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ON INVARIANT GIBBS MEASURES CONDITIONED

ON MASS AND MOMENTUM

TADAHIRO OH, JEREMY QUASTEL

Abstract. We construct a Gibbs measure for the nonlinear Schrödinger equation (NLS)
on the circle, conditioned on prescribed mass and momentum:

dµa,b = Z
−1

1{
´

T
|u|2=a}1{i

´

T
uux=b}e

± 1

p

´

T
|u|p− 1

2

´

T
|u|2

dP

for a ∈ R
+ and b ∈ R, where P is the complex-valued Wiener measure on the circle. We

also show that µa,b is invariant under the flow of NLS. We note that i
´

T
uux is the Lévy

stochastic area, and in particular that this is invariant under the flow of NLS.
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1. Introduction

We consider the periodic nonlinear Schrödinger equation (NLS) on the circle:

iut + uxx = ±|u|p−2u, (x, t) ∈ T×R (1.1)

where T = R/Z. Recall that (1.1) is a Hamiltonian PDE with Hamiltonian:

H(u) =
1

2

ˆ

T

|ux|2 ±
1

p

ˆ

T

|u|p. (1.2)

Indeed, (1.1) can be written as

ut = i
∂H

∂ū
. (1.3)

Recall that (1.1) also conserves the mass M(u) =
´

|u|2 and the momentum P (u) = i
´

uux.
Moreover, the cubic NLS (p = 4) is known to be completely integrable [ZS, GKP] in the
sense that it enjoys the Lax pair structure and thus there exist infinitely many conservation
laws for (1.1). For general p 6= 4, the mass M , the momentum P , and the Hamiltonian
H are the only known conservation laws. Our main goal in this paper is to construct an
invariant Gibbs measure conditioned on mass and momentum.
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First, consider a Hamiltonian flow on R
2n:

ṗi =
∂H
∂qj

, q̇i = − ∂H
∂pj

(1.4)

with Hamiltonian H(p, q) = H(p1, . . . , pn, q1, . . . , qn). Then, Liouville’s theorem states
that the Lebesgue measure

∏n
j=1 dpjdqj on R

2n is invariant under the flow. Then, it follows

from the conservation of the Hamiltonian H that the Gibbs measure e−H(p,q)
∏n

j=1 dpjdqj is

invariant under the flow of (1.4). Now note that if F (p, q) is any (reasonable) function that

is conserved under the flow of (1.4), then the measure dµF = F (p, q)e−H(p,q)
∏n

j=1 dpjdqj
is also invariant.

By viewing (1.1) as an infinite dimensional Hamiltonian system, one can consider the
issue of invariant Gibbs measures for (1.1). Lebowitz-Rose-Speer [LRS] constructed Gibbs
measures of the form

dµ = Z−1e−H(u)
∏

x∈T

du(x) = Z−1e∓
1

p

´

T
|u|p e−

1

2

´

T
|ux|2

∏

x∈T

du(x)

︸ ︷︷ ︸
= Wiener measure P

(1.5)

as a weighted Wiener measure on T. In the focusing case, i.e. with the plus sign in (1.5), the
result only holds for p < 6 with an L2-cutoff 1{

´

|u|2≤B} for any B > 0, and for p = 6 with

sufficiently small B. By analogy with the finite dimensional case, we expect such a Gibbs
measure µ is invariant under the flow of (1.1). (Recall that the L2-norm is conserved.)
In addressing the question of invariance of µ, we need to have a well-defined flow on the
support of µ. However, as a weighted Winer measure, the regularity of µ is inherited from

that of the Wiener measure. i.e. µ is supported on Hs(T)\H 1

2 (T), s < 1
2 . In [B1], Bourgain

proved local well-posedness of (1.1)

• in L2(T) for (sub-) cubic NLS (p ≤ 4),
• in Hs(T), s > 0, for (sub-) quintic NLS (4 < p ≤ 6),
• in Hs(T), s > 1

2 − 1
p , for p > 6.

Using the Fourier analytic approach, he [B2] continued the study of Gibbs measures and
proved the invariance of µ under the flow of NLS.

Once the invariance of the Gibbs measure µ is established, we can regard the flow map
of (1.1) as a measure-preserving transformation on an (infinite-dimensional) phase space,

say H
1

2
−ǫ, equipped with the Gibbs measure µ. Then, it follows from Poincaré recurrence

theorem that almost all the points of the phase space are stable according to Poisson [Z],
i.e. if St denotes a flow map of (1.1): u0 7→ u(t) = Stu0, then for almost all u0, there
exists a sequence {tn} tending to ∞ such that Stnu0 → u0. Moreover, such dynamics is
also multiply recurrent in view of Furstenberg’s multiple recurrence theorem [F]: let A be
any measurable set with µ(A) > 0. Then, for any integer k > 1, there exists n 6= 0 such
that µ(A∩ SnA∩ S2nA∩ · · · ∩ S(k−1)nA) > 0. Note that this recurrence property is known
to hold only in the support of the Gibbs measure, i.e. not for smooth functions.

Then, one of the natural questions, posed by Lebowitz-Rose-Speer [LRS] and Bourgain
[B4], is the ergodicity of the invariant Gibbs measure µ. i.e. is the phase space irreducible
under the dynamics, or can it be decomposed into disjoint subsets, where the dynamics is
recurrent within each disjoint component? In order to ask such a question, one needs to
prescribe the L2-norm since it is an integral of motion for (1.1). It is not difficult to see that
the momentum is also finite almost surely on the support of the Gibbs measure. Indeed, if
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u is distributed according to the Wiener measure, then it can be represented as1

u(x) =
∑

n 6=0

gn
2πn

e2πinx, (1.6)

where {gn}n 6=0 is a family of independent standard complex-valued Gaussian random vari-
ables, i.e. its real and imaginary parts are independent Gaussian random variables with
mean zero and variance 1. Then, we can write the momentum as

P (u) = i

ˆ

uux =
∑

n 6=0

|gn(ω)|2
2πn

=
∑

n≥1

|gn(ω)|2 − |g−n(ω)|2
2πn

.

