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A DUALITY OF QUANTALE-ENRICHED CATEGORIES
DIRK HOFMANN AND PAWEL WASZKIEWICZ

ABSTRACT. We describe a duality for quantale-enriched categories that extends the Lawson
duality for continuous dcpos: for any saturated class J of modules that commute with certain
weighted limits, and under an appropriate choice of morphisms, the category of J-cocomplete
and J-continuous quantale-enriched categories is self-dual.

1. INTRODUCTION

In [12] we observed that the left adjoint to the Yoneda embedding in a quantale-enriched
category X can be interpreted as a notion of approximation in X. Thus in directed-complete
posets, approximation is the way-below relation [I1].I.1.; in complete lattices the totally-below
relation [22]; and in (generalised) metric spaces a distance {}: X x X — [0, 00| such that every
z € X is a “metric supremum” of {(—,z) [12].

The purpose of this paper is to develop a duality theory for O-categories that extends the
Lawson duality for continuous dcpos [20]. Recall that Lawson’s theorem states that the cat-
egory of continuous dcpos with Scott-open filter reflecting maps is self-dual. We show that
under an appropriate choice of morphisms the category of J-cocomplete and J-continuous
(= admitting approximation) Q-categories is self-dual. Our duality theorem holds for any satu-
rated class J of modules that preserve certain limits; therefore it works uniformly for continuous
domains, completely distributive complete lattices, Yoneda-complete quasi-metric spaces, to-
tally distributive Q-categories, and perhaps many other familiar structures from the borderline
of metric and order theory.

Our feet rest on shoulders of many. Hausdorff’s point of view that a metric is a relation
valued in non-negative real numbers, brought to light by [21], led to a development of an unified
categorical /algebraic description of topology, uniformity, order and metric [5, [7, [6]. The idea
of relative cocompleteness was developed in [I4] [Il, 17, 16} 15, 25]. Our primary examples of
classes of modules have already been studied in [10} 25 27]. We do hope that our results will be
of interest to those who work with categories where the left adjoint to Yoneda embedding has
a left adjoint; research in this direction include: [I3] 18] [9] 24} [26].

2. PRELIMINARIES

2.1. Quantales. A Q = (Q,<,®,1) is a commutative unital quantale (in short: a quantale)
such that the unit element 1 is greatest with respect to the order on (Q,<). We also assume
that L # 1. Examples of quantales include: the two element lattice 2 = ({L,1}, <, A,1); the
unit interval [0,1] in the natural order, with multiplication as tensor; the extended real half
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line [0, 00] in the order opposite to the natural one, with addition as tensor. In general, every
Heyting algebra with infimum as tensor is a quantale.

2.2. Q-categories. We recall that a Q-category is a set X with a map X: X x X — Q,
called the structure of X, with two properties: 1 < X(z,z) for all x € X (reflexivity), and
X(z,y) ® X(y,2) < X(z,z) for all z,y,z € X (transitivity). In our paper Q-Cat denotes the
category of Q-categories, where morphisms, called Q-functors, are maps f: X — Y such that
X(z,2) < Y(fz, fz) for all z,z € X. For example Met := [0, 00]-Cat is Lawvere’s category
of generalised metric spaces [21], where reflexivity and transitivity correspond respectively to
the assumption of self-distance being zero and to the triangle inequality. As another example
we consider 2-Cat, which is isomorphic to the category of preordered sets and monotone maps,
and will henceforth be denoted by Ord.

A Q-category is separated if X(z,y) = X(y,x) = 1 implies x = y, for all z,y € X. For exam-
ple a separated [0, co]-category is a quasi-metric space, where points can possibly be at infinite
distance. Any Q-category X is preordered by the relation x <x y iff 1 < X(z,y), which is
antisymmetric iff X is separated. Clearly, Q-functors are < x-preserving.

The internal hom of Q-Cat is the set YX of all Q-functors of type X — Y considered with the
structure YX(f, g) := Nzex Y (fz,gx). The induced order on Y X is pointwise. The quantale Q
is made into a separated Q-category by its internal hom. The induced order <g coincides with
the original order on Q). By X°P we mean the Q-category dual to X. X is defined as QX" that
is X(f,g) = Nzex Q(fz,gx). For any X, we have the Q-functor yy: X — X, yxz = X(—, ),
called the Yoneda embedding. The Yoneda embedding is fully faithful. Furthermore, for all
x e Xand f € )?, we have )?(yxx, f) = fx, and this equality is the statement of the Yoneda
Lemma for Q-categories.

Lastly, ©-Cat admits a tensor product X ® Y ((x,y), (z,w)) = X (z,2)®Y (y,w). Since tensor is
left adjoint to internal hom, every Q-functor g: X ® Y — Z has its exponential mate g : Y —
ZX . Tt is worth noting that the structure of X is always a Q-functor of type X°P? @ X — Q,
and its exponential mate is the Yoneda embedding yy : X — X.

