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Abstract. In this paper, we consider multivariate hyperedge elimination poly-

nomials and multivariate chromatic polynomials for hypergraphs. The first
set of polynomials is defined in terms of a deletion-contraction-extraction

recurrence, previously investigated for graphs by Averbouch, Godlin, and

Makowsky. The multivariate chromatic polynomial is an equivalent polyno-
mial defined in terms of colorings, and generalizes the coboundary polynomial

of Crapo, and the bivariate chromatic polynomial of Dohmen, Pönitz and

Tittman. We show that specializations of these new polynomials recover poly-
nomials which enumerate hyperedge coverings, matchings, transversals, and

section hypergraphs. We also prove that the polynomials can be defined in
terms of Möbius inversion on the bond lattice of a hypergraph, as well as

compute these polynomials for various classes of hypergraphs.

1. Introduction

The chromatic polynomial of a graph enumerates the number of proper k-
colorings of a graph. It was originally introduced by Birkhoff, who hoped that
understanding this polynomial could lead to a proof of the four-color theorem.
The chromatic polynomial was generalized by Tutte to give a two-variable polyno-
mial, now called the Tutte polynomial ([Tut84], [Tut47]). The Tutte polynomial
is actually defined for matroids in general, and have many wonderful enumera-
tive properties. A good survey of these polynomials appears in Matroids and their
Applications [BO92].

There has been a recent resurgence in the study of graph polynomials. Promi-
nent examples include the interlace polynomials, matching polynomials, indepen-
dent set polynomials, and the edge elimination polynomial. This last polynomial
is the main focus of this paper. It was introduced by Averbouch, Godlin, and
Makowsky [AGM10]. It is defined recursively in terms of three graph-theoretic
operations - deletion, contraction, and extraction. Extraction does not appear to
be a matroidal operation. In fact, not all trees on n vertices have the same ege
elimination polynomial, despite having isomorphic cycle matroids.

There are two major purposes of this present paper. The first is to introduce a
new polynomial, the multivariate chromatic polynomial. This polynomial is equiv-
alent to the edge elimination polynomial, as both can be obtained from each other
by substitution. Moreover, we prove several results for the multivariate chromatic
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polynomial, which generalize known results about the coboundary polynomial, and
the bivariate chromatic polynomial of Dohmen, Pönitz, and Tittman [DPT03]. The
second purpose of the paper is to present results for hypergraphs. Since it makes
sense to define deletion, contraction, and extraction for hypergraphs, it also makes
sense to prove results in this level of generality.

We show that certain evaluations of the hyperedge elimination polynomial or
multivariate chromatic polynomial give polynomials that enumerate matchings, sta-
ble sets, hyperedge coverings, and section hypergraphs. The first two results are
extensions of known results, but the latter two are new. Also, the Tutte polynomial
is a specialization of these polynomials. We also give a subset expansion formula for
the hyperedge elimination polynomial, generalizing the work of Averbouch et al, as
well as a Möbius inversion formula, generalizing known results for the coboundary
polynomial and the bivariate chromatic polynomial. Furthermore, we are able to
give formulas for the multivariate chromatic polynomial for particular classes of
hypergraphs.

2. Review of Hypergraph Terminology

A hypergraph is a pair (V,E), where V is a finite set of vertices, and E = {ei :
i ∈ I, ei ⊂ V } is a collection of hyperedges (the hyperedges are indexed by some
set I). Note that this means that we can have i 6= j ∈ I with ei = ej . That is,
we are allowing multiple edges in our hypergraphs. A k-edge is an edge with k
vertices. We are allowing 1-edges, which in the context of coloring is equivalent to
the notion of loops in a graph. We are also allowing empty edges, although we will
only concern ourselves with empty edges when studying duality in hypergraphs.
Finally, a pair of edges ei, ej with i 6= j are parallel if ei = ej .

Given a hypergraph H, there are two notions of induced subgraph. Given a
subset A of vertices, a subhypergraph is the hypergraph HA = (A, {ei∩A : ei∩A 6=
∅}). Note that of course that the new index set for edges is {i ∈ I : ei ∩A 6= ∅}. A
vertex section hypergraph is the hypergraph H ×A = (A, {ei : ei ⊂ A).

Given a subset J ⊂ I, let EJ = {ej : j ∈ J}. The partial hypergraph HJ =
(V,EJ), and the edge section hypergraph H × J has edge set EJ and vertex set
∪i∈Jei. Note that in context one should be able to see the difference between partial
hypergraph and subhypergraph. For disjoint sets J,K ⊂ I, we refer to (J,K) as a
vertex disjoint pair if e ∩ f = ∅ for all e ∈ EJ , f ∈ EK .

