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Ground state properties in non-relativistic QED
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Abstract

We discuss recent results concerning the ground state of non-relativistic quantum
electrodynamics as a function of a magnetic coupling constant or the fine structure
constant, obtained by the authors in [12, 13, 14].

1 Introduction

We consider a system of finitely many non-relativistic quantum mechanical electrons
bound to a static nucleus. The electrons are minimally coupled to the quantized elec-
tromagnetic field, and we denote the coupling constant by g. We impose an ultraviolet
cutoff on the electromagnetic vector potential appearing in the covariant derivatives.

Models of this type are known as non-relativistic quantum electrodynamics (qed).
They provide a reasonable description of microscopic low energy phenomena involving
electrons, nuclei, and photons. A systematic mathematical investigation of these models
started in the mid 90s with the work of V. Bach, J. Fröhlich, and I.M. Sigal [3, 4, 5].
They showed existence of ground states. Furthermore, they showed that excited bound
states of the unperturbed system become unstable and turn into resonances when the
electrons are coupled to the radiation field. To prove this result they introduced an
operator theoretic renormalization analysis. Later, the existence of ground states was
shown in more generality by M. Griesemer, E.H. Lieb, and M. Loss, see [8, 15].

In [13] we showed that the ground state of an atom with spinless electrons is an analytic
function of the coupling constant g. That result is explained in Section 2, and it provides
an algorithm to determine the ground state to arbitrary precision. To obtain the result
we used the operator theoretic renormalization analysis of [3] and that renormalization
preserves anlyticity [9].
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In Section 3, we consider expansions in the fine structure constant α. We consider a
scaling where the ultraviolet cutoff is of the order of the binding energy of the unperturbed
atom. In this scaling lifetimes of excited states of atoms were calculated which agree with
experiment [11]. V. Bach, J. Fröhlich, and A. Pizzo [1, 2] showed that there exists an
asymptotic expansion of the ground state and the ground state energy with α dependent
coefficients. In [13] this result was extended and it was shown that these expansions are
convergent. Furthermore, it was shown in [14] that the ground state energy as well as
the ground state are k-times continuously differentiable functions of α respectively α1/2

on some nonempty k-dependent interval [0, ck). This result implies that there are no
logarithmic terms in this scaling limit. This resolves an open issue raised in [2], since for
other scalings of the ultraviolet cutoff logarithmic terms do occur [7, 10, 6].

2 Model and analyticity of the ground state

We introduce the bosonic Fock space over the one photon Hilbert space h := L2(R3×Z2)
and set

F := C⊕
∞⊕

n=1

Sn(h
⊗n

),

where Sn denotes the orthogonal projection onto the subspace of totally symmetric tensors
in h⊗

n

. By a∗(k, λ) and a(k, λ), with (k, λ) ∈ R
3 × Z2, we denote the so called creation

and annihilation operator. They satisfy the following commutation relations, which are
to be understood in the sense of distributions,

[a(k, λ), a∗(k′, λ′)] = δλλ′δ(k − k′), [a#(k, λ), a#(k′, λ′)] = 0 ,

where a# stands for a or a∗. The operator a(k, λ) annihilates the vacuum (1, 0, ...) ∈ F .
We define the operator of the free field energy by

Hf :=
∑

λ=1,2

∫
a∗(k, λ)|k|a(k, λ)d3k.

For λ = 1, 2 we introduce the so called polarization vectors ε(·, λ) : S2 := {k ∈ R3||k| =
1} → R3 to be maps such that for each k ∈ S2 the vectors ε(k, 1), ε(k, 2), k form an
orthonormal basis of R3. For x ∈ R3 we define the field operator

AΛ(x) :=
∑

λ=1,2

∫

|k|<Λ

d3k√
2|k|

[
e−ik·xε(k̂, λ)a∗(k, λ) + eik·xε(k̂, λ)a(k, λ)

]
, (1)

where 0 < Λ is a finite ultraviolet cutoff and k̂ := k/|k|. The Hilbert space isH := Hat⊗F ,
where

Hat :=
N∧
L2(R3)
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is the Hilbert space describing N spin-less electrons. We study the following operator in
H

Hg :=
N∑

j=1

(pj + gAΛ(xj))
2 + V +Hf , (2)

where xj ∈ R3 denotes the coordinate of the j-th electron, pj = −i∂xj
, and V denotes

the potential. For the result concerning analyticity in the coupling constant g on a disk
Dr := {z ∈ C||z| < r}, we need the following hypothesis. It contains assumptions about
the atomic Hamiltonian Hat :=

∑N
j=1 p

2
j + V acting in Hat.

Hypothesis (H) The potential V satisfies the following properties:

(i) V is invariant under permutations and rotations.

(ii) V is infinitesimally operator bounded with respect to
∑N

j=1 p
2
j .

(iii) Eat := inf σ(Hat) is a non-degenerate isolated eigenvalue of Hat.

All assumptions of Hypothesis (H) are satisfied for the hydrogen atom. Part (i) is satisfied
for atoms, but not for molecules with static nuclei. We note that (iii) is a restrictive
assumption.