2.3. Q-modules. A Q-functor of type X°P ® Y — @ is called a Q-module (or plainly: a
module). For example, the structure of any Q-category X is a module. Moreover, any two
modules ¢: XPRY — @ and ¢¥: Y°P ® Z — ) can be composed to give a module of type
XP®7Z—>Q:
- @)(z,2) = \/ (¢(x,y) @ ¥(y,2)).
yey

Therefore we think of ¢: X°P ® Y — @Q as an arrow ¢: X—e+Y | which, by the above, can be
composed with ¢: Y —e+Z to give ¢ - ¢: X—o>Z. Note alsothat Y -¢p=¢p =¢ - X.

Any function f: X — Y gives rise to two modules, namely f,: X—>Y f.(z,y) = Y (fz,y) and
Y- X, f*(y,x) =Y(y, fx). We further observe that for any element z: 1 — X (1 is the
one-element Q-category that should not be confused with the unit of the quantale), the module
x*: X—e»1 is in fact the same as the Q-functor yyz = X(—,z) € X. Dually, the module
Z4: 1—e» X corresponds to the O-functor Axz := X (x, —).
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The set of all modules of type X —e+Y becomes a complete lattice via the pointwise order where
the supremum ¢ of a family ¢;: X—e>Y (i € I) of modules can be calculated as ¢(z,y) =
Vicr ¢i(z,y). Furthermore, composition of modules preserves this suprema on both sides, and
therefore the maps —- ¢ and ¢-— have right adjoints — e ¢ and ¢ —e — respectively. Explicitly,
given ¢: X —+Y,
W o @)y, 2) = N\ Qo(x,y), ¢(x,2)
zeX
for any v: X—e>Z, and

(6 — ) (z,2) = N\ Q6(z,y),¢(2,y))
yey
for any ¢: Z—e>Y. We call ¢ o ¢ the extension of 1 along ¢, and ¢ —e ¥ the lifting of ¢ along
¢. This construction will be used to define the so called way-below module in Section

In Ord, modules of type X —e+1 are precisely (characteristic maps of) lower sets, and modules
of type 1—e> X are upper sets of the poset X. Furthermore, the up-set of all upper bounds of
: : X—e»1is given by ¢ = (< o 9), and 2 € X is a smallest upper bound of ¢ if and only
if z, = (< o ). On the other hand, in Met, any Cauchy sequence (z,)ne, induces a module
¢: 1—e» X via ¢(z) = limy, 00 X (2, z), and a module ¥: X —e>1 via ¢(z) = limy, 00 X (z, 4.
Observe that ¥ - ¢ < 0 and ¢ -1 > X in the pointwise order. Conversely, any pair of modules
that satisfies the above equations comes from some Cauchy sequence on X. More generally, we
will say that modules ¢: Z—e+ X, ¢: X—o> Z are adjoint iff ¢ - ¢ < X and ¢ - ¢ > Z. In this
case we say that ¢ is a left adjoint to ¢ and % is a right adjoint to ¢.

2.4. J-cocomplete Q-categories. We recall here briefly the notions of weighted limit and
weighted colimit, for further details we refer to [14, [16]. For a module ¢: 1—e+ 1, a ¢-weighted
limit of a Q-functor h: I — X is an element x € X with 2* = ¢ —e A*. Dually, for a module
. I—e» 1, aip-weighted colimit of a O-functor h: I — X is an element x € X with x, = h, e 1.
A O-category X is called complete if X admits all weighted limits, and cocomplete if X admits all
weighted colimits. For instance, Q is both complete and cocomplete where the limit of h and ¢ is
given by A;c; Q(¢(i), h(i)) and the colimit of h and ¢ by \/,c; 1 (7)®h(7). This argument extends

pointwise to X, and we also note that a Q-category X is complete if and only if X is cocomplete.

One says that a Q-functor f : X — Y preserves the ¢-weighted limit x of h: I — X if f(z) is
a ¢-weighted limit of fh : I — Y, likewise, f : X — Y preserves the i-weighted colimit = of
h: I — X if f(x) is a 1-weighted colimit of fh: I — Y. Then f: X — Y is called continuous
if f preserves all existing weighted limits in X, and f is called cocontinuous if f preserves all
existing weighted colimits in X.

In the sequel we will be interested in special kinds of colimits, hence we suppose that there
is given a collection J of modules of type X —e+1, called thereafter J-ideals. The set of those
modules in J with domain X we denote as JX. Then we define X to be J-cocomplete if X
admits all ¢-weighted colimits with ¢ in J, and a Q-functor f : X — Y is called J-cocontinuous
if f preserves all existing J-weighted colimits in X. We will also assume that our class J of
modules is saturated, which amounts to saying that JX contains all modules * : X —e»1 and is
closed in X under J-weighted colimits. In this case, X is J-cocomplete if and only if X admits
all y-weighted colimits with ¢ : X —e+1 in J-Mod, which in turn is equivalent to yy: X — JX
having a left adjoint in Q-Cat. That is, there must exist a Q-functor Sx: JX — X such that
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for all p € JX and all x € X:
(2.1) X(Sx¢,z) = X(¢,yxz).

