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STOCHASTIC POISSON EQUATIONS ASSOCIATED TO LIE

ALGEBROIDS AND SOME REFINEMENTS OF A PRINCIPAL

BUNDLE

Gheorghe IVAN and Dumitru OPRIŞ

Dedicated to Professor doctor docent Dan I. Papuc at his 80th anniversary

Abstract. The aim of this paper is to present the stochastic Poisson equations as-

sociated to Lie algebroids. The obtained results are used for determination of stochastic

Poisson equations associated to a refinement of a principal bundle having the affine group

as structurgroup and defined by the linear group. 1

1 Introduction

The stochastic Poisson equations has been introduced by J. -M. Bismut in [4]
for Brownian motions. These have extended for semimartingales in [5]. In the paper
[8] suggest to the study of stochastic Poisson equations on Lie algebroids, to have
care in that the dual space of the algebroid is endowed with a Poisson structure.

In this paper we give an answer of the above question and one obtains in a
canonical way the stochastic Poisson equations on Lie algebroids. These results are
used for to write the stochastic Poisson equations associated to the principal bundles
which compose a tissue defined by the principal bundle of affine tangent frames on
a manifold and the sequence GA(n,R) ⊃ GL(n,R) ⊃ {e = (δij)} , studied by Dan
I. Papuc in [9](1972; MR 53 # 4058) and Dan I. Papuc and Ion P. Popescu in [10]
(1973; MR 57 # 13739). For more details concerning the tissues and refinements of
a differentiable principal bundles defined by closed subgroups of the structure group
can be consult the paper [7] ( Gh. Ivan and D. Opriş, 2002; MR 2005 b: 55032) and
the references.

The paper is structured as follows. In Section 2, some basic facts on manifold
valued semimartingale and stochastic Poisson equations are reviewed. In Section 3
are established the stochastic Poisson equations on a Lie algebroid. The stochastic
Poisson equations associated to a refinement of principal bundles defined by the
affine group and linear group are described in Section 4.

The study realized in this paper may be extended to other manifolds which are
equipped with Poisson structures.

Throughout this paper all the geometrical objects like, manifolds, maps and
functions always be assumed to be smooth.

1AMS classification: 60H10, 53D17, 55R05.
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2 Manifold valued semimartingale and stochastic Pois-

son equation

We recall the minimal necessary backgrounds on stochastic differential ge-
ometry (for notation, concepts and further details see [3], [8]).

Let M be a smooth manifold of dimension n. A continuous M− valued stochas-
tic process Γ defined on the filtered probability space (Ω,F, P, {Ft}t≥0) is called a
semimartingale if, for any f ∈ C∞(M), the process f ◦ Γ is a real valued semi-
martingale.

Let now V be a real vector space of dimension r. Let (M, {·, ·}) be a Poisson
manifold, X : R+ × Ω → V a semimartingale that takes values on V with X0 = 0
( X0 is the initial value of X ), and h : M → V ∗ is a smooth function (V ∗ denotes
the dual of V ).

Let {ea|a = 1, r} be a basis of V ∗, and h ∈ V ∗ such that h = hae
a.

The Hamiltonian equation with stochastic component X, and Hamiltonian func-
tion h, is the Stratonovich differential equation:

δΓh = H(x,Γh)δX, (2.1)

defined by the Statonovich operator H(v, z) : TvV → TzM given by

H(v, z)u =< ea, u > Xha
(z). (2.2)

We will refer to Γh as the Hamiltonian semimartingale associated to h with initial
condition γ0, ([8]).

Proposition 2.1. ([8]) Let (M, {·, ·}) be a Poisson manifold, X : R+ × Ω → V a
semimartingale and h : M → V ∗ a smooth function. Let Γ0 be a F0− measurable
random variable and Γh the Hamiltonian semimartingale associated to h with initial
condition Γ0. Let ξh be the corresponding maximal stopping time. Then, for any
stopping time τ < ξh the Hamiltonian semimartingale Γh satisfies

f(Γh
(τ))− f(Γh

(0)) =

τ∫

0

{f, ha}(Γ
h)dXa +

1

2

τ∫

0

{{f, ha}, hb}d[X
a,Xb], (2.3)

for all f ∈ C∞(M).

