Internal DLA in Higher Dimensions

David Jerison Lionel Levine* Scott Sheffield[†]

January 31, 2011

Abstract

Let A(t) denote the cluster produced by internal diffusion limited aggregation (internal DLA) with t particles in dimension $d \geq 3$. We show that A(t) is approximately spherical, up to an $O(\sqrt{\log t})$ error.

In the process known as internal diffusion limited aggregation (internal DLA) one constructs for each integer time $t \geq 0$ an **occupied set** $A(t) \subset \mathbb{Z}^d$ as follows: begin with $A(0) = \emptyset$ and $A(1) = \{0\}$. Then, for each integer t > 1, form A(t + 1) by adding to A(t) the first point at which a simple random walk from the origin hits $\mathbb{Z}^d \setminus A(t)$. Let $B_r \subset \mathbb{R}^d$ denote the ball of radius r centered at 0, and write $\mathbf{B}_r := B_r \cap \mathbb{Z}^d$. Let ω_d be the volume of the unit ball in \mathbb{R}^d . Our main result is the following.

Theorem 1. Fix an integer $d \ge 3$. For each γ there exists an $a = a(\gamma, d) < \infty$ such that for all sufficiently large r,

$$\mathbb{P}\left\{\mathbf{B}_{r-a\sqrt{\log r}}\subset A(\omega_d r^d)\subset \mathbf{B}_{r+a\sqrt{\log r}}\right\}^c\leq r^{-\gamma}.$$

We treated the case d = 2 in [JLS10] (see also the overview in [JLS09]), where we obtained a similar statement with $\log r$ in place of $\sqrt{\log r}$. Together with a Borel-Cantelli argument, this in particular implies the following [JLS10]:

Corollary 2. The maximal distance from ∂B_r to a point in one (but not both) of \mathbf{B}_r and $A(\omega_d r^d)$ is a.s. $O(\log r)$ when d=2 and $O(\sqrt{\log r})$ when d>2.

^{*}Supported by an NSF Postdoctoral Research Fellowship.

[†]Partially supported by NSF grant DMS-0645585.

These results show that internal DLA in dimensions $d \geq 3$ is extremely close to a perfect sphere: when the cluster A(t) has the same size as a ball of radius r, its fluctuations around that ball are confined to the $\sqrt{\log r}$ scale (versus $\log r$ in dimension 2).

In [JLS10] we explained that our method for d=2 would also apply in dimensions $d \geq 3$ with the $\log r$ replaced by $\sqrt{\log r}$. We outlined the changes needed in higher dimensions (stating that the full proof would follow in this paper) and included a key step: Lemma A, which bounds the probability of "thin tentacles" in the internal DLA cluster in all dimensions. The purpose of this note is to carry out the adaptation of the d=2 argument of [JLS10] to higher dimensions. We remark that in [JLS10] we used an estimate from [LBG92] to start this iteration, while here we have modified the argument slightly so that this a priori estimate is no longer required.

One way for $A(\omega_d r^d)$ to deviate from the radius r sphere is for it to have a single "tentacle" extending beyond the sphere. The thin tentacle estimate [JLS10, Lemma A] essentially says that in dimensions $d \geq 3$, the probability that there is a tentacle of length m and volume less than a small constant times m^d (near a given location) is at most e^{-cm^2} . By summing over all locations, one may use this to show that the length of the longest "thin tentacle" produced before time t is $O(\sqrt{\log t})$. To complete the proof of Theorem 1, we will have to show that other types of deviations from the radius r sphere are also unlikely.

Lemma A of [JLS10] was also proved for d=2, albeit with e^{-cm^2} replaced by $e^{-cm^2/\log m}$. However, when d=2 there appear to be other more "global" fluctuations that swamp those produced by individual tentacles. (Indeed, we expect, but did not prove, that the $\log r$ fluctuation bound is tight when d=2.) We bound these other fluctuations in higher dimensions via the same scheme introduced in [JLS09, JLS10], which involves constructing and estimating certain martingales related to the growth of A(t). It turns out the quadratic variations of these martingales are, with high probability, of order $\log t$ when d=2 and of constant order when $d\geq 3$, closely paralleling what one obtains for the discrete Gaussian free field (as outlined in more detail in [JLS10]). The connection to the Gaussian free field is made more explicit in [JLS11].

Section 1 proves Theorem 1 by iteratively applying higher dimensional analogues of the two main lemmas of [JLS10]. The lemmas themselves are proved in Section 3, which is the heart of the argument. Section 2 contains preliminary estimates about random walks that are used in Section 3.