The element Sx¢ € X is called the supremum of ¢. If JX = X and ¥ : X—o» 1, then
Sx(V)(@) = Vyeg U() & (@) = Vyeg W) @ [y(@), ¥, hence Sx(¥) = ¥ -y, (2). Since
JX is closed in X under J-colimits, the same formula describes J-suprema in JX. For example,
if @ = 2, then Xisa poset of lower subsets of the poset X ordered by inclusion, v is a lower
set of lower sets of X, and the supremum of v is nothing else but .

A Q-functor f: X — Y between J-cocomplete Q-categories is J-cocontinuous if and only if
f(S¢) = S(Jf(¢)), for all ¢ € JX. Here we make use of the fact that J defines a functor
J : Q-Cat — J-Cocts which sends a Q-category X to JX, and a Q-functor f : X — Y to
Jf : JX = JY, ¢ — - f*. We use the occasion to remark that J : @-Cat — J-Cocts is
left adjoint to the inclusion functor J-Cocts — Q-Cat. Even better, J-Cocts — O-Cat is
monadic which we need here only to conclude that J-Cocts is complete and limits in J-Cocts
are calculated as in Q-Cat. For details we refer to [15].

There is a well-known general procedure to specify a saturated class J of modules which we
describe now.

Example 2.1. Fix a collection ® of modules ¢ : 1—e+1, and define J as the class of all those
modules v : X —e31 where the Q-functors

Vv-—: 0¥ 5 Q0 ampa= \/ a(z) @ Y(x).
zeX
preserve ®-weighted limits. Here we identify a O-functor v : X — Q with a module o : 1—o> X.
Explicitly, we require that, for any ¢ : 1—e+I in ® and any Q-functor a_ : I — QX

N Q(e(i), \/ ailz) @ v(z) = \/ </\ Q(cb(i),az(w))) ®Y(z).
i€l zeX rxeX \iel

Note that O-functoriality of ¢ - — implies already that the left hand side is larger or equal to

the right hand side.

Cocompleteness relative to J allows for a unified presentation of seemingly unrelated notions of
order- and metric completeness:

Example 2.2. For any Q, there is a largest and a smallest choice of J: let either J consist of
all modules of type X —e+1, or only of representable modules x* : X —e+1 where x € X. In the
first case a Q-category X is J-cocomplete if and only if it is cocomplete, and in the second case
every Q-category is J-cocomplete.

Example 2.3. For Q@ = 2, we consider all modules of type X —e>1 corresponding to order-ideals
in X (i.e. directed and lower subsets of X), and write J = Idl. Then X is Idl-cocomplete iff X
is a directed-complete.

Example 2.4. For Q = [0, oo] we consider all modules of type X —e+1 corresponding to ideals in
X in the sense of [4], and write J = FC. These ideals in turn correspond to equivalence classes
of forward Cauchy sequences on X. Hence, X is FC-cocomplete if and only if each forward
Cauchy sequence on X converges if and only if X is sequentially Yoneda complete.
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Example 2.5. For any Q we can choose J to consist of all right adjoint modules (i.e. modules
that have left adjoints). Recall from [21I] that, for Q = [0, 0], a right adjoint module X —e>1
corresponds to an equivalence class of Cauchy sequences on X. A generalised metric space X is
J-cocomplete if and only if each Cauchy sequence on X converges.

Example 2.6. For a completely distributive quantale Q with totally below relation < and
any Q-category X, a module ¢: X—e+1 is a FSW-ideal if: (a) \/,cx %2z = 1, and (b) for all
e1,ea,d < 1, for all 1,29 € X, whenever e; < ¥z and es < Yxo, then there exists z € X
such that d < ¢z, e1 < X(21,2) and ez < X(x2,2). Now for Q = [0,00] FSW-ideals on X
are in a bijective correspondence with equivalence classes of forward Cauchy nets on X [10]; for
Q = 2, FSW-ideals are characteristic maps of order-ideals on X. Therefore this example unifies

Examples 23] 2.4

Example 2.7. For any quantale Q, a module 1: X —e»1 is called flat if the map (¢ - —) taking
modules of type 1—e+ X to O preserves finite meets. For Q@ = 2, one verifies that ¢ : X—e+1 is
flat if and only if ¢ : X°P — 2 is the characteristic map of a directed down-set. For Q = [0, 0]
with ® = +, Theorem 7.15 of [27] states that flat modules are the same as FSW-ideals, therefore
this example unifies Examples 2.3 2.4l as well. However, as we will show in Subsection [4.3] flat
modules and FSW-ideals are in general different.