Thus, we have E
[(
P (u)

)2]
.

∑
n≥1 n

−2 < ∞.2 Hence, |P (u)| < ∞ a.s. In the following,

we construct invariant Gibbs measures with prescribed L2-norm and momentum as the
first step in studying finer dynamical properties of the NLS flow equipped with the invari-
ant Gibbs measure, viewed as an infinite-dimensional dynamical system with a measure-
preserving transformation.

Remark 1.1. Recall that the cubic NLS (p = 4) is completely integrable. Hence, it makes
sense to pose a question of ergodicity only for p 6= 4. See [LRS].

There are infinitely many conservation laws for the cubic NLS, with the leading
term of the form

´

T
|∂k

xu|2dx, roughly corresponding to the Hk-norm, and of the form
´

T
u∂2k+1

x u dx, k ∈ N ∪ {0}. See [FT, ZM]. By (1.6), we can easily see that all these con-

servation laws, except for the L2-norm and momentum, are almost surely divergent under
the Gibbs measure. Thus, it may seem that the L2-norm and momentum are the only
conserved quantities which are finite a.s. in the support of the Gibbs measure. However,
from a different perspective, we have a different set of infinitely many conserved quantities
for (1.1), namely the spectrum of the Zakharov-Shabat operator L (also called the Dirac
operator) appearing in the Lax pair formulation of (1.1): ∂tL = [B,L] (with some ap-
propriate B.) These are finite under the Gibbs measure. Expressing the flow of (1.1) in
the Liouville coordinates (or rather in the Birkhoff coordinates) with actions and angles
(which are determined in terms of the spectral data), the flow basically becomes trivial.
See [GKP].

In constructing a Gibbs measure conditioned on mass and momentum, we first condition
the Wiener measure on mass and momentum. Recall that if u is distributed according to
the Wiener measure P given by3

dP = Z−1e−
1

2

´

T
|u|2− 1

2

´

T
|ux|2

∏

x∈T

du(x), (1.7)

then it can be represented as

u(x) =
∑

n 6=0

gn√
1 + 4π2n2

e2πinx. (1.8)

1We ignore the zero-frequency issue here. See (1.8) below.
2We use A . B to denote an estimate of the form A ≤ CB for some C > 0. Similarly, we use A ∼ B to

denote A . B and B . A.
3The mass is added to take care of the zeroth frequency. We still refer to P in (1.7) and u in (1.8) as the

Wiener measure and the Brownian motion, respectively.
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Note that (1.8) is basically the Fourier-Wiener series for the Brownian motion (except
for the zeroth mode.) Given a > 0 and b ∈ R, define the conditional Wiener measures
Pε = Pε,a,b, ε > 0, as follows. Given a measurable set E, we define Pε(E) by

Pε(E) = P

(
E
∣∣∣
ˆ

T

|u|2 ∈ Aε(a), i

ˆ

T

uux ∈ Bε(b)

)
, (1.9)

where Aε(a) and Bε(b) are neighborhoods shrinking nicely4 to a and b as ε → 0. Here
P (C | D) = P (C∩D)/P (D) is the standard, naive, conditional probability given by Bayes’
rule. In terms of the density, we have

dPε = Ẑ−1
ε 1{

´

T
|u|2∈Aε(a)}1{i

´

T
uux∈Bε(b)}dP. (1.10)

Now, we would like to define the conditioned measure

P0(E) = P0,a,b(E) = P

(
E
∣∣∣
ˆ

T

|u|2 = a, i

ˆ

T

uux = b

)

by P0 = limε→0 Pε. Namely, we define P0 by

P0(E) := lim
ε→0

P

(
E
∣∣∣
ˆ

T

|u|2 ∈ Aε(a), i

ˆ

T

uux ∈ Bε(b)

)
. (1.11)

Note that the normalization constant Ẑε in (1.10) tends to 0 as ε → 0. Hence, some care
is needed. We discuss details in Subsection 2.1.

Finally, we define the conditioned Gibbs measure µ0 = µa,b in terms of the Wiener
measure P0 = P0,a,b conditioned on mass and momentum, by setting

dµ0 = Z−1
0 e∓

1

p

´

T
|u|pdP0. (1.12)

In the defocusing case, this clearly defines a probability measure since e
− 1

p

´

T
|u|p ≤ 1. In

the focusing case, we need to show that

e
1

p

´

T
|u|p ∈ L1(dP0). (1.13)

Lebowitz-Rose-Speer [LRS] and Bourgain [B2] proved a similar integrability result of the

weight e
1

p

´

T
|u|p

with respect to the (unconditioned) Wiener measure P defined in (1.7).
Bourgain’s argument was based on dyadic pigeonhole principle and a large deviation esti-
mate (see Lemma 4.2 in [OQV].) In Subsection 2.2, we follow Bourgain’s argument and
prove (1.13) by dyadic pigeonhole principle and a large deviation estimate for P0. This
large deviation estimate for P0 is by no means automatic, and we need to deduce it by
establishing a uniform large deviation estimate for the conditioned Wiener measures Pε,
ε > 0 (see Lemma 2.1 below.) As a result, we obtain the uniform integrability result

EPε

[
e

1

p

´

T
|u|p

]
≤ Cp < ∞

for all sufficiently small ε ≥ 0. We point out that the proof of Lemma 2.1 (and hence the
argument in Subsection 2.1) is the heart of this paper.

We state the main theorem. The proof is presented in in the next section.

4See Subsection 2.1 for the definition.
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Theorem 1. Let a > 0 and b ∈ R. For p > 2, let µ0 be the Gibbs measure µ0 = µa,b

conditioned on mass and momentum defined in (1.12). Also, assume that p ≤ 6 in the
focusing case. Then, µ0 is a well-defined probability measure (with sufficiently small mass
a when p = 6 in the focusing case), absolutely continuous to the conditioned Wiener measure
P0. Moreover, µε converges weakly to µ0 as ε → 0, where µε is defined by

dµε := Z−1
ε e

∓ 1

p

´

T
|u|p

dPε. (1.14)

It follows from invariance of the Gibbs measure µ in (1.5) (with an L2-cutoff in the
focusing case) the conservation of mass and momentum that µε is invariant under the flow
of (1.1) for each fixed ε > 0. As a corollary to Theorem 1, we obtain invariance of the
conditioned Gibbs measure µ0.