A brief history of internal DLA fluctuation bounds

The history of fluctuation bounds such as the one in Corollary 2 is as follows. In 1991, Lawler, Bramson, and Griffeath proved that the limit shape of internal DLA from a point is the ball in all dimensions [LBG92]. In 1995 Lawler gave a more quantitative proof, showing that the fluctuations of $A(\omega_d r^d)$ from the ball of radius r are at most of order $O(r^{1/3}\log^4 r)$ [Law95]. In December 2009, the present authors announced the bound $O(\log r)$ on fluctuations in dimension d=2 [JLS09] and gave an overview of the argument, making clear that the details remained to be written. In April 2010, Asselah and Gaudillière [AG10a] gave a proof, using different methods from [JLS09], of the bound $O(r^{1/(d+1)})$ in all dimensions, improving the Lawler bound for all d > 3. In September 2010, Asselah and Gaudillière improved this to $O((\log r)^2)$ in all dimensions $d \geq 2$ with an $O(\log r)$ bound on "inner" errors [AG10b]. In October 2010 the present authors proved the $O(\log r)$ bounds (announced in December 2009) for dimension d=2 and outlined the proof of the $O(\sqrt{\log r})$ bound for dimensions d > 3 [JLS10]. In November 2010, Asselah and Gaudillière gave a second proof of the $O(\sqrt{\log r})$ bound [AG10c]. Their proof uses methods from [AG10b] along with Lemma A of [JLS10] to bound "outer" errors and a new large deviation bound (in some sense symmetric to Lemma A) to bound "inner" errors.

More references and a more general discussion of internal DLA history appear in [JLS10].

1 Proof of Theorem 1

Let m and ℓ be positive real numbers. We say that $x \in \mathbb{Z}^d$ is m-early if

$$x \in A(\omega_d(|x|-m)^d),$$

where ω_d is the volume of the unit ball in \mathbb{R}^d . Likewise, we say that x is ℓ -late if

$$x \notin A(\omega_d(|x|+\ell)^d).$$

Let $\mathcal{E}_m[T]$ be the event that some point of A(T) is m-early. Let $\mathcal{L}_{\ell}[T]$ be the event that some point of $\mathbf{B}_{(T/\omega_d)^{1/d}-\ell}$ is ℓ -late. These events correspond to "outer" and "inner" deviations of A(T) from circularity.

Lemma 3. (Early points imply late points) Fix a dimension $d \geq 3$. For each $\gamma \geq 1$, there is a constant $C_0 = C_0(\gamma, d)$, such that for all sufficiently large T, if $m \geq C_0\sqrt{\log T}$ and $\ell \leq m/C_0$, then

$$\mathbb{P}(\mathcal{E}_m[T] \cap \mathcal{L}_{\ell}[T]^c) < T^{-10\gamma}.$$

Lemma 4. (Late points imply early points) Fix a dimension $d \geq 3$. For each $\gamma \geq 1$, there is a constant $C_1 = C_1(\gamma, d)$ such that for all sufficiently large T, if $m \geq \ell \geq C_1 \sqrt{\log T}$ and $\ell \geq C_1 ((\log T)m)^{1/3}$, then

$$\mathbb{P}(\mathcal{E}_m[T]^c \cap \mathcal{L}_{\ell}[T]) \le T^{-10\gamma}.$$

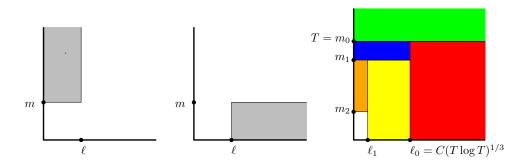


Figure 1: Let m^T be the smallest m' for which A(T) contains an m' early point. Let l^T be the largest ℓ' for which some point of $B_{(T/\omega_d)^{1/d}-\ell'}$ is ℓ' -late. By Lemma 3, (ℓ^T, m^T) is unlikely to belong to the semi-infinite rectangle in the left figure if $\ell < m/C_0$. By Lemma 4, (ℓ^T, m^T) is unlikely to belong to the semi-infinite rectangle in the second figure if $\ell \geq C_1((\log T)m)^{1/3}$. Theorem 1 will follow because $m^T > m_0 = T$ is impossible and the other rectangles on the right are all (by Lemmas 3 and 4) unlikely.

We now proceed to derive Theorem 1 from Lemmas 3 and 4. The lemmas themselves will be proved in Section 3. Let $C = \max(C_0, C_1)$. We start with

$$m_0 = T$$
.

Note that $A(T) \subset \mathbf{B}_T$, so $\mathbb{P}(\mathcal{E}_T[T]) = 0$. Next, for $j \geq 0$ we let

$$\ell_j = \max(C((\log T)m_j)^{1/3}, C\sqrt{\log T})$$

and

$$m_{j+1} = C\ell_j$$
.