LetH be a hypergraph, and let ei be a hyperedge. The deletion is the hypergraph
H − ei = (V, {ej : j 6= i}). The extraction H † ei is the hypergraph (V \ ei, {ej :
ej∩ei = ∅}). The contraction H/e is obtained from H †ei by adding one new vertex
vi, and edges {e′j : i 6= j, ej ∩ e 6= ∅, e′j = (ej \ ei) ∪ {vi}). We shall refer to edges
e′j as the partially contracted edges. We are interested in studying hypergraph
polynomials that can be defined recursively in terms of these three operations. The
most general polynomial satisfying such a recurrence will be called the hyperedge
elimination polynomial. An example of deletion, contraction, and extraction is
given in Figure 1

A chain is a sequence v0, e1, v1, . . . , ek, vk, where vi ∈ ei for 1 ≤ i ≤ k, vi ∈ ei+1

for 0 ≤ i ≤ k− 1, and e1, . . . , ek are edges. If the edges are all distinct, we obtain a
path. If k > 2 and v0 = vk, we call the path a cycle. We say that a hypergraph is
connected if for every two vertices u and v there exists a path with v0 = u, vk = v.
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Figure 1. An example of deletion, contraction, and extraction

As with graphs, a hypergraph decomposes into connected components. Let k(H)
denote the number of connected components of a hypergraph.

The decision to study multivariate polynomials is motivated by the work of Sokal
[Sok05]. Relationships between graph polynomial sometimes have a multivariate
analogue that is easier to prove. For hypergraphs, there are at least two more
reasons to focus on studying multivariate polynomials, with indeterminates for
each hyperedge. First, given a set of indeterminates w0, w1, . . ., we can make the
substitution te = t|e|, and obtain new polynomials. Secondly, we can do a further

substitution, replacing ti with ti. These resulting polynomials cannot be obtained
from the edge elimination polynomials for general hypergraphs, yet they contain
some very refined data regarding the structure of a graph.

Let E0 denote the hypergraph with no vertices or edges. Let E1 denote the
hypergraph with only one vertex, and no edges.

3. A List of Interesting Polynomials

In this section, we define several polynomials involving combinatorial aspects
of hypergraphs that are often studied. Most of these polynomials generalize to
well-known graph polynomials, but a few of these polynomials are actually new.
Throughout, fix a hypergraph H with vertex set V and edge set E. Let n be
the number of vertices, m be the number of edges. Given any set F ⊆ E, let
m∗(F ) =

∑
ei∈F |ei| (note that certain authors use m∗(F ) to denote this summation∑

ei∈F (|ei| − 1)).

A matching in H is a set F ⊆ E of edges such that ei ∩ ej = ∅ for all
ei 6= ej ∈ F , i 6= j. The bivariate matching polynomial is defined by µ(H;x, y) =∑
M xn−m∗(M)y|M |, where the summation is over all matchings of H. This general-

izes the bivariate matching polynomial studied by Iverbouch et al. The mulivariate
matching polynomial is given by µ(H;x,y) =

∑
M xn−m∗(M)

∏
ei∈M yei . Note that

this generalizes the multivariate matching polynomial studied by Averbouch and
Makowsky. For graphs, the substitutions x = 1 and yuv = yuvxuxv results in the
multivariate polynomial originally introduced by Heilman and Lieb [HL72]. So this
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is one case where we see that it is natural to consider the multivariate version of a
polynomial.

A hyperedge covering is a collection of edges F ⊂ E such that ∪e∈F e = V . That
is, every vertex of H lies on some hyperedge in the covering. A vertex is exposed
if it is contained in no hyperedges. The hyperedge covering polynomial is defined
by κ(H;x, y) =

∑
C x
|C|yk(H|C) where the sum is over all hyperedge coverings C,

and the polynomial is 0 if H has an exposed vertex. The multivariate hyperedge
covering polynomial is defined by κ(H;x, y, t) =

∑
C x
|C|yk(H|C)

∏
e∈C te. This

polynomial does not appear in the literature.
A transversal is a set S ⊆ V such that S ∩ e 6= ∅ for all e ∈ E. The transversal

polynomial is defined by τ(H;x) =
∑
S x
|S| where the sum is over all transversals

S. When H is a graph, this polynomial is known as the vertex-cover polynomial.
Recall that the complement of a transversal is an independent set, so the vertex-
cover polynomial is actually the same polynomial as the independent set polynomial
also appearing in the literature.

The section polynomial of a hypergraph is defined by S(H;x, y) =
∑
S⊆V x

n−|S|ym(H×S).