Theorem 2. Let a > 0, b ∈ R, and p > 2 be as in Theorem 1. Then, the conditioned Gibbs
measure µ0 = µa,b defined in (1.12) is invariant under the flow of NLS (1.1).

We conclude this introduction with several remarks. The first is about conditional prob-
abilities.

Remark 1.2. A natural way to proceed with this construction is to start with the (un-
conditioned) Gibbs measure µ in (1.5) on the space Ω, which is the space of continuous
complex-valued functions on the circle, with the topology of uniform convergence and the
Borel σ-field F . This is a complete separable metric space. Let G be the sub σ-field gen-
erated by the measurable maps

´

T
|u|2 and i

´

T
uux. There is a general theorem which

guarantees the existence of a conditional probability, i.e. a family of measures µu, u ∈ Ω
such that (i) for any A ∈ F , µu(A) is measurable with respect to G as a function of u; (ii)
for any A ∈ G and B ∈ F , µ(A∩B) = Eµ[1Aµu(B)]. It follows from (i) and (ii) that given
B ∈ F , we have

µu(B) = µ´
T
|u|2, i

´

T
uux

(B) (1.15)

for µ-almost every u. The sets of measure zero, on which (1.15) fails, depend on B ∈ F ,
and thus their union could be a set of nontrivial measure. Hence, one needs some regularity.
The best that can be said in such a general context is that if G is countably generated (and
one can check ours is), then µu is a regular conditional probability in the sense that (iii)
µu(A) = 1A(u) for A ∈ G. In our context, this reassures us that our conditioned Gibbs
measure µ0 = µa,b gives mass one to u with

´

T
|u|2 = a and i

´

T
uux = b. However, we only

know that this property holds for almost every a and b, and there is no soft way out to
obtain the same for all a and b. (Another way to think of this is that applying the Lebesgue
differentiation theorem to (ii) gives Theorem 1 for almost every a and b.) Since we want
our conditioned measures to be defined for every value of a and b, we have to define them
directly. For the conditioned Wiener measure P0, which is just a Gaussian measure, this is
straightforward. In this case, we can even use the fact that the distributions of a and b are
basically explicit. However, for the Gibbs measure µa,b, it requires hard analysis.

Remark 1.3. Consider the (generalized) Korteweg-de Vries equation (gKdV):

ut + uxxx = ±up−2ux. (1.16)

For an integer p ≥ 3, (1.1) is a Hamiltonian PDE with Hamiltonian:

H(u) =
1

2

ˆ

T

u2x ±
1

p

ˆ

T

up, (1.17)
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and (1.16) can be written as ut = ∂x
dH
du . Also recall that (1.16) preserves the mean

´

T
u and

the L2-norm. Bourgain [B2] constructed Gibbs measures of the form (1.5) (with an appro-
priate L2-cutoff 1{

´

|u|2≤B} unless it is defocusing when p is even) for (1.16), and proved its

invariance under the flow for p = 3, 4. Recently, Richards [R] established invariance of the
Gibbs measure for (1.16) when p = 5. In an attempt to study more dynamical properties
of (1.16), one can construct Gibbs measure conditioned on mass by an argument similar
to Theorem 1. In this case, an analogue of Theorem 2 holds for all (even) p when (1.16) is
defocusing but only for p ≤ 5 when it is non-defocusing, due to lack of a result on invariance
of the Gibbs measure for focusing quintic (p = 6) KdV. Note that KdV (p = 3) and mKdV
(p = 4) are completely integrable. Hence, a question of ergodicity can be posed only for
p ≥ 5. See Remark 1.1.

Remark 1.4. An interesting but straightforward comment is that the momentum P (u) is
nothing but the Lévy stochastic area of the planar loop (Reu(x), Im u(x)), 0 ≤ x < 2π,

P (u) = i

ˆ

T

uux =

ˆ

T

(Re u) d(Im u)− (Im u) d(Re u). (1.18)

Note that this is not the actual area enclosed by the loop, but a signed version. A Brow-
nian loop has infinitely many self-intersections. Regularizing the Brownian loop gives a
loop with finitely many self-intersections. The ‘area’ is then computed through the path
integral above, with each subregion bounded by non-intersecting part of the loop having
area counted positive or negative depending on whether the boundary is traversed in the
counterclockwise or clockwise direction, respectively. This includes the fact that the areas
inside internal loops are multiply counted. Removing the regularization gives the Lévy
stochastic area. Remarkably, unlike other stochastic integrals, the limit does not depend
on the regularization procedure. For example, one can check directly that the Itô (left end-
point rule in the Riemann sum) and Stratonovich (midpoint rule) versions of (1.18) give
the same result. The stochastic area has attracted a great deal of attention. Lévy [L] found
the exact expression 1

4(cosh(x/2))
−2 for its density under the standard Brownian motion

measure. Our base Gaussian measure (1.7) is almost the same as the standard Brownian
motion, and the analogous computation can be performed (see Section 2.1.) Our Gibbs
measures µ0 = µa,b are absolutely continuous with respect to the base Brownian motion, so
most of the results about the stochastic area continue to hold, though, of course, there are
no longer any exact formulas. The Lévy area is basically the only new element when one
moves from the Wiener-Itô chaos of order one to order two. Therefore, it is a natural object
to supplement the Brownian path itself, and this is the basis of the rough path theory [LQ].
It seems a remarkable fact that the flow of NLS preserves the Lévy area.