Example 2.8. For any 9, put JX to be the set of all modules ¥ : X—e>1 of the form ¢ = u-z*
where x € X and u € Q. Here we think of u € Q as a module 1—e+1. Spelled out, for y € X
one has ¢¥(y) = X(y,x) ® u. Note that ¢(y) = L whenever u = L, independently of z € X.
A Q-category X is J-cocomplete if it admits “tensoring” with elements of Q in the following
sense: for any z € X and u € @, there exists a (necessarily unique up to equivalence) element
z € X with

X(Zay) = Q(U’X(x’y))

for all y € X, and one denotes z as u ® x.

2.5. J-continuous J-cocomplete O-categories. J-continuity for Q-categories, introduced
n [12], allows for a unified treatment of many structures that play a major role in theoretical
computer science, e.g. continuous domains, complete metric spaces, or completely distributive
complete lattices.

Definition 2.9. A J-cocomplete Q-category X is J-continuous if the supremum Sx: JX — X
has a left adjoint.

Note that any Q-functor of type X — JX corresponds to a certain module X —e+ X belonging
to J. Hence, X is J-continuous if and only if there exists a module || y: X—e» X in J with
FU;( 4 Sx. It is not difficult to see that S% - |x < yy,., and |y is the largest module that
satisfies this inequality; hence we have identified |y : X —e+ X as the lifting |y = Sk —e yy,.
In fact, module |}y := S% —e yy, exists for any J-cocomplete Q-category, and we refer to it as
the way-below module. It is worth noting that JX is J-continuous for every O-category X. In
this case, the way-below module is given by

(2:2) V') =\ ¥'(2) @ [, 2*).
rzeX

In the simplest case, @ = 2 and J = Idl, the module |}y is indeed the (characteristic map
of the) way-below relation on X. In the case of metric spaces, as a consequence of symmetry,
Jx: X—e+ X is the same as the structure X: X—+ X.
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We call a module v: X—e+ X auziliary, if v < X; interpolative, if v < v - v; approrimating, if
v e Jand X e v = X; J-cocontinuous, if Sk - v =yy, - v. In a J-continuous J-cocomplete Q-
category, the way-below module is auxiliary, interpolative, approximating and J-cocontinuous.
In fact, we show [12] that a J-cocomplete Q-category is J-continuous iff the way-below module
is approximating.

Consider some examples: FSW-continuous FSW-cocomplete 2-categories are precisely con-
tinuous domains; cocontinuous cocomplete 2-categories are completely distributive complete lat-
tices (there the way-below module becomes the ‘totally-below’ relation associated with complete
distributivity of the underlying lattice); [0, 00| considered with the generalised metric structure
[0, 00](z,y) = max{y — x,0} is an FSW-continuous FSW-complete [0, co]-category; complete
metric spaces are FSW-continuous FSW-cocomplete [0, oo]-categories.

2.6. Open modules. Let J-Cocts(X,Y') denote the set of all J-cocontinuous Q-functors from
X to Y, and we view J-Cocts(X, Q) as a sub-Q-category of oX.

Lemma 2.10. J-Cocts(X, Q) is closed under arbitrary suprema in QX . Hence, J-Cocts(X, Q)
is cocomplete.

Proof. Just observe that \/: o — Qis a Q-functor left adjoint to the diagonal A: Q — of ,
for any set I; and u® —: Q — Q is a Q-functor left adjoint to Q(u,—): Q — Q. O

From the lemma above we deduce that the inclusion functor J-Cocts(X, Q) — QX has a
right adjoint v: Q% — J-Cocts(X, Q).

If X is J-cocomplete and J-continuous, this right adjoint has a simple description. In fact,
since |}y 4Sx and Sx 4 yy, the map QX — J-Cocts(X, Q), f +— fr-|x (where fy is left Kan
extension of f) is right adjoint to J-Cocts(X, Q) < QX in Ord, hence it underlies v. Hence
in this case we can write v as the corestriction of the composite of left adjoints

_.U'
0¥ — J-Cocts(JX,Q) — Q/X — =, 0¥
to J-Cocts(X, Q), hence v is itself left-adjoint.

Lemma 2.11. If X is J-cocomplete and J-continuous, then J-Cocts(X, Q) is totally continu-
ous.

Proof. QX is totally continuous, and J-Cocts(X, Q) inherits this property since v: Q% —
J-Cocts(X, Q) is a left and a right adjoint. O

We put now FX := J-Cocts(X,Q) N J(X) and call « € FX an open module. More
precisely, FX is defined via the pullback in J-Cocts of two inclusions: J-Cocts(X, Q) — QX
J(X°P) < QX which tells us that:

e F'X is J-cocomplete,
e both inclusion maps F'.X — J(X°P) and F'X — J-Cocts(X, Q) preserve J-suprema.