The multivariate section polynomial is defined by S(H;x,y) =
∑
S⊆V x

n−|S|∏
e∈E(H×S) ye.

For graphs, these polynomials enumerated induced subgraphs, and do not appear
to have been studied. Note that setting y = 0 recovers the transversal polynomial.
Also consider the substitution ye = y|e|. In the resulting polynomial, the coefficient

of xiyi11 · · · yimm is the number of section hypergraphs with exactly n− i vertices and
ij edges of size j for all j. Also note that the resulting polynomial is a hypergraph
invariant.

The Tutte polynomial and multivariate Tutte polynomial of a hypergraph have
previously been defined. Using the Potts model form of the definition, we define
the multivariate Tutte polynomial by Z(H;x, t) =

∑
J⊆I x

k(H|I)
∏
j∈J tej .

There are two more polynomials we will define in this paper: the hyperedge
elimination polynomial, and the multivariate chromatic polynomial. These two
polynomials differ only by substitutions, and hence are equivalent polynomials.
Moreover, all the polynomials of this section are all substitutions, up to prefactors,
of the hyperedge elimination polynomial (and the multivariate chromatic polyno-
mial). The table shows these polynomials, and the corresponding substitutions
involved to obtain them.

Polynomial Substitution Multivariate Substitution
κ(H;x, y) ξ(H; 0, x, xy) κ(H;x, y, t) ξ(H; 0, x, xy, t)
µ(H;x, y) ξ(H;x, 0, y) µ(H;x, y, t) ξ(H;x, 0, z, t)
Z(H;x, y) ξ(H;x, y, 0) Z(H;x, t) ξ(H;x, 1, 0, t)
P (H; p, q, t) P (H; q, t− 1, (q − p)(t− 1)) P (H; p, q, t) ξ(H; q, 1, p− q, t− 1)
S(H;x, y) P (H; 1, x+ 1, y) S(H;x,y) P (H; 1, x+ 1,y)
Pc(H; p, t) P (H; p, p, t) Pc(H; p, t) P (H; p, p, t)
ξ(H;x, y, z) P (H;x+ z

y , x, y + 1) ξ(H;x, y, z, t) P (H;x+ z
y , x, yt + 1)

Table 1. Some polynomials, and the corresponding evaluations
of ξ and P

We have chosen to let Pc represent the coboundary polynomial of a hypergraph
(to avoid confusion with the chromatic polynomial).
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4. The Hyperedge Elimination Polynomial

In this section, we define the hyperedge elimination polynomial.

Definition 1. Let ξ(H;x, y, z) be defined by

ξ(H;x, y, z) =
∑
(I,J)

xk(HItJ )−k(H×J)y|I|+|J|−k(H×J)zk(H×J)

where the sum is over vertex disjoint pairs (I, J).

Theorem 1. ξ(H;x, y, z) satisfies the following:

(1) ξ(E0;x, y, z) = 1
(2) ξ(E1;x, y, z) = x
(3) ξ(H1 tH2;x, y, z) = ξ(H1;x, y, z) · ξ(H2;x, y, z)
(4) for any e ∈ E(H), we have

ξ(H;x, y, z) = ξ(H − e;x, y, z) + yξ(H/e;x, y, z) + zξ(H † e;x, y, z)

We actually prove a similar recurrence of the multivariate hyperedge elimination
polynomial in a later section. The above theorem follows through specialization.

Proposition 2. Let f be a function from hypergraphs to some integral domain R,
such that f is invariant under graph isomorphism, and f satisfies a recurrence with
parameters α, β, γ, δ ∈ R subject to:

(1) f(∅) = 1
(2) f(({v}, ∅)) = α
(3) f(H1 tH2) = f(H1) · f(H2)
(4) for any e ∈ E(H), we have

f(H) = βf(H − e) + γf(H/e) + δf(H † e)
Then either:

(1) δ = 0 and f(H) = βm(H)ξ(H;α, γβ , 0)

(2) β = 1 and f(H) = ξ(H;α, γ, δ)
(3) f(H) = αn(H) = ξ(H; 1, α, 0)

Proof. If δ = 0 or β = 1 we see that the corresponding evaluation of ξ yields the
same recursion as f , and hence the equality holds.

So assume δ 6= 0 and β 6= 1. Let H be a hypergraph, let v be a vertex of H.
Consider two new vertices y, z that are not vertices of H, and construct a new
hypergraph G, by adding vertices y, z to H, and hyperedges e with vertex set vy
and f with vertex set yz.

