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A DUALITY OF QUANTALE-ENRICHED CATEGORIES

DIRK HOFMANN AND PAWE L WASZKIEWICZ

Abstract. We describe a duality for quantale-enriched categories that extends the Lawson

duality for continuous dcpos: for any saturated class J of modules that commute with certain

weighted limits, and under an appropriate choice of morphisms, the category of J-cocomplete

and J-continuous quantale-enriched categories is self-dual.

1. Introduction

In [12] we observed that the left adjoint to the Yoneda embedding in a quantale-enriched

category X can be interpreted as a notion of approximation in X. Thus in directed-complete

posets, approximation is the way-below relation [11].I.1.; in complete lattices the totally-below

relation [22]; and in (generalised) metric spaces a distance ⇓ : X ×X → [0,∞] such that every

x ∈ X is a “metric supremum” of ⇓(−, x) [12].

The purpose of this paper is to develop a duality theory for Q-categories that extends the

Lawson duality for continuous dcpos [20]. Recall that Lawson’s theorem states that the cat-

egory of continuous dcpos with Scott-open filter reflecting maps is self-dual. We show that

under an appropriate choice of morphisms the category of J-cocomplete and J-continuous

(= admitting approximation) Q-categories is self-dual. Our duality theorem holds for any satu-

rated class J of modules that preserve certain limits; therefore it works uniformly for continuous

domains, completely distributive complete lattices, Yoneda-complete quasi-metric spaces, to-

tally distributive Q-categories, and perhaps many other familiar structures from the borderline

of metric and order theory.

Our feet rest on shoulders of many. Hausdorff’s point of view that a metric is a relation

valued in non-negative real numbers, brought to light by [21], led to a development of an unified

categorical/algebraic description of topology, uniformity, order and metric [5, 7, 6]. The idea

of relative cocompleteness was developed in [14, 1, 17, 16, 15, 25]. Our primary examples of

classes of modules have already been studied in [10, 25, 27]. We do hope that our results will be

of interest to those who work with categories where the left adjoint to Yoneda embedding has

a left adjoint; research in this direction include: [13, 18, 9, 24, 26].

2. Preliminaries

2.1. Quantales. A Q = (Q,6,⊗,1) is a commutative unital quantale (in short: a quantale)

such that the unit element 1 is greatest with respect to the order on (Q,6). We also assume

that ⊥ 6= 1. Examples of quantales include: the two element lattice 2 = ({⊥,1},6,∧,1); the

unit interval [0, 1] in the natural order, with multiplication as tensor; the extended real half
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line [0,∞] in the order opposite to the natural one, with addition as tensor. In general, every

Heyting algebra with infimum as tensor is a quantale.

2.2. Q-categories. We recall that a Q-category is a set X with a map X : X × X → Q,

called the structure of X, with two properties: 1 6 X(x, x) for all x ∈ X (reflexivity), and

X(x, y) ⊗X(y, z) 6 X(x, z) for all x, y, z ∈ X (transitivity). In our paper Q-Cat denotes the

category of Q-categories, where morphisms, called Q-functors, are maps f : X → Y such that

X(x, z) 6 Y (fx, fz) for all x, z ∈ X. For example Met := [0,∞]-Cat is Lawvere’s category

of generalised metric spaces [21], where reflexivity and transitivity correspond respectively to

the assumption of self-distance being zero and to the triangle inequality. As another example

we consider 2-Cat, which is isomorphic to the category of preordered sets and monotone maps,

and will henceforth be denoted by Ord.

A Q-category is separated if X(x, y) = X(y, x) = 1 implies x = y, for all x, y ∈ X. For exam-

ple a separated [0,∞]-category is a quasi-metric space, where points can possibly be at infinite

distance. Any Q-category X is preordered by the relation x 6X y iff 1 6 X(x, y), which is

antisymmetric iff X is separated. Clearly, Q-functors are 6X-preserving.