Definition 2.12. We say that a J-continuous Q-category X is open module determined if for
all x,y € X:

(2.3) Ux(z,y) =\ (a(y) ® @, Ax (@)
acFX
Note that, for all « € FX and =,y € X,

a(y) @ [a, Ax(@)] = \/ (a(z) @ bx(z,9) ® [0, X (z,-)])) <\ X(2,2) @ bx(2,9) = Ix(2,9),
zeX zeX
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hence (2.3)) is equivalent to

bx(@y) <\ (aly) ® [, Ax ().

aclFX

Furthermore, (2.3]) is equivalent to

liX(x7y) - \/ (Oé(y) ® [O@liX(xa _)])

acelFX

since | x(z, —) < Ax(x) and

Ux(a,y) =\ Ix(z,2) @ Ux(2,9)

zeX

_V U@ e\ (@) ® @A)
2€X acFX

=V o) e V Ux(2) @ o Ax (=)
a€FX zeX

< \/ aly) @ [a, \/ Ix(z,2) @ X(2,-)]
aceFX zeX

= \/ (a(y) ® e, I x (2, —)])-
aclFX

3. THE DUALITY

In this section we assume that a class ® of limit weights ¢ : 1—e> 1 is given, and we consider
the corresponding class J of modules as described in Example 21 Furthermore, let X be a
J-cocomplete, J-continuous and open module determined Q-category.

Each z € X defines:

evy: FX — Q9

a— az).
Lemma 3.1. For any x € X, the map ev, is an open module on FX.

Proof. Certainly, ev, is J-continuous, since it is the restriction of
— -z J(XP) = Q (here x € X°P and therefore z,: 1—e» X°P)
to FFX. We show now that ev, € J(FX°P), that is,

Cyp =evy-—: O-Mod(FX,1) » Q, ¥V — \/ U(a) ® afr)
acFX

preserves ®-weighted limits. Note that Q-Mod(FX,1) =& O-Mod(1, FX°P). Furthermore,
since @ € FX is J-cocontinuous, Cp = \ cx Cy ® Ix(y,7). Let ¢ : 1—e> be in ® and
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U_:]— Q-Mod(FX,1), i— ¥, be a Q-functor. Then

A Q(0), Co (%)) = A\ Q(6(0), \/ Cy(¥i) © U (y,x))

iel iel yeX
=V (/\ Q(qﬁ(z‘),Cy(%))) ®dx(y,7) (U= ) is in J)
yeX \iel
<\ oa@e \/ A Q6(i),Cy(¥) @ o, Axy))
acFX yeX iel
<V oal@) e A\ Q) ¥i(a)
acFX i€l

Cy(T) @ dxyl = \/ W) @[ Axyl @ Pxy. Bl <\ Wi(B) @a, 8] = Ti(a). O
BeFX BEFX

We further obtain a map nx: X — FFX given by:
(3.1) T evy.

This is indeed a Q-functor, since for any y,z € X we have:

mx(W),nx(2) =\ Qlay),a(z) = X(y, 2).

acelFX

Lemma 3.2. FX is J-continuous with the way-below module | px: FX—e» FX given by:

(3.2) Upx(B,0) = \/ (a(z) ® 8, Ax(2)).

zeX

Proof. Note that (3.2]) states that the way-below module on FX is the restriction of the way-
below module on J(X°P) (see (2.2)). First we wish to show that

bpx(=a) = \/ (a(z) ® [-, Ax (2)])

rzeX

is a J-module of type FF.X—e+1, for every a« € F.X. To this end, we consider a diagram

1-25 Ah oFx
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where ¢ belongs to ®. We calculate:

A Qs(a), \/ Urx(B.2)® h(a,B)))

acA BeFX

= A\ Q¢(a), \ (a(@) @ ( \/ (18 Ax(x)] @ h(a,5)))))

acA zeX BEFX

fput k(a,z) = \/ ([8,Ax(2)] @ h(a, B)) where k: A — Q¥"}

BeFX

=\ (a(z)® N (Q(¢(a), k(a,x))))

zeX acA

=\ (ay) @lxyx) e \(©Q x))))
z,yeX acA

=V V (h@eay erix@)e A (Qb() k)
vyeFX z,yeX a€A

=V V6ewerix@le(\ (@ e )\ Qa)ka )
vyeFX yeX reX acA

= \/ Urx(r,)® A\ (Q(8(a), \/ (7(z) @ k(a,2)))))
yEFX acA zeX

= \/ Urx(v,0) ® /\ \/ \/ ® [8, Ax(z)] ® h(a, B)))))
yeFX acA BGFX reX

= \/ Urx(r,)® A (Q(8(a), \/ ([8,7] @ h(a,5)))))
yeFX acA BeFX

<V Urx(ra) @ A (Q@(a), h(a, 5))))
YEFX acA

as required (recall that the other inequality we get for free). Furthermore, we calculate:

Srx(bpx (= a))(z) = \/ Urx(B,a) @ B(z))

BEFX
= \/ V(@B Ax®)4())
BEFX yeX

—V@awe \ (83xw) e 8x)
yeX BeEFX

= Ve \ (82w Mx(@).5)
yeX BeEFX

= \/ ®*U’X Yy, x ))
yeX

= 04(1'),

hence Spx (I px(—,a)) = a. Finally, to conclude that |}y 4 ypy, let ¥ : FX—es1in J. Let
i denote the inclusion Q-functor FX — J(X°P) and | j(xop) the way-below module on J(X°P).
We observed already that dpx =" - | (xop) - ix. Hence,

Upx -Srx(®) = (Srx(¥)* - bpx = (Srx(¥))* -4 - Vix
= (Syxomy (¥ 7)) - U y(xory i SO -i* i =0, O

Lemma 3.3. F'X is open module determined.
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Proof. For all o, € FX:

Upx(B,a) =\ (a(z) @ [B,Ax(2)]) = \/ (eva(@) @ Ax(2)s, B:])

zeX zeX

By the discussion in Section and Lemmata [3.2] B.3] we obtain:

Theorem 3.4. If X is a J-continuous, J-cocomplete and open module determined Q-category,
then so is F'.X.

Our next aim is to show that nx: : X — FFX is an isomorphism. To do so, let now A: F'X —
O be an open module on FFX. We define:

da(@) =\ (Al0) @ o, Ax (2)]).

acFX
Such defined ¥ 4 is a module X —e+1, since it is the composite:

)\X*

X 255 g(xoryer oy FXOP %y 1.

We also need to have:
Lemma 3.5. For every A € FFX, we have ¢4 € JX.

Proof. In order to check that 1) 4: X —e+1 belongs to JX, we need to check whether ¢ 4-—: Q% —
Q preserves ®-weighted limits. Let

be a limit diagram with ¢ in ®. Spelled out, we have to show that

V @al@)© N\ Qo). hly,2))) = N\ (Qo(y). \/ (alx) ® hiy,2)))).

zeX yeA yeA reX
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To this end, we calculate:

A (Q(), \/ ($a(x) ® h(y,))))

yeA reX
= N(©Q@w), \ \V “ [, Ax (2)] @ h(y,z))))
yeA zeX a€FX
= N Q6. \/ (A@) @ bpxlah(y)) {since AP € J}
yeA acFX
=V (A@® A\ Q). hrx(ah(y))
acFX yeA
=V (AB) @rx(8,0) @ A\ (Q61), Irx(a, b))
a,BeEFX yE€A
=V VA ® 8, Ax(@)]) @ N\ (Q(6(1), hrx(a, h()))))
a,feEFX zeX yeA
=V V @B Ax@)e V eval@e A (Q@Wy), e k)
T€X BEFX acFX yeA

{ev, is a filter}

=V @@ e A o), \ (@) @ bex(ah@)))

zeX yex aEFX
<V @Wa@) e A\ Qe ® [a, h(y)]))
zeX yeX
<V @al@) @ A\ Qey), hly,x))),
zeX yeX
which proves ¢4 € JX. O

Lemma 3.6. For any a € FX, we have A(a) = a(Sx(¢¥4)).

Proof.

a(Sx(Ya)) = COlim( ,hA)

=\ (a(z) @ a(z

zeX

=V (@) e \/ (AB) @8, x ()
reX BEFX

=V @ e\ (a@) @B (@)
BeEFX zeX

= \/ (A(B) @ Ipx(8,2))
BEFX

= colim(A,  px(—,a))
= ASrx(Upx(—)))
= A(a). -

Definition 3.7. We say that a Q-functor f: X — Y between Q-categories reflects open modules
if a-f € FX for every a € FY. Let (J, Q)-Dom be the category of J-cocomplete, J-continuous
and open module determined Q-categories together with open module reflecting maps.
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Lemma 3.8. The pair of operations

X - FX
f:X=>Y —» — f1FY > FX

defines a contravariant functor, i.e. F: (J,Q)-Dom® — (J, Q)-Dom.

Proof. Functoriality is trivial; we only need to show that F'(f) reflect open modules. Let A €
FFX. By Lemma there exists x € X such that A = ev,, namely x = Sx1 4. Then, for any
a € FY, we have (A- F(f))(a) = A(a- f) = a(f(z)) = evj)(a). Hence A- F(f) = evy, ie.
A-F(f)e FFX. O

Theorem 3.9 (The Duality Theorem). The category (J, Q)-Dom is self-dual.