First, eliminate edge e, then eliminate edge f :

f(G) = βf(G− e) + γf(G/e) + δf(G † e)
= β(βf(G− e− f) + γf(G− e/f) + δf(G− e † f))
+ γ(βf(G/e− f) + γf(G/e/f) + δf(G/e † f)) + f(G † e)
= (β2α2 + 2αβγ + βδ)f(H) + (αδ + βδ)f(H − v)

Instead, first eliminate edge e, then edge f to obtain:

f(G) = (β2α2 + 2αβγ + δ)f(H) + (αβδ + βδ)f(H − v)

Thus we obtain:

αδf(H − v) + βδf(H) = δf(H)αβδf(H − v)
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or equivalently:

(1− β)δαf(H − v) = (1− β)δαf(H)

Since δ 6= 0, β 6= 1, and R is an integral domain, we have αf(H − v) = f(H) for
all hypergraphs H and vertices v. Hence an inductive argument on n yields that
f(H) = αn(H). �

Thus, any sort of function that obeys the hyperedge elimination recursion and is a
graph invariant must be, up to prefactor, an evaluation of the hyperedge elimination
polynomial. Note that this argument and result for graphs was previously given by
Averbouch et al [AGM10]. They also choose to show that a polynomial defined in
terms of this recurrence gives a graph invariant in the case w = 1. However, the
fact that ξ, defined as a subset expansion, satisfies this recurrence already proves
this fact, so we will not give the alternate, algebraic proof.

5. The Multivariate Hyperedge Elimination Polynomial

Now we define the multivariate hyperedge elimination polynomial. This is a
hypergraph extension of the labeled edge elimination polynomial, and we denote it
ξ(G;x, y, z, t).

Definition 2. Let ξ(H;x, y, z, t) be defined by

ξ(H;x, y, z, t) =
∑
(I,J)

xk(HItJ )−k(H×J)y|I|+|J|−k(H×J)zk(H×J)
∏
i∈ItJ

tei

where the sum is over vertex disjoint pairs (I, J).

Theorem 3. ξ(H;x, y, z) satisfies the following:

(1) ξ(E0;x, y, z, t) = 1
(2) ξ(E1;x, y, z, t) = x
(3) ξ(H1 tH2;x, y, z, t) = ξ(H1;x, y, z, t) · ξ(H2;x, y, z, t)
(4) for any e ∈ E(H), we have

ξ(H;x, y, z, t) = ξ(H − e;x, y, z, t6=e)
+ yteξ(H/e;x, y, z, t6=e)
+ zteξ(H † e;x, y, z, t⊥e)

where t6=e = {tf : f ∈ E(H − e)} and t⊥e = {tf : f ∈ E(H † e)}.

Proof. Let (I, J) be a vertex disjoint pair. Let p(H; I, J) =
xk(HItJ )−k(H×J)y|I|+|J|−k(H×J)zk(H×J)

∏
i∈ItJ . Observe that e 6∈ EItJ if and only

if (I, J) is a vertex disjoint pair for H−e. In such a case we see that p(H−e; I, J) =
p(H; I, J). Now suppose e ∈ EJ , say ej , and that it is in its own component.
Then (I, J − j) is a vertex disjoint pair for H † e, and moreover p(H; I, J) =
ztep(H † e; I, J − j). Suppose ej is not in an isolated component. Then (I, J − j) is
a vertex disjoint pairt for H/e and p(H; I, J) = ytep(H/e; I, J − j). Moreover, this
covers all vertex disjoint pairs (I, J) of H/e for which (I, J+j) is vertex disjoint for
H but (I+ j, J) is not. Now suppose e = ei, i ∈ I. Then (I− i, J) is vertex disjoint
for H/e, and p(H; I, J) = p(H/e; I − i, J). This covers all vertex disjoint pairs
(I, J) of H/e for which (I + i, J) is a vertex disjoint pair for H. Thus, summing
over all (I, J), we obtain the result. �
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Similar to [AGM10], we could study the most general hyperedge elimination
recurrence. We would discover some necessary conditions for a polynomial satis-
fying such a recurrence to be independent of the order of edges chosen. Likewise,
we would find sufficient conditions, and every polynomial meeting these sufficient
conditions is, up to prefactor, and evaluation of the multivariate hyperedge elimi-
nation polynomial. However, it appears that not all polynomials which satisfy the
hyperedge elimination recurrence are evaluations of ξ(H;x, y, z, t).

5.1. Substitutions of the Multivariate Hyperedge Elimination Polyno-
mial. In this section, we consider what happens when we evaluate some of the
variables in ξ(H;x, y, z, t) at 0. Most of these evaluations extend known results for
graphs. Note that ξ(H;x, y, z, t) = xn when te = 0 for all edges e.