The internal hom of Q-Cat is the set Y X of all Q-functors of type X → Y considered with the

structure Y X(f, g) :=
∧
x∈X Y (fx, gx). The induced order on Y X is pointwise. The quantale Q

is made into a separated Q-category by its internal hom. The induced order 6Q coincides with

the original order on Q. By Xop we mean the Q-category dual to X. X̂ is defined as QXop

, that

is X̂(f, g) =
∧
x∈X Q(fx, gx). For any X, we have the Q-functor yX : X → X̂, yXx = X(−, x),

called the Yoneda embedding. The Yoneda embedding is fully faithful. Furthermore, for all

x ∈ X and f ∈ X̂ , we have X̂(yXx, f) = fx, and this equality is the statement of the Yoneda

Lemma for Q-categories.

Lastly, Q-Cat admits a tensor product X⊗Y ((x, y), (z, w)) = X(x, z)⊗Y (y,w). Since tensor is

left adjoint to internal hom, every Q-functor g : X ⊗ Y → Z has its exponential mate pgq : Y →

ZX . It is worth noting that the structure of X is always a Q-functor of type Xop ⊗ X → Q,

and its exponential mate is the Yoneda embedding yX : X → X̂ .

2.3. Q-modules. A Q-functor of type Xop ⊗ Y → Q is called a Q-module (or plainly: a

module). For example, the structure of any Q-category X is a module. Moreover, any two

modules φ : Xop ⊗ Y → Q and ψ : Y op ⊗ Z → Q can be composed to give a module of type

Xop ⊗ Z → Q:

(ψ · φ)(x, z) :=
∨

y∈Y

(φ(x, y) ⊗ ψ(y, z)).

Therefore we think of φ : Xop ⊗ Y → Q as an arrow φ : X−→◦ Y , which, by the above, can be

composed with ψ : Y−→◦ Z to give ψ · φ : X−→◦ Z. Note also that Y · φ = φ = φ ·X.

Any function f : X → Y gives rise to two modules, namely f∗ : X−→◦ Y , f∗(x, y) = Y (fx, y) and

f∗ : Y−→◦ X, f∗(y, x) = Y (y, fx). We further observe that for any element x : 1 → X (1 is the

one-element Q-category that should not be confused with the unit of the quantale), the module

x∗ : X−→◦ 1 is in fact the same as the Q-functor yXx := X(−, x) ∈ X̂ . Dually, the module

x∗ : 1−→◦ X corresponds to the Q-functor λXx := X(x,−).
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The set of all modules of type X−→◦ Y becomes a complete lattice via the pointwise order where

the supremum φ of a family φi : X−→◦ Y (i ∈ I) of modules can be calculated as φ(x, y) =∨
i∈I φi(x, y). Furthermore, composition of modules preserves this suprema on both sides, and

therefore the maps −·φ and φ ·− have right adjoints − •− φ and φ −• − respectively. Explicitly,

given φ : X−→◦ Y ,

(ψ •− φ)(y, z) =
∧

x∈X

Q(φ(x, y), ψ(x, z)

for any ψ : X−→◦ Z, and

(φ −• ψ)(z, x) =
∧

y∈Y

Q(φ(x, y), ψ(z, y))

for any ψ : Z−→◦ Y . We call ψ •− φ the extension of ψ along φ, and φ −• ψ the lifting of ψ along

φ. This construction will be used to define the so called way-below module in Section 2.5.

In Ord, modules of type X−→◦ 1 are precisely (characteristic maps of) lower sets, and modules

of type 1−→◦ X are upper sets of the poset X. Furthermore, the up-set of all upper bounds of

ψ : : X−→◦ 1 is given by φ = (6 •− ψ), and x ∈ X is a smallest upper bound of ψ if and only

if x∗ = (6 •− ψ). On the other hand, in Met, any Cauchy sequence (xn)n∈ω induces a module

φ : 1−→◦ X via φ(x) = limn→∞X(xn, x), and a module ψ : X−→◦ 1 via ψ(x) = limn→∞X(x, xn).