Proof. The natural isomorphism 7: 1(;0).pom — F'F as defined in (BI) has the converse
e: F'F — 1(;.0)-Dom given by ex(A) = Sx¢4 for every A € FFX. O

4. EXAMPLES OF THE DUALITY

4.1. Lawson duality. The case Q@ = 2 and J = FSW, perhaps the simplest possible, served us
as a proof guide throughout the paper. In fact, most of the crucial proof ideas (e.g. Lemma
any open module on open modules A is of the form evs , for some J-ideal 1 4) come from an
analysis of this simple case. Observe that FSW-continuous, FSW-cocomplete 2-categories are
continuous dcpos (domains). Furthermore, open modules are nothing else but (the character-
istic maps of ) Scott-open filters on domains. Recall that in this case any F X is open module
determined: the equality (2.3]) reduces to

Ve,ye X (r <y = Jac FX (y €aCtr)),

and we define such a € FX by a = J,c, A2, where the descending chain (z,)ne, has been
obtained by a repeated use of interpolation (see Prop. 3.3 of [11]):

T, . K K1 K. K<k <kKrg =Y.

Consequently, the category (FSW, 2}Dom is the category of domains with open filter reflecting
maps; our Theorem B.9 reduces to Theorem 1V-2.12 of [I1] establishing the Lawson duality for
domains. It is worth mentioning that the Lawson duality (originally proved in [20]) finds its
applications in the theory of locally compact spaces; in particular, the lattice of opens of a
locally compact sober space X is Lawson dual to the lattice of compact saturated subsets of X
(cf. Hofmann-Mislove theorem).

4.2. A metric duality. In the case Q = [0,00] with ® = 4 and J being the class of FSW-
ideals (or, equivalently, flat modules), our duality works in a certain subcategory of Met: its
FSW-cocomplete objects are known in the literature as Yoneda-complete gmses [4]. The FSW-
cocomplete and FSW-continuous ones form a class not previously discussed in the literature,
except in the forthcoming paper [19], where they are shown to be precisely the spaces hav-
ing continuous and directed-complete formal ball models [8) 2], 23] (this implies, in particular,
that their topology and metric structure can be respectively characterized as a subspace Scott
topology and a partial metric on a domain).

A proof that objects of (FSW, [0, oc])-Dom are open filter determined can be found in [3];

below we present a sketch of the proof.
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We abbreviate | y to | and customarily use 4 instead of ®, inf instead of \/, etc. In order to
show (23) it is enough to find a family of open filters (ce p)ep>0, such that e > |J(z,y) implies

e+ b = ae,b(y) + [ae,ba‘U(xa _)] = aie%?fX(a(y) + [Oéall(l“, _)])’

which, by complete distributivity of ([0, o], >), allows us to draw the desired conclusion. Take
an arbitrary e > |(x,y) and b > 0, and choose a chain (e, )new in ([0, 00], >) such that:

b > ey + e,

eg>ep>ex>...>ep > ... >0,
(4.1)

€n Z €nt1t+entat+ ...,

inf e, = 0.

n€w

Now, by interpolation, we can find a sequence (z,)new such that:

e > J(x, z0) + (o, y) and eg > {H(z0,y),
€>~U($,$1)+~U($1,$0)+~U($0,y), and €1 >U($1,$0),

e > |(z,xz2) + I(z2, 21) + I(x1, 20) + (0, y) and ez > {(x2,21),

e > l}(l',l'n) + ‘U’(xnyxn—l) + -+ li(xth) + li(x07y) and €n > li(xnwxn—l)a

Define acp: X — [0,00] as aep(z) := infue, supys,, X (7, 2); this map is an open module on X.
In order to conclude (2.3)), it is now enough to verify that

(4.2) e+b > aey(y) + [ep Hz, —)]
However
aep(y) = inf sup X(zg,y)
new k>n
< iup (X (zg, xp—1) + - + X (1, 20) + X (20,9))
>1

< 21;1? Wz, 2p—1) + - + W@, 20) + U0, y)) {by EI)}

< ep+eo

< b
and

e, H(z, —)] = sup(l(z, 2) — acp(2))

zeX

< sup(Y(z, 2) — (inf sup X (zg, 2)))
2€X new k>n

< sup(inf sup(b(, 2) — X (21, 2)))
2€X NEW k>n

< supsup(z, )
new k>n

< e

so ([A2), and therefore also (2.3]) are now verified.
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4.3. An ultrametric duality. For the quantale @ = [0,00] with ® = max, Q-Cat is the
category UMet of ultrametric spaces and contraction maps. As above, we can choose J to
be the class of all flat modules (see Example 2.7]), and obtain that the corresponding category
(J, Q)-Dom is self-dual. However, in ultrametric spaces flat modules are not, in general, FSW-
ideals, as the following example shows.

Example 4.1. Consider the set N of natural numbers with the distance

0 if n =m,
N(n,m) =
max(n,m) otherwise.

This distance is a symmetric, separable ultrametric. Take

0 ifz=0,
P(z) = ,
1 ifz>0.