By induction on j, we find

$$\mathbb{P}(\mathcal{E}_{m_j}[T]) < 2jT^{-10\gamma}$$

$$\mathbb{P}(\mathcal{L}_{\ell_i}[T]) < (2j+1)T^{-10\gamma}.$$

To estimate the size of ℓ_j , let $K = C^4 \log T$ and note that $\ell_j \leq \ell'_j$, where

$$\ell_0' = (KT)^{1/3}; \quad \ell_{j+1}' = \max((K\ell_j')^{1/3}, K^{1/2}).$$

Then

$$\ell_i' \leq \max(K^{1/3+1/9+\dots+1/3^j}T^{1/3^j},K^{1/2})$$

so choosing $J = \log T$ we have

$$T^{1/3^J} < 2$$

and

$$\ell_J \le 2K^{1/2} \le C\sqrt{\log T}.$$

The probability that A(T) has ℓ_J -late points or m_J -early points is at most

$$(4J+1)T^{-10\gamma} < T^{-9\gamma} < r^{-\gamma}.$$

Setting $T = \omega_d r^d$, $\ell = \ell_J$ and $m = m_J$, we conclude that if a is sufficiently large, then

$$\mathbb{P}\left\{\mathbf{B}_{r-a\sqrt{\log r}}\subset A(\omega_d r^d)\subset \mathbf{B}_{r+a\sqrt{\log r}}\right\} \leq \mathbb{P}(\mathcal{E}_m[T]\cup \mathcal{L}_{\ell}[T]) < r^{-\gamma}$$

which completes the proof of Theorem 1.

2 Green function estimates on the grid

This section assembles several Green function estimates that we need to prove Lemmas 3 and 4. The reader who prefers to proceed to the heart of the argument may skip this section on a first read and refer to the lemma statements as necessary. Fix $d \geq 3$ and consider the d-dimensional grid

$$\mathcal{G} = \{(x_1, \dots, x_d) \in \mathbb{R}^d : \text{at most one } x_i \notin \mathbb{Z}\}.$$

In many of the estimates below, we will assume that a positive integer k and a $y \in \mathbb{Z}^d$ have been fixed. We write s = |y| and

$$\Omega = \Omega(y,k) := \mathcal{G} \cap B_{s+k} \setminus \{y\}.$$

For $x \in \partial \Omega$, let

$$P(x) = P_{y,k}(x)$$

be the probability that a Brownian motion on the grid \mathcal{G} (defined in the obvious way; see [JLS10]) starting at x reaches y before exiting B_{s+k} . Note

that P is **grid harmonic** in Ω (i.e., P is linear on each segment of $\Omega \setminus \mathbb{Z}^d$, and for each $x \in \Omega \cap \mathbb{Z}^d$, the sum of the slopes of P on the 2d directed edge segments starting at x is zero). Boundary conditions are given by P(y) = 1 and P(x) = 0 for $x \in (\partial\Omega) \setminus \{y\}$. The point y plays the role that ζ played in [JLS10], and P plays the role of the discrete harmonic function H_{ζ} . One difference from [JLS10] is that we will take y inside the ball (i.e., $k \geq 1$) instead of on the boundary.

To estimate P we use the discrete Green function g(x), defined as the expected number of visits to x by a simple random walk started at the origin in \mathbb{Z}^d . The well-known asymptotic estimate for g is [Uch98]

$$\left| g(x) - a_d |x|^{2-d} \right| \le C|x|^{-d} \tag{1}$$

for dimensional constants a_d and C (i.e., constants depending only on the dimension d). We extend g to a function, also denoted g, defined on the grid \mathcal{G} by making g linear on each segment between lattice points. Note that g is grid harmonic on $\mathcal{G} \setminus \{0\}$.

Throughout we use C to denote a large positive dimensional constant, and c to denote a small positive dimensional constant, whose values may change from line to line.

Lemma 5. There is a dimensional constant C such that

- (a) $P(x) \le C/(1+|x-y|^{d-2})$.
- (b) $P(x) \le Ck(s+k+1-|x|)/|x-y|^d$, for $|x-y| \ge k/2$.
- (c) $\max_{x \in \mathbf{R}_{-}} P(x) \le Ck/(s r k)^{d-1}$ for r < s 2k.

Proof. The maximum principle (for grid harmonic functions) implies $Cg(x-y) \ge P(x)$ on Ω , which gives part (a).

The maximum principle also implies that for $x \in \Omega$,

$$P(x) \le C(g(x-y) - g(x-y^*)) \tag{2}$$

where y^* is the one of the lattice points nearest to $(s+2k+C_1)y/s$. Indeed, both sides are grid harmonic on Ω , and the right side is positive on ∂B_{s+k} by (1), so it suffices to take $C = (g(0) - g(y - y^*))^{-1}$.