2. Proof of Theorem 1: Construction of the conditioned Gibbs measures

2.1. Wiener measure conditioned on mass and momentum. In this subsection, we
construct the Wiener measure P0 conditioned on mass a and momentum b for any fixed
a > 0 and b ∈ R. Given Pε as in (1.10), we define P0 as a limit of Pε by (1.11), where E
is an arbitrary set in the σ-field F . In the following, we show that (1.11) indeed defines
a probability measure. For this purpose, we can simply take E to be in some generating
family of F . Let us choose the increasing family FN = σ(gn, ; |n| ≤ N) as such a generating
family of F .
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Fix a nonnegative integer N and a Borel set F in C
2N+1. Let E = {ω : (gn; |n| ≤ N) ∈

F}. Then, by (1.9), we have

Pε(E) = P

(
(gn; |n| ≤ N) ∈ F

∣∣∣
ˆ

T

|u|2 ∈ Aε(a), i

ˆ

T

uux ∈ Bε(b)

)
,

where Aε(a) and Bε(b) are neighborhoods shrinking nicely to a and b as ε → 0. That is,

(a) For each ε > 0, we have

Aε(a) ⊂ (a− ε, a+ ε) and Bε(b) ⊂ (b− ε, b+ ε).

(b) There exists α > 0, independent of ε, such that

|Aε(a)| > αε and |Bε(b)| > αε.

By (1.8) and independence of {gn}|n|≤N and {gn}|n|>N , we have

Pε(E) =

ˆ

F

P
(∑

|n|≥N+1〈ñ〉−2|gn|2 ∈ Aε(ã),
∑

|n|≥N+1〈ñ〉−2ñ|gn|2 ∈ Bε(̃b)
)

P
(∑

n〈ñ〉−2|gn|2 ∈ Aε(a),
∑

n〈ñ〉−2ñ|gn|2 ∈ Bε(b)
) (2.1)

× e−
1

2

∑
|n|≤N |gn|2

(2π)2N+1

∏

|n|≤N

dgn,

where ñ = 2πn, 〈ñ〉 =
√
1 + ñ2, and Aε(ã) and Bε(̃b) are translates of Aε(a) and Bε(b)

centered at
ã = a−

∑

|n|≤N

〈ñ〉−2|gn|2, and b̃ = b−
∑

|n|≤N

〈ñ〉−2ñ|gn|2, (2.2)

respectively.
Now, define the density fN (a, b) by

fN (a, b) dadb = P

( ∑

|n|≥N

〈ñ〉−2|gn|2 ∈ da,
∑

|n|≥N

〈ñ〉−2ñ|gn|2 ∈ db

)
.

By computing the characteristic function of fN , we have

f̂N (s, t) = E

[
exp

(
is

∑

|n|≥N

〈ñ〉−2|gn|2 + it
∑

|n|≥N

〈ñ〉−2ñ|gn|2
)]

=
∏

|n|≥N

E

[
ei(s〈ñ〉

−2+t〈ñ〉−2ñ)|gn|2
]

=
∏

|n|≥N

1

1− 2i(s〈ñ〉−2 + t 〈ñ〉−2ñ)
(2.3)

=
∏

n≥N

1(
1− 2i(s〈ñ〉−2 + t 〈ñ〉−2ñ)

)(
1− 2i(s〈ñ〉−2 − t 〈ñ〉−2ñ)

)

=
∏

n≥N

1

1 + 4〈ñ〉−4(ñ2t2 − s2)− 4is〈ñ〉−2
. (2.4)

It follows from (2.3) that |f̂N (s, t)| ≤ 1. Thus, we have
ˆ

|s|≤1, |t|≤1
|f̂N (s, t)| dsdt ≤ C1 < ∞. (2.5)
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Next, we consider the contribution from {|t| > 1}. Fix s and |t| > 1. In this case, if
|1 + 4〈ñ〉−4(ñ2t2 − s2)| ≪ t2, then we have cns

2 < t2 < c′ns
2. Thus, we have

|1 + 4〈ñ〉−4(ñ2t2 − s2)− 4is〈ñ〉−2| & max(〈s〉, t2, |t|), (2.6)

where the implicit constant depends on n. It follows from (2.3) that each factor in (2.4) is
less than or equal to 1. Thus, from (2.4) and (2.6), we have

|f̂N (s, t)| ≤
N+3∏

n=N

1

1 + 4〈ñ〉−4(ñ2t2 − s2)− 4is〈ñ〉−2
≤ C2(N)

1

〈s〉2
1

t2

for |t| > 1, where C2(N) is at most a power of N . Hence, we have
ˆ

|t|>1
|f̂N (s, t)| dsdt ≤ C2(N)

(
ˆ

〈s〉−2ds

)(
ˆ

|t|>1
t−2dt

)
< ∞. (2.7)

Lastly, we consider the contribution from {|s| > 1, |t| ≤ 1}. As before, it follows from

(2.4) that |f̂N (s, t)| ≤ C3(N)s−2, where C3(N) is at most a power of N . Hence, we have
ˆ

|s|>1, |t|≤1
|f̂N (s, t)| dsdt ≤ C ′

3(N)

ˆ

|s|>1
s−2ds < ∞. (2.8)

Therefore, from (2.5), (2.7), and (2.8), we have

‖f̂N‖L1
s,t

< C(N) < ∞.

Note that C(N) is at most a power of N . This shows that f̂N ∈ L1(R2). Hence, fN is
bounded and uniformly continuous. In particular, we have, for any N ≥ 0,

P
(∑

|n|≥N〈n〉−2|gn|2 ∈ Aε(ã),
∑

|n|≥N〈n〉−2n|gn|2 ∈ Bε(̃b)
)

|Aε(ã)×Bε(̃b)|

=
1

|Aε(ã)×Bε(̃b)|

ˆ

Aε(ã)×Bε (̃b)
fN (a′, b′)da′db′ −→ fN (ã, b̃), (2.9)

as ε → 0. By the uniform continuity of fN , this convergence is uniform in ã and b̃.

In taking the limit of (2.1) as ε → 0, the expression f0(a, b) appears in the denominator.
Hence, we need to show that f0 > 0 everywhere. First, write f0 as f0 = f1 ∗a χ2

2, where
χ2
2 is the density for the (rescaled) chi square distribution with two degrees of freedom,

corresponding to |g0|2 = (Re g0)
2 + (Im g0)

2, and ∗a denotes the convolution only in the
first variable of f1.