From (2.3) follows

xi(Γh
(τ))− xi(Γh

(0)) =

τ∫

0

{xi, ha}(Γ
h)dXa +

1

2

τ∫

0

{{xi, ha}, hb}d[X
a,Xb], (2.4)

for i = 1, n, a, b = 1, r.
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The relations (2.4) can be written in the following form:

dxi = {xi, ha}dX
a + {{xi, ha}, hb}d[X

a,Xb], i = 1, n, a, b = 1, r. (2.5)

Let (M, {·, ·}) be a Poisson manifold and the smooth functions ha ∈ C∞(M), a =
0, 1, 2, ..., r. Let h : M → Rr+1 be the Hamiltonian function and consider the
semimartingale X : R+ × Ω → Rr+1 given by X(t, ω) = (t, B1

t (ω), ..., B
r
t (ω)),

where Ba, a = 1, r are r− independent Brownian motions. Lévy’s characterization
of Brownian motion shows ([4]) that [Ba, Bb]t = tδab.

In this setup, the equation (2.3) reads

f(Γh
(τ))− f(Γh

(0)) =

τ∫

0

({f, ha}(Γ
h)dXa + δab{{f, ha}, hb})dt+

τ∫

0

{f, ha}dB
a, (2.6)

dxi = ({xi, h0}+ δab{{xi, ha}, hb})dt+ {xi, ha}dB
a, (2.7)

for i = 1, n, a, b = 1, r.
These equations have been studied by Bismut in [4] in the particular case in

which the Poisson manifold (M, {·, }̇ is just the symplectic Euclidean space R2n

with the canonical symplectic form.

Proposition 2.2. Let (Rn, {·, ·}) be a Poisson manifold with {xi, xj} = Λij
k x

k, and
ha = αaix

i, a = 1, r with αai ∈ R. The equation (2.7) is given by

dxi = (Λij
ℓ

∂h0
∂xj

+ δabαajαbkΛ
ij
p Λ

k
pℓ)x

ℓdt+ αajΛ
ij
ℓ x

ℓdBa, (2.8)

for i, j, k, ℓ, p = 1, n, a, b = 1, r.

The equations (2.8) are called the stochastic Poisson equations associated to
Poisson manifold (Rn, {·, ·}).

Applying the relations (2.8) for the Poisson structures defined on R3,R6,R9

one obtains the stochastic Poisson equations for the rigid body on SO(3), SO(2, 1),
heavy top etc. ([1]).

3 Stochastic Poisson equations associated to a Lie alge-

broid

The theory of Lie algebroids has recently proved to be extremely fruitful in
tackling some problems in the context of geometric mechanics ([8]). Recall that the
dual of a Lie algebroids admits a canonical Poisson structure and, therefore, one can
naturally consider Hamiltonian systems on them. According to the results and the
acceptance of this new formalism we shall investigate the consequences of having
stochastic processes taking values on their duals for mechanical purposes.
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A Lie algebroid A over a manifold M is a vector bundle π : A → M together
with a Lie algebra structure [·, ·] on the space of sections Sec(A) and a bundle map
b : A → TM ( called anchor map) such that:

(i) the induced map b : Sec(A) → Sec(TM) = X(M) is a homomorphism of Lie
algebras;

(ii) for any a1, a2 ∈ Sec(A) and smooth function f ∈ C∞(M), the Leibniz
identity holds:

[a1, fa2] = f [a1, a2] + b(a1)(f)a2. (3.1)

For a Lie algebroid (E, π,M, [·, ·], b), we consider the manifold M of dimension
n and denote the rank of the vector bundle A with r. Recalling the construction of
a canonical Poisson bracket on the dual A∗ of the vector bundle A ([2]). If one fixes
local coordinates (xi), i = 1, n over a trivializing neighborhood U ⊂ M and choose a
basis of local sections {eα|α = 1, r} of the vector bundle A, then the corresponding
local coordinates on A are denoted by (xi, yα), i = 1, n, α = 1, r.

The local expression of a section a ∈ Sec(A) with to respect the basis {eα} is
a = aαeα, with aα ∈ C∞(U), α = 1, r. Since eα ∈ Sec(A), we have b(eα) ∈ X(U)
and [eα, eβ ] ∈ Sec(A). Then there exists the functions biα, C

γ
αβ ∈ C∞(U) such that:





b(eα) = biα
∂

∂xi
, for i = 1, n, α = 1, r

[eα, eβ ] = Cγ
αβeγ , for α, β, γ = 1, r.