Combining (1) and (2) yields the bound

$$P(x) \le \frac{Ck}{|x-y|^{d-1}}, \text{ for } |x-y| \ge 2k.$$

Next, let $z \in \partial B_{s+k}$ be such that |z-y|=2L, with $L \geq 2k$. The bound above implies

 $P(x) \le \frac{Ck}{L^{d-1}}, \text{ for } x \in B_L(z)$

Let z^* be one of the lattice points nearest to $(s + k + L + C_1)z/|z|$. Then

$$F(x) = a_d L^{2-d} - g(x - z^*)$$

is comparable to L^{2-d} on $\partial B_{2L}(z^*)$ and positive outside the ball $B_L(z^*)$ (for a large enough dimensional constant C_1 — in fact, we can also do this with $C_1 = 1$ with L large enough). It follows that

$$P(x) \le C(k/L^{d-1})(L^{d-2})F(x)$$

on $\partial(B_{2L}(z^*)\cap\Omega)$ and hence by the maximum principle on $B_{2L}(z^*)\cap\Omega$. Moreover,

$$F(x) \le C(s+k+1-|x|)/L^{d-1}$$

for x a multiple of z and $s+k-L \le |x| \le s+k$. Thus for these values of x,

$$P(x) \le C(k/L)F(x) \le Ck(s+k+1-|x|)/L^d$$

We have just confirmed the bound of part (b) for points x collinear with 0 and z, but z was essentially arbitrary. To cover the cases $|x - y| \le 2k$ one has to use exterior tangent balls of radius, say k/2, but actually the upper bound in part (a) will suffice for us in the range $|x - y| \le Ck$.

Part (c) of the lemma follows from part (b).
$$\Box$$

The mean value property (as typically stated for continuum harmonic functions) holds only approximately for discrete harmonic functions. There are two choices for where to put the approximation: one can show that the average of a discrete harmonic function u over the discrete ball \mathbf{B}_r is approximately u(0), or one can find an approximation w_r to the discrete ball \mathbf{B}_r such that averaging u with respect to w_r yields exactly u(0). The divisible sandpile model of [LP09] accomplishes the latter. In particular, the following discrete mean value property follows from Theorem 1.3 of [LP09].

Lemma 6. (Exact mean value property on an approximate ball) For each real number r > 0, there is a function $w_r : \mathbb{Z}^d \to [0,1]$ such that

- $w_r(x) = 1$ for all $x \in \mathbf{B}_{r-c}$, for a constant c depending only on d.
- $w_r(x) = 0$ for all $x \notin \mathbf{B}_r$.

• For any function u that is discrete harmonic on \mathbf{B}_r ,

$$\sum_{x \in \mathbb{Z}^d} w_r(x) (u(x) - u(0)) = 0.$$

The next lemma bounds sums of P over discrete spherical shells and discrete balls. Recall that s = |y|.

Lemma 7. There is a dimensional constant C such that

(a)
$$\sum_{x \in \mathbf{B}_{r+1} \setminus \mathbf{B}_r} P(x) \le Ck \text{ for all } r \le s+k.$$

(b)
$$\left| \sum_{x \in \mathbf{B}_n} (P(x) - P(0)) \right| \le Ck \text{ for all } r \le s.$$

(c)
$$\left| \sum_{x \in \mathbf{B}_{s+k}} (P(x) - P(0)) \right| \le Ck^2.$$

Proof. Part (a) follows from Lemma 5: Take the worst shell, when r = s. Then the lattice points with $|x - y| \le k$, $s \le |x| \le s + 1$ are bounded by Lemma 5(a)

$$\int_0^k s^{2-d} s^{d-2} ds = k$$

(volume element on disk with thickness 1 and radius k in \mathbb{Z}^{d-1} is $s^{d-2}ds$.) For the remaining portion of the shell, Lemma 5(b) has numerator $k(s+k-s) = k^2$, so that

$$\int_{k}^{\infty} k^2 s^{-d} s^{d-2} ds = k$$

Next, for part (b), let w_r be as in Lemma 6. Since P is discrete harmonic in \mathbf{B}_s , we have for $r \leq s$

$$\sum_{x \in \mathbb{Z}^d} w_r(x) (P(x) - P(0)) = 0.$$

Since w_r equals the indicator $\mathbf{1}_{\mathbf{B}_r}$ except on the annulus $\mathbf{B}_r \setminus \mathbf{B}_{r-c}$, and

 $|w_r| \leq 1$, we obtain

$$\left| \sum_{x \in \mathbf{B}_r} (P(x) - P(0)) \right| \le \sum_{x \in \mathbf{B}_r \setminus \mathbf{B}_{r-c}} |w_r(x)| |P(x) - P(0)|$$

$$\le \sum_{x \in \mathbf{B}_r \setminus \mathbf{B}_{r-c}} (P(x) + P(0))$$

$$\le Ck.$$

In the last step we have used part (a) to bound the first term; the second term is bounded by Lemma 5(b), which says that $P(0) \leq Ck/s^{d-1}$.

Part (c) follows by splitting the sum over \mathbf{B}_{s+k} into k sums over spherical shells $\mathbf{B}_{s+j} \setminus \mathbf{B}_{s+j-1}$ for $j = 1, \ldots, k$, each bounded by part (a), plus a sum over the ball \mathbf{B}_s , bounded by part (b).

Fix $\alpha > 0$, and consider the level set

$$U = \{ x \in \mathcal{G} \mid g(x) > \alpha \}.$$

For $x \in \partial U$, let p(x) be the probability that a Brownian motion started at the origin in \mathcal{G} first exits U at x.