First, if we evaluate at z = 0, we see that our hyperede elimination recurrence
only involves deletion and contraction, and thus we end up with the multivariate
Tutte polynomial (defined in terms of the Potts model). Note that for graphs,
this notion of multivariate Tutte polynomial is equivalent to the usual definition of
the Tutte polynomial, up to some substitution of variables and prefactor. That is,
ξ(H;x, y, 0, t) = Z(H;x, yt), and it is known [Sok05] T (H;x, y) = (x−1)−c(H)(y−
1)−|V |Z(H; (x− 1)(y − 1), y − 1), where T (H;x, y) is the usual Tutte polynomial.

Now we consider setting y = 0. In this case, our recurrence only involves dele-
tion and extraction. One can check that the resulting recurrence is satisfied by the
multivariate matching polynomial µ(H;x, y, t). Consider an edge e. Any matching
not involving e is enumerated in H − e. Any matching involving e is enumer-
ated by yeµ(H † e;x,y 6=e). So µ(H;x,y) = µ(H;x,y) + yeµ(H;x,y 6=e). Hence
ξ(H;x, 0, z, t) = µ(H;x, zt).

Finally, consider the case x = 0. This case was not considered by Averbouch et al
[AGM10], and actually yields an interesting polynomial for hypergraphs. If H has
an isolated vertex, the result is 0. So suppose H has no isolated vertices. In terms of
subset expansions, the only terms that do not vanish correspond to disjoint vertex
pairs (I, J) for which k(HItJ) = k(H × J). In such a situation I = ∅, and H must
not have any isolated vertices. Then we see that k(HJ) = k(H × J), which is true
if and only if EJ is a hyperedge cover of H. Therefore the subset expansion reduces
to a summation over hyperedge coverings, and we see that we obtain the hyperedge
cover polynomial. Thus κ(H;x, y, t̄) = ξ(H; 0, x, xy, t̄). One could also verify the
hyperedge elimination recurrence, and the initial condition κ(E1, x, y, t̄) = 0.

5.2. The Multivariate Hyperedge Elimination Polynomial for certain hy-
pergraphs. Let Pm,r be the r-uniform elementary path hypergraph with m edges,
where r ≥ 2, m ≥ 1. That is, Pm,r has edges e1, . . . , em, where each edge has
exactly r vertices. Moreover, |ei−1 ∩ ei| = 1 for 2 ≤ i ≤ m, and |ei ∩ ei+1| = 1 for
1 ≤ i ≤ m− 1, and these edges sets are otherwise disjoint.

Let Pm,r(x, y, z) = ξ(Pm,r;x, y, z). For fixed r, we have thus defined a sequence
of polynomials.

Consider applying hyperedge elimination to the edge e1. We see that Pm,r − e1

has r − 1 isolated vertices, and then Pm−1,r as the remaining component. Thus
ξ(Pm,r − e) = xr−1ξ(Pm−1, r). Similarly, ξ(Pm,r/e) = ξ(Pm−1,r), and ξ(Pm,r † e) =
xr−2ξ(Pm−2,r).

Thus Pm,r(x, y, z) = (xr−1 +y)Pm−1,r(x, y, z)+zxr−2Pm−2,r(x, y, z), for m > 2,
with initial conditions P0,r(x, y, z) = 1 and P1,r(x, y, z) = xr + yxte + zte. Setting
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x = z = 1 and y = x − 1, we specialize to the Fibonacci polynomials. That is
Pm,r(1, x−1, 1) = Fm+2(x). From this recurrence, one can show that the generating

function Pr(x, y, z, q) =
∑
m≥0 Pm,r(x, y, z)q

m is given by 1+xr+yx+z+q(xr−1+y)
1−q(xr−1+y)−q2zxr−2 .

Let Cm,r be the r-uniform elementary hypercycle with m ≥ 3 edges. That is,
Cm,r is obtained from Pm,r by identifying some vertex in e1 \ e2 and em \ em−1.
Let Cm,r(x, y, z) = ξ(Cm,r;x, y, z). Then Cm,r(x, y, z) = xr−2Pm−1,r(x, y, z) +
yCm−1,r(x, y, z)+zx2r−4Pm−3,r(x, y, z). This is shown by applying hyperedge elim-
ination to any edge of Cm,r. One can use this to give a recurrence for Cm,r of order
3. However, we do not take this approach, as it is tedious.