(3.2)

The functions biα, C
γ
αβ ∈ C∞(U) given by the relations (3.2) are called the structure

functions of the Lie algebroid (E, [·, ·], b) with to respect the chosen local coordinates
system.

The defining relations for a Lie algebroid translate into certain partially differ-
ential equations involving its structure functions.

One define a Poisson structure on A∗ as follows. Let {ξα} the linear coordinates
on the fibers of A∗ associated with the basis of local sections eα, α = 1, r. The
Poisson bracket {·, ·} on C∞(A∗) is defined by

Λij = {xi, xj} = 0, Λi
α = {xi, ξα} = biα, Λα,β = {ξα, ξβ} = Cγ

αβξγ , (3.3)

for i, j = 1, n, α, β, γ = 1, r.

One checks that this bracket is independent of the choice of local coordinates
and basis.

Let a ∈ Sec(A) be a section of the vector bundle A. Then it defines in a natural
way a function fa : A∗ → R which is linear in the fibers and is given by

fa(x, ξ) = aα(x)ξα, α = 1, r. (3.4)
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Proposition 3.1. ([2]) The assignement a 7→ fa defines a Lie algebra homomor-
phism (Sec(A), [·, ·]) → (C∞(A∗), {·, ·}). Moreover, the Hamiltonian vector field
associated with fa is given by

Xfa = biβa
β ∂

∂xi
+ (aγCλ

βγ − bjβ
∂aλ

∂xj
)ξλ

∂

∂ξβ
, i, j = 1, n, β, γ, λ = 1, r. (3.5)

Let be the functions fs : A
∗ → R for each s = 1, p, where

fs(x, ξ) = aαs (x)ξα, α = 1, r. (3.6)

Using the relations (3.3) and (3.6), from (2.7) we obtain the stochastic Poisson
equations associated to h : A∗ → R and fs, s = 1, p, given by





dxi = (biα
∂h

∂ξα
+ δsubkλa

λ
s

∂

∂xk
(biβa

β
u))dt + biβa

β
s dB

s,

dξα = (biα
∂h

∂xi
+ Cγ

αβξγ
∂h

∂ξβ
+ δsubjγ

∂

∂xj
(biα

∂aγu
∂xi

)aεsξε+

+δsuCε
θγb

i
α

∂aθu
∂xi

aγsξε)dt+ (biα
∂aλs
∂xi

ξλ + Cγ
αµa

µ
s ξγ)dB

s.

(3.7)

Let the tangent bundle TM → M and cotangent bundle T ∗M → M . The total
space of the vector bundle T ∗M ⊕A∗ has the Poisson structure {·, ·}, defined by

{
Λij = {xi, xj} = 0, Λi

j = {xi, pj} = δij , Λi
α = {xi, ξα},

Λij = {pi, pj}, Λαβ = {ξα, ξβ} = Cγ
αβξγ , Λiα = {pi, ξα}.

(3.8)

Proposition 3.2. The stochastic Poisson equations defined by h : T ∗M ⊕A∗ → R

and functions gs : T
∗M ⊕A∗ → R, s = 1, p, given by





gs(x, p, ξ) = aαs (x)ξα + dispi, s = 1, p,

h(x, p, ξ) =
1

2
kij(x)pipj + kiα(x)piξα +

1

2
kαβ(x)ξαξβ,

(3.9)
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are





dxi = (kij + biαk
jα)pj + (kiβ + biαk

αβ)pβ + δsu(dju + bjαaαu)·

·
∂

∂xj
(ais + biαa

α
s ) + (dis + biαa

α
s )dB

s(t),

dpj = (−(
1

2

∂khℓ

∂xj
phpℓ + δus(bmα aαu + dmu )(

∂2aγs
∂xm∂xj

ξγ +
∂2dis

∂xm∂xj
pi)−

−δsu
∂dαs
∂xj

(
∂aαu
∂xℓ

ξα +
∂diu
∂xℓ

pi))dt+ (
∂aαs
∂xj

ξα +
∂dis
∂xj

pi)dB
s(t),

dξα = (−biα(
1

2

∂khℓ

∂xi
phpℓ +

∂kαβ

∂xi
ξαξβ +

1

2

∂kjβ

∂xi
pjξβ)−

−δus(bℓβa
β
u + dℓu) ·

∂

∂xℓ
(biα

∂aβs
∂xi

ξβ + biα
∂djs
∂xi

pj) + δsubiα(
∂dℓs
∂xi

+ bℓγ
∂aγs
∂xi

)·

·(
∂aµu
∂xℓ

ξµ +
∂djs
∂xi

pj))dt− biα(
∂aβs
∂xi

ξβ +
∂djs
∂xi

pj)dB
s(t).