Lemma 8. Choose α so that ∂U does not intersect \mathbb{Z}^d . For each $x \in \partial U$, the quantity p(x) equals the directional derivative of g/2d along the directed edge in U starting at x.

Proof. We use a discrete form of the divergence theorem

$$\int_{U} \operatorname{div} V = \sum_{\partial U} \nu_{U} \cdot V. \tag{3}$$

where V is a vector-valued function on the grid, and the integral on the left is a one-dimensional integral over the grid. The dot product $\nu_U \cdot V$ is defined as $e_j \cdot V(x - 0e_j)$, where e_j is the unit vector pointing toward x along the unique incident edge in U. To define the divergence, for $z = x + te_j$, where $0 \le t < 1$ and $x \in \mathbb{Z}^d$, let

$$\operatorname{div} V(z) := \frac{\partial}{\partial x_j} e_j \cdot V(z) + \delta_x(z) \sum_{j=1}^d (e_j \cdot V(x + 0e_j) - e_j \cdot V(x - 0e_j)).$$

If f is a continuous function on U that is C^1 on each connected component of $U - \mathbb{Z}^d$, then the gradient of f is the vector-valued function

$$V = \nabla f = (\partial f / \partial x_1, \partial f / \partial x_2, \dots, \partial f / \partial x_d)$$

with the convention that the entry $\partial f/\partial x_j$ is 0 if the segment is not pointing in the direction x_j . Note that ∇f may be discontinuous at points of \mathbb{Z}^d .

Let G = -g/2d, so that div $\nabla G = \delta_0$. If u is grid harmonic on U, then div $\nabla u = 0$ and

$$\operatorname{div}\left(u\nabla G - G\nabla u\right) = u(0)\delta_0.$$

Indeed, on each segment this is the same as (uG' - u'G)' = u'G' - u'G' + uG'' - u''G = 0 because u and G are linear on segments. At lattice points u and G are continuous, so the divergence operation commutes with the factors u and G and gives exactly one nonzero delta term, the one indicated.

Let u(y) be the probability that Brownian motion on U started at y first exits U at x. Since u is grid-harmonic on U, we have $\operatorname{div} \nabla u = 0$ on U, hence by the divergence theorem

$$u(0) = \int_{U} \operatorname{div} (u \nabla G - G \nabla u) = \sum_{\partial U} u \nu_{U} \cdot \nabla G. \quad \Box$$

Next we establish some lower bounds for P.

Lemma 9. There is a dimensional constant c > 0 such that

- (a) $P(0) \ge ck/s^{d-1}$.
- (b) Let k = 1, and $z = (1 \frac{2m}{s})y$. Then

$$\min_{x \in \mathbf{B}(z,m)} P(x) \ge c/m^{d-1}.$$

Proof. By the maximum principle, there is a dimensional constant c>0 such that

$$P(x) \ge c(g(x-y) - a_d(k/2)^{2-d})$$

for $x \in B_{k/2}(y)$. In particular,

$$P(x) \ge ck^{2-d}$$
 for all $|x - y| \le k/4$

Now consider the region

$$U = \{ x \in \mathcal{G} : g(x) > a_d(s')^{2-d} \}$$

where s' is chosen so that |s' - (s - k/8)| < 1/2 and all of the boundary points of U are non-lattice points. (A generic value of s' in the given range will suffice.)

By (1), this set is within unit distance of the ball of radius s - k/8. Let p(z) represent the probability that a Brownian motion on the grid starting from the origin first exits U at $z \in \partial U$. Thus

$$u(0) = \sum_{z \in \partial U} u(z)p(z) \tag{4}$$

for all grid harmonic functions u in U.

Take any boundary point of $z \in \partial U$. Take the nearest lattice point z^* . Let z_j be a coordinate of z largest in absolute value. Then $|z_j| \geq |z|/d$. The rate of change of $|x|^{2-d}$ in the jth direction near z has size $\geq 1/d|z|^{d-1}$, which is much larger than the error term $C|z|^{-d}$ in (1). It follows that on the segment in that direction, where the function $g(x) - a_d(s - k/8)^{2-d}$ changes sign, its derivative is bounded below by $1/2d|z|^{d-1}$. In other words, by Lemma 8, within distance 2 of every boundary point of $z \in \partial U$ there is a point $z' \in \partial U$ for which $p(z') \geq c/s^{d-1}$. There are at least ck^{d-1} such points in the ball $\mathbf{B}_{k/4}(y)$ where the lower bound for P was ck^{2-d} , so

$$P(0) \ge ck^{2-d}k^{d-1}/s^{d-1} = ck/s^{d-1}.$$

Next, the argument for Lemma 9(b) is nearly the same. We are only interested in k = 1. It is obvious that for points x within constant distance of y (and unit distance from the boundary at radius s+1, the values of P(x) are bounded below by a positive constant. We then bound P((s-2m)y/|y|) from below using the same argument as above, but with Green's function for a ball of radius comparable to m. Finally, Harnack's inequality says that the values of P(x) for x in the whole ball of size m around this point (s-2m)y/|y| are comparable.