6. The Multivariate Chromatic Polynomial

Now we define the multivariate chromatic polynomial, which generalizes the
coboundary polynomial and bivariate chromatic polynomial of graph. Let q be a
positive integer. Then a function f : V (H) → [q] is refered to as a q-coloring. A
hyperedge ei is monochromatic if f(u) = f(v) for all u, v ∈ e. The coloring f is
proper if it has no monochromatic hyperedge. Let p ≤ q be a positive integer.
We now view 1, . . . , p as primary colors. A primary hyperedge edge e satisfying
f(u) = f(v) ≤ p for all u, v ∈ e. Given a coloring f , let P (f) denote the set of
primary edges. That is, it is an edge whose vertices are all colored with the same
primary color.

Let

P (H; p, q, t) =
∑

f :V→[q]

∏
e∈P (f)

te

We see that for every pair of positive integers p ≤ q, this defines a multivariate
polynomial in the tes. However, we will show that P (H; p, q, t) actually is a multi-
variate polynomial in variables te, p and q. We call this polynomial the multivari-
ate chromatic polynomial. Also, we call P (H; p, t) = P (H; p, p, t) the multivariate
coboundary polynomial (as it specializes to the coboundary polynomial upon setting
all te = t). We see that P (H; p, q) = P (H; p, q, 0) is the bivariate chromatic poly-
nomial defined by Dohmen Pönitz and Tittman [DPT03]. Finally, let P (H; p, q, t),
the trivariate chromatic polynomial be obtained by setting all te = t. Next we prove
a theorem that expresses the multivariate chromatic polynomial of H in terms of
coboundary polynomials of section hypergraphs of H. This generalizes a result of
Dohmen et al [DPT03].

Theorem 4. P (H; p, q, t) =
∑
S⊂V P (H × S; p, t)(q − p)|V |−|S|

Proof. Let S be a set of vertices, p ≤ q be positive integers, and consider the
set PS of all q-colorings of H that only assign primary colors to vertices of S.
Let P (S) =

∑
f∈PS

∏
e∈P (f) te. Given such a coloring f , f |S is a p-coloring of

H × S, and the monochromatic edges of this coloring are the primary edges of H.
Moreover, there are (q − p)|V |−|S| colorings f ′ that only assign primary colors to
S, and satisfy f ′|S = f |S . Thus we see that P (S) = P (H × S; p, t)(q − p)|V |−|S|.
Clearly P (H; p, q, t) =

∑
S⊂V P (S), and the result follows. �

6.1. Multivariate Section Polynomial of a Hypergraph. Recall that we de-
fined the multivariate Section Polynomial by S(q, t) =

∑
S⊂V q

|V |−|S|∏
e∈E(H×S) te.

Then the next result may be viewed as a multivariate generalization of the result
of Dohmen et al [DPT03].
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Proposition 5. S(H; q, t) = P (H; 1, q + 1, t).

Proof. We know that P (H; 1, q + 1, t) =
∑
S⊂V q

|V |−|S|P (H × S; 1, t), and clearly
P (H; 1, t) =

∏
e∈E(H) te for any hypergraph H. �

Note that we obtain the transversal polynomial upon setting t = 0.

6.2. A Möbius Function Interpretation and Connected Partitions. Given
a partition π of V , we say that π is a connected partition if H × S is a connected
hypergraph for each block S of π that is not a singleton. Let ΠH denote the
collection of connected partitions of H, ordered by refinement. Observe that ΠH

is an example of a lattice. It has a unique minimum element, corresponding to the
partition of V into singletons. It also has a maximum element, corresponding to
partitioning V into the vertex sets of the components of H.

Given a connected partition π, and positive integers p ≤ q, let f(π) denote the
number of colorings such that:

• f(u) > p if and only if u is a singleton in π
• if e is a primary edge, then e ⊂ S for some block S of π

Note that this definition is equivalent to the definition of f(π) given in the paper of
Dohmen et al [DPT03]. By abuse of notation, we write e ⊂ π to mean the vertex
set of e is a subset of some block of π. Then P (H; p, q, t) =

∑
π∈ΠH

f(π)
∏
e:e⊂π te.

Also, let k1(π) denote the number of singletons of π. Then

qk1(π)p|π|−k1(π) =
∑
σ≥π

f(σ)

Using Möbius inversion and combining these two facts, we obtain:

Theorem 6. P (H; p, q, t) =
∑
π≤σ∈ΠH

qk1(σ)p|σ|−k1(σ)
∏
e:e⊂π te.

This gives a proof that P (H; p, q, t) is a polynomial. This theorem generalizes
known results in the case te = 0 [DPT03], and the case p = q [BO92].