Now, suppose that f0(a
∗, b∗) = 0 for some a∗ and b∗. Then, from

0 = f0(a
∗, b∗) =

ˆ

f1(a
∗ − x, b∗)χ2

2(x)dx

and the positivity of χ2
2, we must have f1(a, b

∗) = 0 for any a. Write f1 as f1 = f2∗g, where
g(a, b) = δ b

2π
(a)⊗χ2

4(b) and χ2
4 is the density for the (rescaled) chi square distribution with

four degrees of freedom, corresponding to

(1+ 4π2)−22π(|g1|2 + |g−1|2) = (1+4π2)−22π
(
(Re g1)

2 +(Im g1)
2 + (Re g−1)

2 + (Im g−1)
2
)
.
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Then, we have

0 = f1(a, b
∗) =

ˆ

f2(a− x, b∗ − y)δ y
2π
(x)⊗ χ2

4(y)dxdy

=

ˆ

f2(a−
y

2π
, b∗ − y)χ2

4(y)dy for any a.

From the positivity of χ2
4 and f2 ≥ 0, this implies f2(a, b) = 0 for any a and b since

R
2 = {(a − y

2π , b
∗ − y) : a, y ∈ R}. This contradicts with the fact that f2 is a probability

density. Hence, f0(a, b) > 0 for any a and b.

Putting everything together, we have

P
(∑

|n|≥N+1〈ñ〉−2|gn|2 ∈ Aε(ã),
∑

|n|≥N+1〈ñ〉−2ñ|gn|2 ∈ Bε(̃b)
)

P
(∑

n〈ñ〉−2|gn|2 ∈ Aε(a),
∑

n〈ñ〉−2ñ|gn|2 ∈ Bε(b)
) −→ fN+1(ã, b̃)

f0(a, b)
, (2.10)

where the convergence is uniform in ã and b̃. Moreover, the right hand side of (2.10) is

uniformly bounded for small ε > 0 (for fixed a and b), since ‖fN+1‖L∞ ≤ ‖f̂N+1‖L1 < ∞.
Hence, by (1.11), (2.1), and Lebesgue dominated convergence theorem, we have

P0(E) = lim
ε→0

Pε(E) =

ˆ

F

fN+1(ã, b̃)

f0(a, b)

e−
1

2

∑
|n|≤N |gn|2

(2π)2N+1

∏

|n|≤N

dgn.

This shows that P0 is a well-defined probability measure. Lastly, note that it basically
follows from the definition that Pε converges weakly to P0.

2.2. Gibbs measure conditioned on mass and momentum. In the previous subsec-
tion, we constructed the Wiener measure P0 conditioned on mass and momentum as a limit
of conditioned Wiener measures Pε. In this subsection, we define the conditioned Gibbs
measure µ0 = µa,b by (1.12). In the defocusing case, (1.12) defines a probability measure.

In the focusing case, however, we need to show (1.13); the weight e
1

p

´

T
|u|p

is integrable with
respect to P0 for p ≤ 6 (with sufficiently small mass when p = 6.)

Bourgain [B2] proved a similar integrability result of the weight e
1

p

´

T
|u|p

with respect to
the (unconditioned) Wiener measure P in (1.7) via dyadic pigeonhole principle and a large
deviation estimate. In the following, we also use dyadic pigeonhole principle and a large
deviation estimate (for the conditioned Wiener measure P0) to show that the conditioned
Gibbs measure µ0 is a well-defined probability measure. Indeed, Lemma 2.1 below estab-
lishes a uniform large deviation estimate for Pε, ε > 0, and we prove uniform integrability

of the weight e
1

p

´

T
|u|p with respect to Pε for sufficiently small ε > 0. See (2.17).

First, we present a uniform large deviation lemma for the conditioned Wiener measure
Pε, ε > 0.

Lemma 2.1. Let R ≥ 5N
1

2 and M ∼ N . Then, we have

Pε

( ∑

|n−M |≤N

|gn|2 ≥ R2

)
≤ Ce−

1

8
R2

(2.11)

uniformly for sufficiently small ε ≥ 0.
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Proof. By Chebyshev’s inequality, we have

Pε

( ∑

|n−M |≤N

|gn|2 ≥ R2

)
≤ e−tR2

EPε

[
et

∑
|n−M|≤N |gn|2

]
. (2.12)

Set t = 1
4 . We estimate EPε

[
e

1

4
t
∑

|n−M|≤N |gn|2
]
in the following. As in (2.1), we can write

it as

EPε

[
e

1

4

∑
|n−M|≤N |gn|2

]

=

ˆ

C2N+1

P
(∑

|n−M |≥N+1〈ñ〉−2|gn|2 ∈ Aε(ã),
∑

|n−M |≥N+1〈ñ〉−2ñ|gn|2 ∈ Bε(̃b)
)

P
(∑

n〈ñ〉−2|gn|2 ∈ Aε(a),
∑

n〈ñ〉−2ñ|gn|2 ∈ Bε(b)
)

× e−
1

4

∑
|n−M|≤N |gn|2

(2π)2N+1

∏

|n−M |≤N

dgn, (2.13)

where ã and b̃ are given by

ã = a−
∑

|n−M |≤N

〈ñ〉−2|gn|2, and b̃ = b−
∑

|n−M |≤N

〈ñ〉−2ñ|gn|2. (2.14)

By repeating the argument in Subsection 2.1, we can show that the right hand side of (2.13)
is uniformly bounded for small ε > 0.

More precisely, define the density f̃N(a, b) by

f̃N (a, b) dadb = P

( ∑

|n−M |≥N

〈ñ〉−2|gn|2 ∈ da,
∑

|n−M |≥N

〈ñ〉−2ñ|gn|2 ∈ db

)
.