3 Proofs of main lemmas

The proofs in this section make use of the martingale

$$M(t) = M_{y,k}(t) := \sum_{x \in A_{y,k}(t)} (P(x) - P(0))$$

where $A_{y,k}(t)$ is the modified internal DLA cluster in which particles are stopped if they exit Ω . As in [JLS10], we view $A_{y,k}(t)$ as a multiset: points on the boundary of Ω where many stopped particles accumulate are counted with multiplicity in the sum defining M. In addition to these stopped particles, the set $A_{y,k}(t)$ contains one more point, the location of the currently active particle performing Brownian motion on the grid \mathcal{G} .

Recall that $P = P_{y,k}$ and $M = M_{y,k}$ depend on k, which is the distance from y to the boundary of Ω . We will choose k = 1 for the proof of Lemma 3, and $k = a\ell$ for a small constant a in the proof of Lemma 4. Taking k > 1 is one of the main differences from the argument in [JLS10].

Proof of Lemma 3. The proof follows the same method as [JLS10, Lemma 12]. We highlight here the changes needed in dimensions $d \geq 3$. We use the discrete harmonic function P(x) with k = 1. Fix $z \in \mathbb{Z}^d$, let r = |z| and y = (r + 2m)z/r. Let

$$T_1 = \lceil \omega_d (r - m)^d \rceil$$

where ω_d is the volume of the unit ball in \mathbb{R}^d . If z is m-early, then $z \in A(T_1)$; in particular, this means that $r \geq m$, so that r+m, r+2m are all comparable to r. Since k=1, we have by Lemmas 5(c) and 9(a)

$$P(0) \approx 1/r^{d-1},$$

where \approx denotes equivalence up to a constant factor depending only on d. First we control the quadratic variation

$$S(t) = \lim_{\substack{0 = t_0 \le \dots \le t_N = t \\ \max(t_i - t_{i-1}) \to 0}} \sum_{i=1}^N (M(t_i) - M(t_{i-1}))^2$$

on the event $\mathcal{E}_{m+1}[T]^c$ that there are no (m+1)-early points by time T. As in [JLS10, Lemma 9], there are independent standard Brownian motions $\widetilde{B}^0, \widetilde{B}^1, \ldots$ such that each increment $(S(n+1) - S(n))\mathbf{1}_{\mathcal{E}_{m+1}[T]^c}$ is bounded above by the first exit time of \widetilde{B}^n from the interval $[-a_n, b_n]$, where

$$a_n = P(0) \approx \frac{1}{r^{d-1}}$$

$$b_n = \max_{|x| \le (n/\omega_d)^{1/d} + m + 1} P(x) \le \frac{1}{[r + 2m - ((n/\omega_d)^{1/d} + m + 1)]^{d-1}}.$$

Here we have used Lemma 5(b) in the bound on b_n .

Unlike in dimension 2, we will use the large deviation bound for Brownian exit times [JLS10, Lemma 5] with $\lambda = cm^2$ instead of $\lambda = 1$. Here c is a constant depending only on d. Note that $b_n \leq 1/m^{d-1}$, for all $n \leq T_1$, so this is a valid choice of λ in all dimensions $d \geq 3$ (that is, the hypothesis

 $\sqrt{\lambda}(a_n+b_n) \leq 3$ of [JLS10, Lemma 5] holds). We obtain

$$\log \mathbb{E}\left[e^{\lambda S(T_1)} 1_{\mathcal{E}_{m+1}[T]^c}\right] \leq \sum_{n=1}^{T_1} 10\lambda a_n b_n$$

$$\leq \int_1^{T_1} \lambda \frac{C}{r^{d-1}} \frac{1}{(r+m-(n/\omega_d)^{1/d}-1)^{d-1}} dn$$

$$\leq \int_1^r \lambda \frac{C}{r^{d-1}} \frac{1}{(r+m-j-1)^{d-1}} j^{d-1} dj$$

$$\leq \int_1^r \frac{C\lambda dj}{(r+m-j-1)^{d-1}} \leq C\lambda/m^{d-2}.$$

Note that the last step uses $d \geq 3$. Taking $\lambda = cm^2$ for small enough c we obtain

$$\mathbb{E}\left[e^{cm^2S(T_1)}1_{\mathcal{E}_{m+1}[T]^c}\right] \le e^{m^2/m^{d-2}} \le e^m.$$

Therefore, by Markov's inequality,

$$\mathbb{P}(\{S(T_1) > 1/c\} \cap \mathcal{E}_{m+1}[T]^c) \le e^{m-m^2} < T^{-20\gamma}.$$
 (5)