Observe that ψ · φ 6 0 and φ · ψ > X in the pointwise order. Conversely, any pair of modules

that satisfies the above equations comes from some Cauchy sequence on X. More generally, we

will say that modules φ : Z−→◦ X, ψ : X−→◦ Z are adjoint iff φ · ψ 6 X and ψ · φ > Z. In this

case we say that φ is a left adjoint to ψ and ψ is a right adjoint to φ.

2.4. J-cocomplete Q-categories. We recall here briefly the notions of weighted limit and

weighted colimit, for further details we refer to [14, 16]. For a module φ : 1−→◦ I, a φ-weighted

limit of a Q-functor h : I → X is an element x ∈ X with x∗ = φ −• h∗. Dually, for a module

ψ : I−→◦ 1, a ψ-weighted colimit of a Q-functor h : I → X is an element x ∈ X with x∗ = h∗ •− ψ.

AQ-category X is called complete ifX admits all weighted limits, and cocomplete if X admits all

weighted colimits. For instance, Q is both complete and cocomplete where the limit of h and φ is

given by
∧
i∈I Q(φ(i), h(i)) and the colimit of h and ψ by

∨
i∈I ψ(i)⊗h(i). This argument extends

pointwise to X̂, and we also note that a Q-category X is complete if and only if X is cocomplete.

One says that a Q-functor f : X → Y preserves the φ-weighted limit x of h : I → X if f(x) is

a φ-weighted limit of fh : I → Y , likewise, f : X → Y preserves the ψ-weighted colimit x of

h : I → X if f(x) is a ψ-weighted colimit of fh : I → Y . Then f : X → Y is called continuous

if f preserves all existing weighted limits in X, and f is called cocontinuous if f preserves all

existing weighted colimits in X.

In the sequel we will be interested in special kinds of colimits, hence we suppose that there

is given a collection J of modules of type X−→◦ 1, called thereafter J-ideals. The set of those

modules in J with domain X we denote as JX. Then we define X to be J-cocomplete if X

admits all ψ-weighted colimits with ψ in J , and a Q-functor f : X → Y is called J-cocontinuous

if f preserves all existing J-weighted colimits in X. We will also assume that our class J of

modules is saturated, which amounts to saying that JX contains all modules x∗ : X−→◦ 1 and is

closed in X̂ under J-weighted colimits. In this case, X is J-cocomplete if and only if X admits

all ψ-weighted colimits with ψ : X−→◦ 1 in J-Mod, which in turn is equivalent to yX : X → JX

having a left adjoint in Q-Cat. That is, there must exist a Q-functor SX : JX → X such that
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for all φ ∈ JX and all x ∈ X:

(2.1) X(SXφ, x) = X̂(φ, yXx).

The element SXφ ∈ X is called the supremum of φ. If JX = X̂ and Ψ : X̂−→◦ 1, then

SX(Ψ)(x) =
∨
ψ∈X̂

Ψ(ψ) ⊗ ψ(x) =
∨
ψ∈X̂

Ψ(ψ) ⊗ [y(x), ψ], hence SX(Ψ) = Ψ · y∗(x). Since

JX is closed in X̂ under J-colimits, the same formula describes J-suprema in JX. For example,

if Q = 2, then X̂ is a poset of lower subsets of the poset X ordered by inclusion, ψ is a lower

set of lower sets of X, and the supremum of ψ is nothing else but
⋃
ψ.

A Q-functor f : X → Y between J-cocomplete Q-categories is J-cocontinuous if and only if

f(Sφ) = S(Jf(φ)), for all φ ∈ JX. Here we make use of the fact that J defines a functor

J : Q-Cat → J-Cocts which sends a Q-category X to JX, and a Q-functor f : X → Y to

Jf : JX → JY, ψ 7→ ψ · f∗. We use the occasion to remark that J : Q-Cat → J-Cocts is

left adjoint to the inclusion functor J-Cocts → Q-Cat. Even better, J-Cocts → Q-Cat is

monadic which we need here only to conclude that J-Cocts is complete and limits in J-Cocts

are calculated as in Q-Cat. For details we refer to [15].