Then, as in Subsection 2.1, one can prove

P
(∑

|n−M |≥N+1〈ñ〉−2|gn|2 ∈ Aε(ã),
∑

|n−M |≥N+1〈ñ〉−2ñ|gn|2 ∈ Bε(̃b)
)

P
(∑

n〈ñ〉−2|gn|2 ∈ Aε(a),
∑

n〈ñ〉−2ñ|gn|2 ∈ Bε(b)
) −→ f̃N+1(ã, b̃)

f0(a, b)
,

(2.15)

where the convergence is uniform in ã and b̃. Moreover, by showing ‖f̃N‖L∞ < ∞ as before,
we see that the right hand side of (2.15) is uniformly bounded for small ε > 0. (Recall that
a and b are fixed.) By (2.13), (2.15), and Lebesgue dominated convergence theorem, we
have

lim
ε→0

EPε

[
e

1

4

∑
|n−M|≤K |gn|2

]
=

ˆ

C2N+1

f̃N+1(ã, b̃)

f0(a, b)

e−
1

4

∑
|n−M|≤N |gn|2

(2π)2N+1

∏

|n−M |≤N

dgn

≤ ‖f̃N+1‖L∞

f0(a, b)

ˆ

C2N+1

e−
1

4

∑
|n−M|≤N |gn|2

(2π)2N+1

∏

|n−M |≤N

dgn

≤ ‖f̃N+1‖L∞

f0(a, b)
22N+1,

where the last inequality follows from change of variables. Also, by examining the argument

in Subsection 2.1, we see that ‖f̃N+1‖L∞ ≤ ‖(f̃N+1)
∧‖L1 is bounded at most by a power of
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N . Hence, we have

EPε

[
e

1

4

∑
|n−M|≤K |gn|2

]
. 23N (2.16)

for all sufficiently small ε > 0. Therefore, (2.11) follows from (2.12) and (2.16) as long as
R2 ≥ (24 ln 2)N . �

In the following, we show that the weight e
´

T
|u|p is uniformly integrable with respect to

Pε, for sufficiently small ε ≥ 0, for p ≤ 6 (with sufficiently small mass when p = 6.) This,
in particular, shows that µε in (1.14) is a well-defined probability measure.

Note that it suffices to prove that
ˆ ∞

0
eλ Pε

(
ˆ

T

|u|p ≥ pλ

)
dλ

=

ˆ ∞

0
eλ P

(
ˆ

T

|u|p ≥ pλ
∣∣∣
ˆ

T

|u|2 ∈ Aε(a), i

ˆ

T

uux ∈ Bε(b)

)
dλ ≤ Cp < ∞ (2.17)

for all sufficiently small ε > 0. The estimate (2.17) follows once we prove

Pε

(
ˆ

T

|u|p ≥ pλ

)
≤

{
Ce−cλ1+δ

when p < 6.

Ce−(1+δ)λ when p = 6.
(2.18)

for λ > 1 (with some δ > 0), uniformly in small ε > 0.
Before proving (2.18), let us introduce some notations. Given M0 ∈ N, let P>M0

denote
the Dirichlet projection onto the frequencies {|n| > M0}. i.e. P>M0

u =
∑

|n|>M0
ûne

2πinx.

P≤M0
is defined in a similar manner. Given j ∈ N, let Mj = 2jM0. We use the notation

|n| ∼ Mj to denote the set of integers |n| ∈ (Mj−1,Mj ], and denote by PMj
the Dirichlet

projection onto the dyadic block (Mj−1,Mj ], i.e. PMj
u =

∑
|n|∼Mj

ûne
2πinx.

Without loss of generality, assume ε ≤ a. Then, we have
´

|u|2 ≤ 2a =: K. By Sobolev
inequality,

‖P≤M0
u‖Lp(T) ≤ cM

1

2
− 1

p

0 ‖P≤M0
u‖L2(T). (2.19)

Hence, we have
ˆ

T

|P≤M0
u|p ≤ p

2λ on

ˆ

T

u2 ≤ K, (2.20)

by choosing

M0 = c0λ
2

p−2K
− p

p−2 ∼ c0λ
2

p−2 a
− p

p−2 (2.21)

for some c0 > 0. Let σj = C2−δj , j = 1, 2, . . . for some small δ > 0 where C = C(δ) is
chosen such that

∑∞
j=1 σj = 1. Then, we have

Pε

(
ˆ

T

|P>M0
u|p > p

2λ

)
≤

∞∑

j=0

Pε

(
‖PMj

u‖Lp(T) > σj
(p
2λ

) 1

p

)
. (2.22)

By Sobolev inequality as in (2.19), we have

‖PMj
u‖Lp(T) ≤ cM

1

2
− 1

p

j ‖PMj
u‖L2(T). (2.23)

From (1.8), we have

‖PMj
u‖2L2(T) =

∑

|n|∼Mj

|ûn|2 =
∑

|n|∼Mj

(
1 + (2πn)2

)−1|gn|2. (2.24)
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From (2.23) and (2.24), the right hand side of (2.22) is bounded by

∞∑

j=0

Pε

( ∑

|n|∼Mj

|gn|2 ≥ R2
j

)
, where Rj := c′σjλ

1

pM
1

p
− 1

2

j (1 +M2
j )

1/2. (2.25)

Note that Rj & M
1

2
+ 1

p

j ≫ M
1

2

j . By applying Lemma 2.1 to (2.25), we obtain

Pε

(
ˆ

T

|P>M0
u|p > p

2λ

)
.

∞∑

j=0

e−
1

8
R2

j .

∞∑

j=0

e−c′′σ2
j λ

2
pM

p+2
p

j

.

∞∑

j=0

e−c̃(2j)
p+2
p −2δ

λ
2
pM

p+2
p

0 . e−cλ
2
pM

p+2
p

0 (2.26)

Hence, from (2.26) and (2.21), we have

Pε

(
ˆ

T

|u|p > pλ

)
≤ C exp

{
− c λ

1+ 6−p
p−2 a

− p+2

p−2

}
(2.27)

and (2.18) follows. Note that when p = 6, we need to take a sufficiently small such that
the coefficient of λ in (2.27) is less than −1.