6.3. Hyperedge Elimination for the Multivariate Chromatic Polynomial.

Theorem 7. P (H; p, q, t) satisfies the following:

(1) P (E0; p, q, t) = 1
(2) P (E1; p, q, t) = q
(3) P (H1 tH2; p, q, t) = P (H1; p, q, t) · P (H2; p, q, t)
(4) for any e ∈ E(H), we have

P (H; p, q, t) = P (H − e; p, q, t6=e)
+ (te − 1)P (H/e; p, q, t 6=e)
+ (1− te)(q − p)P (H † e; p, q, t⊥e)

where t 6=e = {tf : f ∈ E − e}, t⊥e = {tf : f ∈ E † e}.

Proof. The only difficult statement is the hyperedge elimination recurrence. Given
a coloring f , let p(H, f) =

∏
e∈P (f) te. We consider three different types of colorings:

if the edge e is primary under the coloring f , then we say f is of type 3. If e is
monochromatic but not primary, we say it is of type 2. Otherwise, we say f is of
type 1. Let Pi(H;x, y, z, t) be the summation previously defined for P (H; p, q, t),
but restricted only to colorings of type i. Then P (H; p, q, t) = P1(H; p, q, t) +
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P2(H; p, q, t) +P3(H; p, q, t). We also divide colorings of H/e into two types. Such
a coloring is of type a if f(ve) ≤ p, and is of type b otherwise.

Suppose f is of type f is of type 1. Then f is a coloring of H−e and P (H−e, f) =
p(H, f). If f is of type 3, then we see that f is a coloring of H − e and f induces a
coloring on H/e by making ve the same color as the vertices of e. Then p(H, f) =
p(H−e, f)+(te−1)p(H/e, f ′). Note that f ′ is a coloring of type a. Finally, suppose
f is of type 2, and let f ′ be the induced coloring onH/e, f ′′ be the coloring restricted
to V − e. Then p(H, f) = p(H − e, f) + (te − 1)p(H/e, f) + (1− te)P (H † e, f ′′).

We see that if we substitute these relations in the summation P1 + P2 + P3, we
have the term P (H − e; p, q, t). Also note that given a coloring f ′′ of H † e, and an
element i > p, we obtain a coloring f of type 3 from f ′′ by assigning all vertices
of e the color i. We see that we obtain all colorings of type 3 this way, and so we
have obtained (1− te)(q − p)P (H † e; p, q, t).

The only remaining terms involve colorings ofH/e, and we obtain (te−1)P (H/e; p, q, t).
�

Note that this allows us to conclude that P (H; p, q, t̄) is a substitutions of
ξ(H;x, y, z, t̄). It is not hard to show that the converse is also true, so these poly-
nomials are equivalent.

6.4. Multivariate Chromatic Polynomial for Special Classes of Hyper-
graphs. Here we study the multivariate chromatic polynomials of complete r-
uniform hypergraphs, complete r-uniform hyperstars, and sunflower hypergraphs.
In some sense, this demonstrates some of the beauty of studying multivariate chro-
matic polynomials: trying to obtain the equivalent expressions from the hyperedge
elimination recurrence, or from subset expansion seem unlikely, but the coloring
interpretation makes it much simpler.

We say that an r-uniform hypergraph is a hyperstar if ∩e∈He 6= ∅. Given v ∈ V ,
H is a complete r-uniform hyperstar centered at v if the edge set consists of all
r-subsets of V containing v (with no parallel edges). Such hypergraphs are unique
up to isomorphism, so we define the complete r-uniform hyperstar on [n] to consist
of all r-subsets of [n] containing the vertex n. We denote this graph by Hn,r.

P (Hn,r; p, q, t) = qn +
∑

S:S⊂[n−1],|S|≥r−1

p(tS+n − 1)(q − 1)n−|S|−1

where tS+n =
∏
T :n∈T⊂S+n,|T |=r tT . Fix a coloring f . Then there exists a set of

vertices S such that f(v) = f(n) for all v ∈ S. If |S| > r − 1, and f(n) ∈ [p], then
there are primary edges contained in S. Thus we get a contribution of tS+n from
this coloring. There are (x − 1)n−|S| ways we could have colored the remaining
vertices. So there are p(q − 1)n−|S|−1 colorings f for which S is the set of vertices
with the same color as n, and n receives a primary color. For each of these, we
have a contribution tS+n. We also add a term qn to count all colorings, including
those which have no primary edges. Finally, the −1 portion of the term tS+n − 1
comes from the fact that qn counts colorings with primary edges, but with the
contribution 1 instead of tS+n, so we cancel these colorings out with the minus one
term.
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Setting te = t for all edges e, we obtain:

P (Hn,r; p, q, t) = qn +

n−1∑
k=r−1

(
n− 1

k

)
p(t(

n−1
k ) − 1)(q − 1)n−k−1

Another interesting class of hypergraphs is the class of sunflowers. A sunflower
hypergraph H is a hypergraph with a set S ⊆ V such that S ⊆ e for every hyperedge
e, and {e \ S : e ∈ E(H)} is a collection of pairwise disjoint sets. Note that we
require H to have no parallel hyperedges. We refer to the vertices of S as seeds.
Let H be a sunflower graph with edge set {e1, . . . , e`}.