Theorem 1. Suppose (H). Then there exists a positive constant g0 such that for all
g ∈ Dg0 the operator Hg has a non-degenerate eigenvalue E(g) with eigenvector ψ(g) and
eigen-projection P (g) satisfying the following properties.

(i) For g ∈ R ∩Dg0, E(g) = infσ(Hg).

(ii) g 7→ E(g) and g 7→ ψ(g) are analytic on Dg0.

(iii) g 7→ P(g) is analytic on Dg0 and P(g)∗ = P(g).

Concerning the proof of the theorem, we note that the ground state energy is embedded
in continuous spectrum. In such a situation analytic perturbation theory is typically not
applicable and other methods have to be employed. In [13] Theorem 1 is proven using a
variant of the operator theoretic renormalization analysis. Using the rotation invariance
assumption of Hypothesis (H) one can prove that marginal terms in the renormalization
analysis are absent. This implies that the renormalization analysis converges. Theorem
1 can then be shown using that renormalization preserves analyticity [12, 9].

Theorem 1 implies that the ground state and the ground state energy admit convergent
power series expansions in g. The coefficients of these expansions can be calculated by
means of analytic perturbation theory. To this end, one introduces an infrared cutoff
which renders all expansion coefficients finite. In [13] it was shown using a continuity
argument, that the individual expansion coefficients converge as the infrared cutoff is
removed. This is not obvious; the expansion coefficients obtained by regular perturbation
theory, [16], can involve cancellations of infrared divergent terms [12].
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3 Expansions in the fine structure constant

In this section, we consider the ground state and the ground state energy of a hydrogen
atom as a function of the fine structure constant α. We assume that the ultraviolet cutoff
is of the order of the binding energy of the unperturbed atom. In suitable units the
corresponding Hamiltonian is

Hα,Λ := (p+ α3/2AΛ(αx))
2 − 1

|x| +Hf .

By a scaling transformation we can relate this operator to the operator

H̃α,Λ := (p+
√
αAΛ(x))

2 − α

|x| +Hf

using the following unitary equivalence H̃α,α2Λ
∼= α2Hα,Λ. We are interested in the be-

havior of the ground state and the ground state energy of Hα,Λ as α ↓ 0 while Λ remains
constant. The ground state and the ground state energy are smooth in the sense of the
following theorem [14].

Theorem 2. Suppose (H) and let Λ > 0. There exists a positive α0 such that for α ∈
[0, α0) the operator Hα,Λ has a ground state ψ(α1/2) with ground state energy E(α) such
that we have the convergent expansions on [0, α0)

E(α) =
∞∑

n=0

E(2n)
α α3n, ψ(α1/2) =

∞∑

n=0

ψ(n)
α α3n/2. (3)

The coefficients E
(n)
α and ψ

(n)
α are as functions of α in C∞([0,∞)) and C∞([0,∞);H),

respectively. For every k ∈ N0 there exists a positive α
(k)
0 such that ψ(·) and E(·) are

k-times continuously differentiable on [0, α
(k)
0 ).

By the differentiability property of Theorem 2 and Taylor’s theorem one can write the
ground state and the ground state energy in terms of an asymptotic series with constant
coefficients in the sense of [17]. To prove Theorem 2, we consider the Hamiltonian

H(g, β,Λ) := (p+ gAΛ(βx))
2 − 1

|x| +Hf .

Using the identity H(α3/2, α,Λ) = Hα,Λ, Theorem 2 will follow as an application of
Theorem 3, below. A corollary of that theorem is that the ground state of H(g, β,Λ)
is analytic in g with coefficients which are C∞ functions of β. To state the theorem
precisely, let X be a Banach space and let Ck

B(R;X) denote the space of X-valued func-
tions having bounded, continuous derivatives up to order k normed by ‖f‖Ck

B
(R;X) :=

max0≤s≤k supx∈R ‖Ds
xf(x)‖X .
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Theorem 3. Suppose (H), let k ∈ N0, and Λ > 0. Then there exists a positive g0 such that
for all (g, β) ∈ Dg0 ×R the operator H(g, β,Λ) has an eigenvalue Eβ(g) with eigenvector
ψβ(g) and eigen-projection Pβ(g) satisfying the following properties.

(i) For g ∈ R∩Dg0 we have Eβ(g) = infσ(Hg,β), and for all g ∈ Dg0 we have Pβ(g)
∗ =

Pβ(g).

(ii) g 7→ E(·)(g), g 7→ ψ(·)(g), and g 7→ P(·)(g) are analytic functions on Dg0 with values
in Ck

B(R), C
k
B(R;H), and Ck

B(R;B(H)), respectively.

In [14] Theorem 3 is shown using an operator theoretic renormalization analysis, which
involves controlling arbitrary high derivatives with respect to β.
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[3] V. Bach, J. Fröhlich, I.M. Sigal, Renormalization group analysis of spectral problems
in quantum field theory, Adv. Math. 137 (1998), 205–298.
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