2.3. Weak convergence. Finally, we prove weak convergence of µε defined in (1.14) to

µ0. Let f be a bounded continuous function on H
1

2
−γ(T) for some small γ > 0.

We first consider the defocusing case. If a sequence of functions un converges to u in

H
1

2
−γ(T) with γ < p−1, then we have un → u in Lp(T) by Sobolev inequality. Thus,

e−
´

T
|u|p is bounded and continuous on H

1

2
−γ(T). Then, by weak convergence of Pε to P0,

we have

Zε =

ˆ

e
− 1

p

´

T
|u|p

dPε −→
ˆ

e
− 1

p

´

T
|u|p

dP0 = Z0 as ε → 0.

Since f(u)e−
´

T
|u|p is also bounded and continuous on H

1

2
−γ(T), we have

ˆ

fdµε = Z−1
ε

ˆ

f(u)e−
1

p

´

T
|u|pdPε −→ Z−1

0

ˆ

f(u)e−
1

p

´

T
|u|pdP0 =

ˆ

fdµ0 as ε → 0.

This shows that µε converges weakly to µ0 in the defocusing case.

Next, we consider the focusing case. First, we prove

Zε =

ˆ

e
1

p

´

T
|u|pdPε −→

ˆ

e
1

p

´

T
|u|pdP0 = Z0 as ε → 0. (2.28)

For small ε ≥ 0, define Zε,N by

Zε,N =

ˆ

e
1

p

´

T
|P≤Nu|p

dPε.

By Sobolev inequality (see (2.19)), we have
´

T
|P≤Nu|p ≤ cN

p
2
−1a

p
2 on

´

T
|u| ≤ a+ ε ≤ 2a.

In particular, e
1

p

´

T
|u|p is bounded and continuous on H

1

2
−γ(T). Thus, by weak convergence

of Pε to P0, we have

Zε,N −→ Z0,N as ε → 0. (2.29)

The following lemma on uniform convergence of Zε,N to Zε is a consequence of the
uniform tail estimate (2.26) and (2.27).
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Lemma 2.2. Let Zε,N and Zε be as above. Then, Zε,N converges to Zε as N → ∞,
uniformly in small ε ≥ 0.

Assume Lemma 2.2 for the moment. Fix δ > 0. By Lemma 2.2, choose large N∗ such
that |Zε,N∗ − Zε| < δ

3 for all small ε ≥ 0. By (2.29), there exists small ε∗ > 0 such that

such that |Zε,N∗ − Z0,N∗ | < δ
3 for all ε ∈ [0, ε∗]. Then, we have

|Zε − Z0| ≤ |Zε,N − Zε|+ |Zε,N − Z0,N |+ |Z0,N − Z0| < δ

for all ε ∈ [0, ε∗]. Hence, (2.28) follows.

Proof of Lemma 2.2. By Mean Value Theorem and Cauchy-Schwarz inequality, we have

|Zε − Zε,N | =
∣∣∣∣
ˆ (

e
1

p

´

T
|u|p − e

1

p

´

T
|P≤Nu|p

)
dPε

∣∣∣∣

.

ˆ

max
(
e

1

p

´

T
|u|p

, e
1

p

´

T
|P≤Nu|p

)∣∣∣
ˆ

T

|u|p −
ˆ

T

|P≤Nu|p
∣∣∣ dPε

≤
(
ˆ

e
2

p

´

T
|u|p+ 2

p

´

T
|P≤Nu|pdPε

) 1

2
(
ˆ ∣∣∣
ˆ

T

|u|p −
ˆ

T

|P≤Nu|p
∣∣∣
2
dPε

) 1

2

. (2.30)

In view of (2.27), the first factor on the right hand side is bounded uniformly in small

ε ≥ 0. (When p = 6, the L2-cutoff needs to be sufficiently small so that e
1

p

´

T
|u|p ∈ L2(dPε),

uniformly in small ε > 0.) Hence, it remains to show that the second factor tends to zero
uniformly in small ε ≥ 0 as N → ∞.

In the following, we use the following elementary inequality. For p ≥ 1 and small η > 0,
we have

|a+ b|p − |a|p ≤ η|a|p + Cη1−p|b|p. (2.31)

First, we use (2.31) to show that the second factor in (2.30) tends to zero uniformly in
small ε ≥ 0 as N → ∞. Then, we prove (2.31).

Fix small η > 0 (to be chosen later.) By (2.31), we have
(
ˆ ∣∣∣
ˆ

T

|u|p −
ˆ

T

|P≤Nu|p
∣∣∣
2
dPε

) 1

2

≤
(
ˆ ∣∣∣η

ˆ

T

|P≤Nu|p + Cη1−p

ˆ

T

|P>Nu|p
∣∣∣
2
dPε

) 1

2

≤ C1η

(
ˆ ˆ

T

|P≤Nu|2p dxdPε

) 1

2

+ C2η
1−p

(
ˆ ˆ

T

|P>Nu|2p dxdPε

) 1

2

=: I + II.

Fix δ > 0. By (2.27) (applied to P≤Nu with 2p instead of p), we have

I = C1η

(
ˆ ∞

0
e−cλ

2
p−1 a

−
p+1
p−1

dλ

) 1

2

= C(p)η <
δ

2

by choosing η ∼ δ. Next, we estimate II. The contribution of II from
´

T
|P>Nu|2p ≤ c2δ

2p

(with η ∼ δ) can be easily estimated by δ
4 . Thus, we assume

´

T
|P>Nu|2p > c2δ

2p in
the following. Then, by (2.26) with N = M0 and 2p instead of p, we can estimate the
contribution of II in this case by

C ′
2δ

1−p

(
ˆ c2δ2p

0
1 dλ

) 1

2

+ C ′
2δ

1−p

(
ˆ ∞

c2δ2p
Pε

( ˆ

T

|P>Nu|2p > λ
)
dλ

) 1

2

<
δ

8
+ C ′′

2 δ
1−p

(
ˆ ∞

c2δ2p
e−cλ

1
pN

p+1
p
dλ

) 1

2

<
δ

4
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by making N = N(p, δ) sufficiently large. This shows that Zε,N converges to Zε uniformly
in small ε > 0, since the estimates (2.26) and (2.27) are uniform in small ε ≥ 0.

