashita and I. Yokota, Fixed points subgroups $G^{\sigma,\sigma'}$ by two involutive automorphisms σ,σ' of compact exceptional Lie group $G=F_4,E_6$ and $E_7,(2001)$, preprint.
- [2] T. Miyashita and I. Yokota, Fixed points subgroups $G^{\gamma,\gamma'}$ by two involutive automorphisms γ, γ' of compact exceptional Lie group $G = G_2, F_4$ and E_6 (in Japanese),(2001), preprint.
- [3] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G = G_2, F_4$ and E_6 , Tsukuba J. Math., 4(1990), 185 223.
- [4] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part II, $G = E_7$, Tsukuba, J. Math., 14(1990), 379-404.
- [5] I. Yokota, Exceptional simple Lie groups (in Japanese), Gendaisuugakusya, Kyoto, 1992.

Toshikazu Miyashita Tohbu High School Agata, Tohbu, 389-0517, Japan E-mail: serano@janis.or.jp