There is a well-known general procedure to specify a saturated class J of modules which we

describe now.

Example 2.1. Fix a collection Φ of modules φ : 1−→◦ I, and define J as the class of all those

modules ψ : X−→◦ 1 where the Q-functors

ψ · − : QX → Q, α 7→ ψ · α =
∨

x∈X

α(x)⊗ ψ(x).

preserve Φ-weighted limits. Here we identify a Q-functor α : X → Q with a module α : 1−→◦ X.

Explicitly, we require that, for any φ : 1−→◦ I in Φ and any Q-functor α− : I → QX ,

∧

i∈I

Q(φ(i),
∨

x∈X

αi(x)⊗ ψ(x)) =
∨

x∈X

(
∧

i∈I

Q(φ(i), αi(x))

)
⊗ ψ(x).

Note that Q-functoriality of ψ · − implies already that the left hand side is larger or equal to

the right hand side.

Cocompleteness relative to J allows for a unified presentation of seemingly unrelated notions of

order- and metric completeness:

Example 2.2. For any Q, there is a largest and a smallest choice of J : let either J consist of

all modules of type X−→◦ 1, or only of representable modules x∗ : X−→◦ 1 where x ∈ X. In the

first case a Q-category X is J-cocomplete if and only if it is cocomplete, and in the second case

every Q-category is J-cocomplete.

Example 2.3. For Q = 2, we consider all modules of type X−→◦ 1 corresponding to order-ideals

in X (i.e. directed and lower subsets of X), and write J = Idl. Then X is Idl-cocomplete iff X

is a directed-complete.

Example 2.4. For Q = [0,∞] we consider all modules of type X−→◦ 1 corresponding to ideals in

X in the sense of [4], and write J = FC. These ideals in turn correspond to equivalence classes

of forward Cauchy sequences on X. Hence, X is FC-cocomplete if and only if each forward

Cauchy sequence on X converges if and only if X is sequentially Yoneda complete.
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Example 2.5. For any Q we can choose J to consist of all right adjoint modules (i.e. modules

that have left adjoints). Recall from [21] that, for Q = [0,∞], a right adjoint module X−→◦ 1

corresponds to an equivalence class of Cauchy sequences on X. A generalised metric space X is

J-cocomplete if and only if each Cauchy sequence on X converges.

Example 2.6. For a completely distributive quantale Q with totally below relation ≺ and

any Q-category X, a module ψ : X−→◦ 1 is a FSW-ideal if: (a)
∨
z∈X ψz = 1, and (b) for all

e1, e2, d ≺ 1, for all x1, x2 ∈ X, whenever e1 ≺ ψx1 and e2 ≺ ψx2, then there exists z ∈ X

such that d ≺ ψz, e1 ≺ X(x1, z) and e2 ≺ X(x2, z). Now for Q = [0,∞] FSW-ideals on X

are in a bijective correspondence with equivalence classes of forward Cauchy nets on X [10]; for

Q = 2, FSW-ideals are characteristic maps of order-ideals on X. Therefore this example unifies

Examples 2.3, 2.4.

Example 2.7. For any quantale Q, a module ψ : X−→◦ 1 is called flat if the map (ψ · −) taking

modules of type 1−→◦ X to Q preserves finite meets. For Q = 2, one verifies that ψ : X−→◦ 1 is

flat if and only if ψ : Xop → 2 is the characteristic map of a directed down-set. For Q = [0,∞]

with ⊗ = +, Theorem 7.15 of [27] states that flat modules are the same as FSW-ideals, therefore

this example unifies Examples 2.3, 2.4 as well. However, as we will show in Subsection 4.3, flat

modules and FSW-ideals are in general different.