(3.10)

4 Stochastic Poisson equations associated to refine-

ment of a principal bundle having the affine group

as structure group

We start with some definitions and results of [3] that we will use later.

Let πG : P → M be a left principal bundle with the Lie group G as structure
group, where M = P/G. Let G the Lie algebra of the Lie group G. The associated
bundle with standard fibre G, where the action of G on G is the adjoint action is called
the adjoint bundle and it is denoted by G̃G = AdG(P ). We let π̃G : G̃G → M = P/G
denote the projection given by π̃G([q, ξ]G = [q]G.

Consider now the bundle TM ⊗ G̃G → M and we assume that is given a (
principal) connection AG on the principal bundle πG : P → M, determined by
the local functions {Aa

i (x)} on M. Given the basis {εa|a = 1, p} for the Lie algebra

G having {Ca
bc} as structure constants, one obtains the local basis {

∂

∂xi
, εa} for

Sec(TM ⊗ G̃G) such that [εa, εb] = Cc
abεc.

The corresponding covariant derivative ∇̃AG

ξ of a section ξ = ξaεa and X ∈
Sec(TM) reads

∇̃AG

X ξ = Xi(
∂ξa

∂xi
+ Ca

bcA
Gb
i ξc)εa. (4.1)
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The curvature B̃AG

of the connection A is given by

B̃AG

=
1

2
B̃Ga

ij dxi ∧ dxjεa, where (4.2)

B̃Ga
ij =

∂AGa
j

∂xi
−

∂AGa
i

∂xj
+ Ca

bcA
Gb
i AGc

j . (4.3)

Let Xi ⊕ ξi ∈ Sec(TM ⊕ G̃G), i = 1, 2 be given two sections. Then

[X1 ⊕ ξ1,X2 ⊕ ξ2] = [X1,X2]⊕ ∇̃AG

X1
ξ2 − ∇̃AG

X2
ξ1 − B̃AG

(X1,X2) + [ξ1, ξ2]. (4.4)

For {
∂

∂xi
⊕ εa, i = 1, n, a = 1, p we have

[
∂

∂xi
⊕ εa,

∂

∂xj
⊕ εb] = (Cd

cbA
Gc
i − Cd

caA
Gc
j − B̃AGd

ij + Cd
ab)εd. (4.5)

Let (xi, ẋi, ξa) the local coordinates of TM⊕ G̃G and (xi, pi, µa) the local coordinates

of T ∗M ⊕ G̃G∗

. The structure Poisson on T ∗M ⊕ G̃G∗

is given by

{
{xi, xj} = 0, {xi, pj} = δij , {pi, pj} = −Bc

ijµc,

{pi, µa} = −Cd
caA

c
iµd, {µa, µb} = Cc

abµc, {xi, µa} = 0.
(4.6)

Using the method for determination of Poisson equations in the case of Lie algebroids
one obtains the following proposition.

Proposition 4.1. The stochastic Poisson equations defined by the functions h :
T ∗M ⊕ G̃G∗

→ R and f : T ∗M ⊕ G̃G∗

→ R with f(x, p, µ) = aj(x)pj + da(x)µa are





dxi = (
∂h

∂xi
+

∂ai

∂xℓ
aℓ)dt+ aidB(t),

dpi = (−
∂h

∂xi
−Bc

ijµc
∂h

∂pj
− Cd

caµaA
c
i

∂h

∂µa
+ {{pi, f}, f})dt−

−(Bc
ijµca

j + Cd
caµdA

c
id

a)dB(t),

dµa = (Cd
caµdA

c
j

∂h

∂pj
+ Cc

abµc
∂h

∂µb
+ {{µa, f}, f})dt+

+(Cd
caµdA

c
ja

j + Cc
abµcd

b)dB(t).