Fix $z \in \mathbf{B}_T$ and $t \in \{1, \ldots, T\}$, and let $Q_{z,t}$ be the event that $z \in A(t) \setminus A(t-1)$ and z is m-early and no point of A(t-1) is m-early. This event is empty unless $(t/\omega_d)^{1/d} + m \le |z| \le (t/\omega_d)^{1/d} + m + 1$; in particular, the first inequality implies $t \le T_1$. We will bound from below the martingale M(t) on the event $Q_{z,t} \cap \mathcal{L}_{\ell}[T]^c$. With no ℓ -late point, the ball $\mathbf{B}_{r-m-\ell-1}$ is entirely filled by time t. Lemma 7(b) shows that the sites in this ball contribute at most a constant to M(t) (recall that k=1). The thin tentacle estimate [JLS10, Lemma A] says that except for an event of probability e^{-cm^2} , there are order m^d sites in A(t) within the ball $\mathbf{B}(z,m)$. By Lemma 9(b), P is bounded below by c/m^{d-1} on this ball, so these sites taken together contribute order m to M(t). Each of the remaining terms in the sum defining M(t) is bounded below by -P(0), and there are at most ℓr^{d-1} sites in $A(t) \setminus \mathbf{B}_{r-m-\ell-1}$. So these terms contribute at least

$$-\ell r^{d-1}(1/r^{d-1}) = -\ell \ge -m/C$$

which cannot overcome the order m term. Thus

$$\mathbb{P}(Q_{z,t} \cap \{M_{\zeta}(t) < m/C\} \cap \mathcal{L}_{\ell}[t]^c) < e^{-cm^2}.$$
 (6)

We conclude that

$$\mathbb{P}(Q_{z,t} \cap \mathcal{L}_{\ell}[T]^{c}) \leq \mathbb{P}(Q_{z,t} \cap \{S(t) > 1/c\}) + \mathbb{P}(Q_{z,t} \cap \{M(t) < m/C\} \cap \mathcal{L}_{\ell}[t]^{c}) + \mathbb{P}(\{S(t) < 1/c\} \cap \{M(t) > m/C\}).$$

The first two terms are bounded by (5) and (6). Since M(t) = B(S(t)) for a standard Brownian motion B, the final term is bounded by

$$\mathbb{P}\left\{ \sup_{0 \le s \le 1/c} B(s) \ge m/C \right\} < e^{-c(m/C)^2/2} < T^{-20\gamma}. \quad \Box$$

Proof of Lemma 4. Fix $y \in \mathbb{Z}^d$, and let L[y] be the event that y is ℓ -late. Let s = |y|, and set $k = a\ell$ in the definition of P. Here a > 0 is a small dimensional constant chosen below. Note that the hypotheses on m and ℓ imply that ℓ is at least of order $\sqrt{\log T}$; after choosing a, we take the constant C_1 appearing in the statement of the lemma large enough so that $k^2 > 1000\gamma \log T$.

Case 1. $1 \le s \le 2k$. Then $P(0) \approx 1/s^{d-2}$. Let

$$T_1 = \lfloor \omega_d(s+\ell)^d \rfloor$$

With $a_n = P(0)$ and $b_n = 1$, we have $S(n+1) - S(n) \le \tau_n$, where τ_n is the first exit time of the Brownian motion \widetilde{B}^n from the interval $[-a_n, b_n]$. (Note that because we take $b_n = 1$, the indicator $\mathbf{1}_{\mathcal{E}_{m+1}[T]^c}$ is not needed here as it was in the proof of Lemma 3.) We obtain

$$\log \mathbb{E}e^{S(T_1)} \le \sum_{t=1}^{T_1} \log \mathbb{E}e^{\tau_n} \le T_1 P(0).$$

Let $Q = T_1 P(0)$. By Markov's inequality, $\mathbb{P}(S(T_1) > 2Q) \leq e^{-Q}$.

On the event L[y], the site y is still not occupied at time T_1 . Accordingly, the largest $M(T_1)$ can be is if $A_{y,k}(T_1)$ fills the whole ball \mathbf{B}_{s+k} (except for y), and then the rest of the particles will have to collect on the boundary where P is zero. The contribution from \mathbf{B}_{s+k} is at most Ck^2 by Lemma 7(c). The number of particles stopped on the boundary is at least

$$T_1 - 2\omega_d(s+k)^d \ge \frac{T_1}{2}.$$

Therefore, on the event L[y] we have

$$M(T_1) \le Ck^2 - \frac{T_1}{2}P(0). \tag{7}$$

Note that $Q := T_1 P(0) \approx (s+\ell)^d / s^{d-2} \ge \ell^d / (k/2)^{d-2}$, so by taking $a = k/\ell$ sufficiently small, we can ensure that the right side of (7) is at most -Q/4.