Trivially, ¢ preserves the empty meet. Now, observe that the proof of (the equivalence of (1)
and (2) of) Proposition 7.9 in [27] holds verbatim for ® = max, hence it is enough to show that
(¢ - —) preserves meets of modules of the form max(N(—,z),¢) for some ¢ € [0,00]. Suppose
A :=max(N(—,a),c1) and B := max(N(—,b), cz) for ¢1,cy € [0,00]; we are heading to prove:
(*) inf max(Az, Bz, ¢z) = max(inf (max(As, ¢s)), inf (max(Br, ¢r))).

zeN seN reN
We have

inliI max(Az, Bz, ¢z) = inliI max(z,a, b, c1,co, $pz) = max(a, b, c1,c2),

ze 1S

Sirellgmax(/ls, ¢s) = sirellgmax(s,a,cl, ¢s) = max(a,cy),

71’r€11£1 max(Br, ¢r) = rirellgmax(r, b, ca, ¢r) = max(b, c2)

since all these infima are attained for 2 = r = s = 0. This shows (#), and so ¢: X—e+1 is a flat
module.

On the other hand, ¢ is not an FSW-ideal: we have ¢(2) < 2 and ¢(3) < 2 but there is no
z € N with ¢(z) <1 and N(2,2) <2 and N(3,2) < 2.

4.4. The absolute case. For any quantale Q, we can consider ® being the empty class and
therefore JX = X is the collection of all modules of type X —e+1. In this case, every cocontinuous
O-functor a: X — @ is an open module. Furthermore, every totally continuous cocomplete
Q-category is open module determined since | y(z,—): X — Q is in FX. Finally, a Q-functor
f: X = Y reflects open modules if and only if f is left adjoint. Therefore Theorem states
that the category of totally continuous cocomplete O-categories and left adjoint O-functors is

self-dual.

4.5. A somehow different example. We consider now Q = [0,00] where ® = +, with the
class J of modules described in Example 2.8 However, for technical reasons we consider the
unique module @—e»1 as a formal ball, so that J@ = 1. Consequently, the empty space is not
J-cocomplete. We will show now that our duality theorem holds in this case too, despite the
fact that this class of modules is (to our knowledge) not defined via a class of limit weights.

Let now X be a J-cocomplete and J-continuous metric space. We write |} : X — JX for the
left adjoint to S : JX — X. Hence, for any z € X, ||(z) € JX is of the form ||(z) = X (—,z1)+u
for some 1 € X and u € [0, 00]. Note that u < oo if x is not the bottom element of X. Assume
that (1) = X(—,x2) + uz. Then

X(=z1)+u=(z)=WHz1 +ur) = Hz1) + w1 = X(—, 22) + u2 + u,
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hence, X (—,z1) = X(—, z2)+ug. In particular, 0 = X (z1,x2) + u2, and therefore ug = 0 and we
obtain {(x1) = y(x1). Let A be the equaliser of y and |}, that is, A = {z € X | {(z) = y(z)}. By
the considerations above, || : X — JX factors through the inclusion JA — JX. Moreover, for
any X(—,z)+uwithz € A, (z+u) = |(x) +u = X(—,z) 4+ u, which gives X = JA. We also
remark that € A if and only if X(z,—) : X — [0,00] preserves tensoring. One has ¢ € FX
precisely if ¢ = X(z,—) + u for some z € X and u € [0,00] and if, moreover, ¢ preserves
tensoring. If u < oo, then also X(x,—) preserves tensoring, hence x € A. Consequently,
FX = J(A°P).

Consider now f : X — Y with X 2 JA and Y = JB as above. Then f is open module
reflecting if, and only if, for each yy € B, there exists some 2y € A and some v € [0, 00] with
Y (yo, f(—)) = X(zo,—) + v. We show that f necessarily preserves tensoring. To this end, let
z € X and u € [0,00]. Then

Y(yo, f(z +u)) = X0,z + u) + v = X(z0,2) + v +u=Y(yo, f(2)) +u=Y(yo, f(x) +u)

for all yo € B, hence f(x + u) = f(x) + u. Therefore f corresponds to a module ¢ : B—e> A
in the sense that, when identifying X with JA and Y with JB, then f(¢) = 9 - ¢. Hence, for
any ¢ € A, z* - ¢ = ¢(—, z) belongs to JB, and the f being open module reflecting translates
to ¢ -y = ¢y, —) € J(AP) for all y € B. Recall that for each module ¢ : B—e+ A we have
its dual ¢ : A°P—es BP, ¢°P(z,y) = ¢(y, ), and with this notation the latter condition reads
as y* - ¢°P € J(AP) for all y € B°P. We conclude that the category of J-cocomplete and J-
continuous metric spaces and open module reflecting contraction maps is dually equivalent to
the category of all metric spaces with morphisms those modules ¢ : X — Y satisfying

VyeY.(y* o€ JX) and Ve e X . (% ¢ € J(YP)),

and the latter category is obviously self-dual.
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