(4.7)

Let πG : P → M = P/G the principal bundle with the structure group G.
We assume that is given a sequence N2 = (G ⊃ K ⊃ {e}) of closed subgroups
of G. If we denote η = (P, πG,M = P/G,G), then the pair (η,N2) determines a
refinement (η; η01, η12) of η defined by K, where η01 = (P/K, πGK ,M,G/K,G/N)
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and η12 = (P, πK , P/K,K), and N is the largest normal subgroup of G included in
K ( see Papuc [9], Ivan and Opriş [7]).

Let AG and AK two connections on P given by the forms AG : TP → G, AK :
TP → K, where G resp., K is the Lie algebra of G resp., K.

Let the adjoint bundles G̃G = AdG(P ) and K̃K = AdK(P ). The vector bundles

TM⊕ G̃G → M and T (P/K)⊕K̃K → P/K are called the reduced bundles associated
to refinement defined by the pair (η,N2).

Let us we apply the above considerations in the case when the group G =
GA(n,R) is the affine group and K = GL(n,R) is the linear group. We obtain thus
the sequence N2 = (G = GA(n,R) ⊃ K = GL(n,R) ⊃ {e}). The Lie algebra G of G
has the base {eij , ej } and we have [eij , e

ℓ
k] = δike

ℓ
j−δℓje

i
k, [eij , ek] = δikej , [ei, ej ] = 0.

The Lie algebra K of K has the base {eij} and we have [eij , e
ℓ
k] = δike

ℓ
j − δℓje

i
k.

Let πG : P → M the principal bundle having the affine group G as structure
group and the local coordinates (xi, yij , y

i) on P. The base of sections of the vector

bundle G̃G → M is εij = yhj
∂

∂yhi
, εj = yhj

∂

∂yh
.

Let AG a connection on the principal bundle πG : P → M given by the functions
(Ah

kr, A
h
k) on M. From (4.1) follows





∇̃AG

∂

∂xi

εℓk = (Ap
kiδ

ℓ
q −Aℓ

qiδ
p
k)ε

q
p −Aℓ

iεk,

∇̃AK

∂

∂xr

εk = Ai
krεi,

B̃AG

=
1

2
(Bℓ

kijdx
i ∧ dxj ⊗ εkℓ +Bℓ

ijdx
i ∧ dxj ⊗ εℓ).

(4.8)

Let (xi, pi, µ
ℓ
k, µℓ) the local coordinates on T ∗M ⊕ G̃G∗

. The structure Poisson is
given by the following relations





{xi, xj} = 0, {xi, µℓ
k} = 0, {xi, µℓ} = 0, {µi, µj} = 0,

{xi, pj} = δij , {pi, pj} = −Bℓ
kijµ

k
ℓ −Bℓ

ijµℓ,

{pi, µ
k
ℓ } = (Ap

kiδ
ℓ
q −Aℓ

qiδ
p
k)µ

q
p −Aℓ

iµk, {pi, µk} = Ap
kiµp,

{µi
j , µ

ℓ
k} = δikµ

ℓ
j − δℓjµ

i
k, {µi

k, µj} = δikµj.

(4.9)

Using the method for determination of Poisson equations in the case of Lie algebroids
one obtains the following proposition.

Proposition 4.2. The stochastic Poisson equations defined by the functions
h : T ∗M ⊕ G̃G∗

→ R and f : T ∗M ⊕ G̃G∗

→ R with
f(xi, pj , µ

ℓ
k, µℓ) = aj(x)pj + dkℓ (x)µ

ℓ
k + gℓ(x)µℓ
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are




dxi = (
∂h

∂pi
+

∂ai

∂xk
ak)dt+ aidB(t),

dpi = (
∂h

∂xi
− (Bℓ

kijµ
k
ℓ +Bℓ

ijµℓ)
∂h

∂pj
+ ((Ap

kiδ
ℓ
q −Aℓ

qiδ
p
k)µ

q
p−

−Aℓ
iµk)

∂h

∂µℓ
k

+Ap
kiµp

∂h

∂µk

) + {{pi, f}, f})dt+ {pi, f}dB(t),

dµℓ
k = (((Ap

kiδ
ℓ
q −Aℓ

qiδ
p
k)µ

q
p −Aℓ

iµk)d
k
ℓ +Ap

kiµ
ℓ
pg

i+

+{{µℓ
k, f}, f})dt+ {µℓ

k, f}dB(t),

dµi = (−Ap
ikµpa

k − µiδ
ℓ
kd

k
ℓ + {{µi, f}, f})dt+ {µi, f}dB(t).