We have

P (H; p, q, t) = qn +
∑

S⊂E(H)

p(tS − 1)
∏
e 6∈S

(q|e|−s − 1)

where s is the number of seeds of H, and tS =
∏
e∈S te. Given a coloring f , if H

has any primary edges, then they are all of the same primary color (since every
edge contains all seeds). Also, since edges are disjoint apart from the set of seeds,
we can consider the edges separately. That is, we can choose to consider functions
based on the set of edges they leave monochromatic. Let S be a set of edges. Then
there are p ways to choose a color to make all the edges of S primary, and for every
edge not in S, there are q|e|−s ways to color the vertices of those edges that are
not seeds. Thus we obtain the summation. The term tS − 1 comes from the fact
that we are enumerating colorings that leave S primary twice: once corresponding
to the term qn, which has the wrong weight. Thus tS − 1 corrects this weight.

Suppose Sr,`,s is the r-uniform sunflower hypergraph with ` edges and s seeds.
Then we have

P (Sr,`,s; p, q, t) = qn +
∑̀
k=1

p

(
`

k

)
(tk − 1)(qr−s − 1)`−k.

7. Future Work

We have chosen not to investigate computation complexity questions in this
paper. One question is to write an algorithm to determine the coefficients of
ξ(H;x, y, z, t) or P (H; p, q, t). For graphs, polynomial time algorithms exist, pro-
vided we assume the graphs have bounded tree-width. It seems techniques in this
area should work for hypergraphs. We ask the following question: given integers
m, p and k, is there a polynomial time algorithm for computing the multivariate
chromatic polynomial of a hypergraph H, provided the maximum size of an edge of
H is at most m, there are at most p pairwise parallel edges, and H has hypertree-
width at most k? Is the runtime of such an algorithm a polynomial in n, m, p and
k? Note that the purpose behind including parameters p and d is to ensure that
there is a polynomial bound on the number of edges of H, and hence the number
of variables te.

Another common question is to determine the computational complexity of eval-
uating the polynomials in general at a given point. However, this question does not
make sense for multivariate polynomials, so we have to consider ’labeled’ versions
of our polynomials, such as what is studied by Averbouch, Godlin and Makowsky
[AGM10]. We note that one can take such an approach. Rather than define labeled
variants of the hyperedge elimination polynomial, we state the question only for
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the hyperedge elimination polynomial. Given a point (x0, y0, z0), and an integer d,
what is the complexity of determining ξ(H;x0, y0, z0) for all d-uniform hypergraphs
H? We restrict the question to d-uniform hypergraphs, because otherwise we al-
ready know that ξ(H;x0, y0, z0) is at least #P -hard to evaluate for all but a finite
choice of (x0, y0, z0), because this is already true for graphs. However, for d > 2,
this does not immediately follow from the case of graphs. The proof techniques
from graph polynomials seem like they are still applicable.

Finally, there is a notion of mixed-hypergraph coloring. A mixed hypergraph
has two types of hyperedges, called type C and type D. For a mixed hypergraph,
a coloring is proper if no edge of type C is monochromatic, and no edge of type D
is rainbow. Recall that an edge is rainbow if each of its vertices get distinct colors.
There is a chromatic polynomial for mixed hypergraphs, and it can be computed
usings a recursive algorithm, known as splitting-contraction. One could naturally
consider a mixed hypergraph analogue of the multivariate chromatic polynomial. It
would be interesting to see if there is any deletion-contraction-extraction analogue
of splitting-contraction in this case, and if there are interesting evaluations for such
polynomials.

References

[AGM10] Ilia Averbouch, Benny Godlin, and J. A. Makowsky, An extension of the bivariate

polynomial, European J. Combin. 31 (2010), no. 1, 1–17. MR 2552585
[BO92] Thomas Brylawski and James Oxley, The Tutte polynomial and its applications, Ma-

troid applications, Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, Cam-

bridge, 1992, pp. 123–225. MR 1165543 (93k:05060)
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