It remains to prove (2.31). It suffices to prove

|a+ b|p ≤ (1 + η)|a|p + Cη1−p|b|p (2.32)

for a, b > 0. By Mean Value Theorem and Young’s inequality, we have

|a+ b|p ≤ |a|p + p|a+ b|p−1|b| ≤ |a|p + (p− 1)θ
p

p−1 |a+ b|p + θ−p|b|p

Given η > 0, choose θ such that 1 + η = (1 − (p − 1)θ
p

p−1 )−1. This choice of θ gives
θ−p ∼ η1−p, and hence (2.32) follows. �

Let f be a bounded continuous function f on H
1

2
−γ(T). Then, by writing

ˆ

fdµε −
ˆ

fdµ0 = Z−1
ε

ˆ

f(u)e
1

p

´

T
|u|p

dPε − Z−1
0

ˆ

f(u)e
1

p

´

T
|u|p

dP0

= Z−1
0

(
ˆ

f(u)e
1

p

´

T
|u|p

dPε −
ˆ

f(u)e
1

p

´

T
|u|p

dP0

)

+ (Z−1
ε − Z−1

0 )

ˆ

f(u)e
1

p

´

T
|u|pdPε,

it follows from (2.28) that the second term on the right hand side goes to zero. By a slight
modification of the proof of (2.28), we can easily show that the first term goes to zero.
Hence, µε converges weakly to µ0. This completes the proof of Theorem 1.

3. Proof of Theorem 2: Invariance of the conditioned Gibbs measures

In this section, we show that the conditioned Gibbs measure µ0 is invariant under the
flow of NLS (1.1). In fact, one can directly establish the invariance of the conditioned Gibbs
measure µ0 by following the argument developed by Bourgain [B2, B3]. This argument is
based on approximating the PDE flow by finite dimensional Hamiltonian systems with
invariant finite dimensional Gibbs measures. For such an argument, one needs the the
following large deviation estimate (with ε = 0.)

Lemma 3.1. Let s < 1
2 . Then, we have

Pε

(
‖u‖Hs > Λ

)
≤ Cse

−cΛ2

, (3.1)

uniformly in small ε ≥ 0.

Proof. This basically follows from the proof of (2.27) in Subsection 2.2. Given s < 1
2 ,

choose p > 2 such that s = 1
2 − 1

p . Then, we have

‖P≤M0
u‖Hs(T) ≤ cM

1

2
− 1

p

0 ‖P≤M0
u‖L2(T). (3.2)

(Compare this with (2.19).) By repeating the computation in Subsection 2.2 (with Λ = λ
1

p ),
we obtain

Pε

(
‖u‖Hs > Λ

)
≤ Cs exp

{
− cΛ

p(1+ 6−p
p−2

)
a
− p+2

p−2

}
. (3.3)

Then, (3.1) follows since p(1 + 6−p
p−2) > 2 for p > 2. �
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Bourgain’s argument [B2, B3] requires a combination of PDE and probabilistic techniques.
In the following, however, we simply show how the invariance of the conditioned Gibbs
measure µ0 follows, as a corollary, from a priori invariance of Gibbs measures µε, ε > 0.

• Case 1: p ≤ 6. In this case, the flow of (1.1) is globally defined in H
1

2
−δ(T) for small

δ = δ(p) > 0, thanks to [B1, B5]. Let St be the flow map of (1.1): u0 7→ u(t) = Stu0. Then,

St is well-defined and continuous on H
1

2
−δ(T)

Given a bounded continuous function φ on H
1

2
−δ(T), φ ◦ St is bounded and continuous

on H
1

2
−δ(T). By weak convergence of µε to µ0 and invariance of µε under the flow of (1.1),

we have
ˆ

φdµ0 = lim
ε→0

ˆ

φdµε = lim
ε→0

ˆ

φ ◦ St dµε =

ˆ

φ ◦ St dµ0.

This proves invariance of µ0 for p ≥ 6.

• Case 2: p > 6. (This is relevant only in the defocusing case.)

In this case, there is no a priori global-in-time flow of (1.1) on H
1

2
−δ(T). However, by

Bourgain’s argument [B2, B3], µε is invariant under the flow of NLS (1.1) for each ε > 0,
and we show invariance of µ0 as a corollary to the invariance of µε, ε > 0.

Let K be a compact set in Hs(T) with s = 1
2−. Then, there exists Λ = Λ(K) > 0 such

that ‖u‖Hs ≤ Λ for u ∈ K. By the (deterministic) local well-posedness [B2], there exists
t0 > 0 such that NLS (1.1) is well-posed on [0, t0] for initial data u0 with ‖u0‖Hs ≤ Λ + 1.
Moreover, for each small θ > 0, there exists δ > 0 such that

St0(K +Bδ) ⊂ St0K +Bθ. (3.4)

Then, by weak convergence of µε to µ0, we have

µ0(K) ≤ µ0(K +Bδ) ≤ lim inf
ε→0

µε(K +Bδ)

By invariance of µε and (3.4),

= lim inf
ε→0

µε

(
St0(K +Bδ)

)
≤ lim inf

ε→0
µε(St0K +Bθ )

≤ lim sup
ε→0

µε(St0K +Bθ ) ≤ lim sup
ε→0

µε(St0K +Bθ )

≤ µ0(St0K +Bθ ),

where the last inequality follows once again from the weak convergence of µε to µ0. By
letting θ → 0, we have µ0(K) ≤ µ0(St0K). Given arbitrary t > 0, we can iterate the above
argument and obtain µ0(K) ≤ µ0(StK). By the time-reversibility of the NLS flow, we
obtain

µ0(K) = µ0(StK).

This proves invariance of µ0 for p > 6.
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progressions, J. Analyse Math. 31 (1977), 204–256.
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