Also, $Q \ge \ell^2 \ge 1000\gamma \log T$. Since M(t) = B(S(t)) for a standard Brownian motion B, we conclude that

$$\mathbb{P}(L[y]) \leq \mathbb{P}(S(T_1) > 2Q) + \mathbb{P}\left\{\inf_{0 \leq s \leq 2Q} B(s) \leq -Q/4\right\}$$
$$\leq e^{-Q} + e^{-(Q/4)^2/4Q}$$
$$< T^{-20\gamma}.$$

Case 2. $s \ge 2k$. Then by Lemma 5(c) with r = 1, and Lemma 9(a), we have $P(0) \approx k/s^{d-1}$. First take

$$T_0 = |\omega_d(s+k-3m)^d|$$

(or $T_0 = 0$ if $s + k - 3m \le 0$). As in the previous lemma (but taking $\lambda = 1$ instead of $\lambda = cm^2$) we have

$$\log \mathbb{E}\left[e^{S(T_0)} 1_{\mathcal{E}_m[T]^c}\right] \le C \frac{k}{s^{d-1}} \int_0^{T_0} \frac{dn}{\left(s + k - (n/\omega_d)^{1/d}\right)^{d-1}} \le Ck/m^{d-2} \le C.$$

The last inequality follows from $d \geq 3$ and $m \geq k/a$. By Markov's inequality,

$$\mathbb{P}(\{S(T_0) > C + k^2\} \cap \mathcal{E}_m[T]^c) < e^{-k^2} < T^{-20\gamma}.$$

Now since

$$(T_1 - T_0)P(0) \approx ms^{d-1}(k/s^{d-1}) = km$$

we have

$$\log \mathbb{E}e^{S(T_1)-S(T_0)} \le Ckm.$$

Thus (since $km \ge k^2$)

$$\mathbb{P}(\{S(T_1) > 2Ckm\} \cap \mathcal{E}_m[T]^c) < 2T^{-20\gamma}. \tag{8}$$

As in case 1, the martingale $M(T_1)$ is largest if the ball \mathbf{B}_{s+k} is completely filled, and in that case the total contribution of sites in this ball is at most Ck^2 . On the event L[y], the number of particles stopped on the boundary of Ω at time T_1 is at least

$$T_1 - \# \mathbf{B}_{s+k} \ge \omega_d((s+\ell)^d - (s+k+C)^d) \approx \ell s^{d-1}.$$

Each such particle contributes $-P(0) \approx -k/s^{d-1}$ to $M(T_1)$, for a total contribution of order $-k\ell = -k^2/a$. Taking a sufficiently small we obtain $M(T_1) \leq Ck^2 - k^2/a \leq -k^2$. We conclude that

$$\mathbb{P}(L[y] \cap \mathcal{E}_m[T]^c) \le \mathbb{P}(\{S(T_1) > 2Ckm\} \cap \mathcal{E}_m[T]^c) + \\ + \mathbb{P}(\{S(T_1) \le 2Ckm\} \cap \{M(T_1) \le -k^2\}).$$

The first term is bounded above by (8), and the second term is bounded above by

$$\mathbb{P}\left\{\inf_{s \le 2Ckm} B(s) \le -k^2\right\} \le e^{-k^4/4Ckm} < T^{-20\gamma}.$$

Hence $\mathbb{P}(L[y] \cap \mathcal{E}_m[T]^c) < 3T^{-20\gamma}$. Since $\mathcal{L}_{\ell}[T]$ is the union of the events L[y] for $y \in \mathcal{B} := \mathbf{B}_{(T/\omega_d)^{1/d} - \ell}$, summing over $y \in \mathcal{B}$ completes the proof.

References

- [AG10a] A. Asselah and A. Gaudillière, A note on the fluctuations for internal diffusion limited aggregation. arXiv:1004.4665
- [AG10b] A. Asselah and A. Gaudillière, From logarithmic to subdiffusive polynomial fluctuations for internal DLA and related growth models. arXiv:1009.2838
- [AG10c] A. Asselah and A. Gaudillière, Sub-logarithmic fluctuations for internal DLA. arXiv:1011.4592
- [JLS09] D. Jerison, L. Levine and S. Sheffield, Internal DLA: slides and audio. *Midrasha on Probability and Geometry: The Mathematics of Oded Schramm.* http://iasmac31.as.huji.ac.il:8080/groups/midrasha_14/weblog/855d7, 2009.
- [JLS10] D. Jerison, L. Levine and S. Sheffield, Logarithmic fluctuations for internal DLA. arXiv:1010.2483
- [JLS11] D. Jerison, L. Levine and S. Sheffield, Internal DLA and the Gaussian free field. arXiv:1101.0596
- [LBG92] G. F. Lawler, M. Bramson and D. Griffeath, Internal diffusion limited aggregation, *Ann. Probab.* **20**(4):, 2117–2140, 1992.
- [Law95] G. F. Lawler, Subdiffusive fluctuations for internal diffusion limited aggregation, *Ann. Probab.* **23**(1):71–86, 1995.

- [LP09] L. Levine and Y. Peres, Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile, *Potential Anal.* **30**:1–27, 2009. arXiv:0704.0688
- [Uch98] K. Uchiyama, Green's functions for random walks on \mathbb{Z}^N , *Proc. London Math. Soc.* 77 (1998), no. 1, 215–240.