(4.10)

Let πK : P → P/K the principal bundle having the affine group K = GL(n,R)
as structure group and the local coordinates (xi, qi) on P/K. The base of sections

of the vector bundle K̃K → P/K is εij = yhj
∂

∂xhi
.

Let AK a connection on the principal bundle πK : P → P/K given by the
functions (Ak

ij , B
k
ij) on P/K. From the relations (4.1) follows:





∇̃AK

∂

∂xi

εℓk = (Ap
kiδ

ℓ
q −Aℓ

qiδ
p
k)ε

q
p

∇̃AK

∂

∂qi

εℓk = (Bp
kiδ

ℓ
q −Bℓ

qiδ
p
k)ε

q
p

B̃AK

=
1

2
(Bℓ

kijdx
i ∧ dxj +Bℓ

kijdq
i ∧ dqj +Bℓ

kijdx
i ∧ dqj)⊗ εkℓ .

(4.11)

Let (xi, qi, ẋi, q̇i, ξℓk) the local coordinates on T (P/K) ⊕ K̃K and (xi, qi, pi, λi, µ
ℓ
k)

the local coordinates on T ∗(P/K) ⊕ K̃K∗

. The structure Poisson is given by the
following relations:





{xi, xj} = 0, {xi, qk} = 0, {xi, pj} = δij , {xi, λj} = δij ,

{xi, µℓ
k} = 0, {qi, qj} = 0, {qi, pj} = 0, {qi, λj} = 0,

{qi, µℓ
k} = 0, {pi, pj} = −

1

2
Bℓ

kijµ
k
ℓ , {pi, λj} = −

1

2
Bℓ

kijµ
k
ℓ ,

{pi, µ
ℓ
k} = (Ap

kiδ
ℓ
q −Aℓ

qiδ
p
k)µ

q
p, {λi, λj} = −

1

2
Bℓ

kijµ
k
ℓ ,

{λi, µ
ℓ
k} = (Bp

kiδ
ℓ
q −Bℓ

qiδ
p
k)µ

q
p, {µi

j , µ
ℓ
k} = δikµ

ℓ
j − δℓjµ

i
k.

(4.12)

Using the method for determination of Poisson equations in the case of Lie algebroids
one obtains the following proposition.
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Proposition 4.3. The stochastic Poisson equations defined by the functions
h : T ∗(P/K)⊕ K̃K∗

→ R and f : T ∗(P/K)⊕ K̃K∗

→ R with

f(xi, qi, pj, λj , µ
ℓ
k) = aj(x, q)pj + dj(x, q)λj + gjk(x, q)µ

k
j

are





dxi = (
∂h

∂pi
+ {{xi, f}, f})dt+ {xi, f}dB(t),

dpi = (−
∂h

∂xi
−

1

2
Bℓ

kijµ
k
ℓ + (Ap

kiδ
ℓ
q −Aℓ

qiδ
p
k)µ

q
p

∂h

∂µℓ
k

+

+{{pi, f}, f})dt+ {pi, f}dB(t),

dqi = (
∂h

∂λi
+ {{qi, f}, f})dt+ {qi, f}dB(t),

dλi = (−
∂h

∂qi
−

1

2
Bℓ

kijµ
k
ℓ + (Bp

kiδ
ℓ
q −Bℓ

qiδ
p
k)µ

q
p

∂h

∂µℓ
k

+

+{{λi, f}, f})dt+ {λi, f}dB(t),

dµℓ
k = (−(Ap

kjδ
ℓ
q +Aℓ

qjδ
p
k)µ

q
p
∂h

∂pj
− (Bp

kjδ
ℓ
q −Bℓ

kjδ
p
k)µ

q
p

∂h

∂λj
+

+(δℓjµ
i
k − δikµ

ℓ
j)

∂h

∂µi
j

+ {{µℓ
k, f}, f})dt+ {µℓ

k, f}dB(t).

(4.13)

The study of equations (3.10), (4.7), (4.10) and (4.13) enable by choosing of the
functions h and fa.
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[6] M. Émery, On two transfer principles in stochastic differential geometry.
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