Example 2.8. For any Q, put JX to be the set of all modules ψ : X−→◦ 1 of the form ψ = u ·x∗

where x ∈ X and u ∈ Q. Here we think of u ∈ Q as a module 1−→◦ 1. Spelled out, for y ∈ X

one has ψ(y) = X(y, x) ⊗ u. Note that ψ(y) = ⊥ whenever u = ⊥, independently of x ∈ X.

A Q-category X is J-cocomplete if it admits “tensoring” with elements of Q in the following

sense: for any x ∈ X and u ∈ Q, there exists a (necessarily unique up to equivalence) element

z ∈ X with

X(z, y) = Q(u,X(x, y))

for all y ∈ X, and one denotes z as u⊗ x.

2.5. J-continuous J-cocomplete Q-categories. J-continuity for Q-categories, introduced

in [12], allows for a unified treatment of many structures that play a major role in theoretical

computer science, e.g. continuous domains, complete metric spaces, or completely distributive

complete lattices.

Definition 2.9. A J-cocomplete Q-category X is J-continuous if the supremum SX : JX → X

has a left adjoint.

Note that any Q-functor of type X → JX corresponds to a certain module X−→◦ X belonging

to J . Hence, X is J-continuous if and only if there exists a module ⇓X : X−→◦ X in J with
p⇓q
X ⊣ SX . It is not difficult to see that S∗X · ⇓X 6 yX∗, and ⇓X is the largest module that

satisfies this inequality; hence we have identified ⇓X : X−→◦ X as the lifting ⇓X = S∗X −• yX∗.

In fact, module ⇓X := S∗X −• yX∗ exists for any J-cocomplete Q-category, and we refer to it as

the way-below module. It is worth noting that JX is J-continuous for every Q-category X. In

this case, the way-below module is given by

(2.2) ⇓(ψ,ψ′) =
∨

x∈X

ψ′(x)⊗ [ψ, x∗].

In the simplest case, Q = 2 and J = Idl, the module ⇓X is indeed the (characteristic map

of the) way-below relation on X. In the case of metric spaces, as a consequence of symmetry,

⇓X : X−→◦ X is the same as the structure X : X−→◦ X.
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We call a module v : X−→◦ X auxiliary, if v 6 X; interpolative, if v 6 v · v; approximating, if

v ∈ J and X •− v = X; J-cocontinuous, if S∗X · v = yX∗ · v. In a J-continuous J-cocomplete Q-

category, the way-below module is auxiliary, interpolative, approximating and J-cocontinuous.

In fact, we show [12] that a J-cocomplete Q-category is J-continuous iff the way-below module

is approximating.

Consider some examples: FSW-continuous FSW-cocomplete 2-categories are precisely con-

tinuous domains; cocontinuous cocomplete 2-categories are completely distributive complete lat-

tices (there the way-below module becomes the ‘totally-below’ relation associated with complete

distributivity of the underlying lattice); [0,∞] considered with the generalised metric structure

[0,∞](x, y) = max{y − x, 0} is an FSW-continuous FSW-complete [0,∞]-category; complete

metric spaces are FSW-continuous FSW-cocomplete [0,∞]-categories.

2.6. Open modules. Let J-Cocts(X,Y ) denote the set of all J-cocontinuous Q-functors from

X to Y , and we view J-Cocts(X,Q) as a sub-Q-category of QX .

Lemma 2.10. J-Cocts(X,Q) is closed under arbitrary suprema in QX . Hence, J-Cocts(X,Q)

is cocomplete.

Proof. Just observe that
∨
: QI → Q is a Q-functor left adjoint to the diagonal ∆: Q → QI ,

for any set I; and u⊗− : Q → Q is a Q-functor left adjoint to Q(u,−) : Q → Q. �

From the lemma above we deduce that the inclusion functor J-Cocts(X,Q) →֒ QX has a

right adjoint v : QX → J-Cocts(X,Q).

If X is J-cocomplete and J-continuous, this right adjoint has a simple description. In fact,

since ⇓X ⊣ SX and SX ⊣ yX , the map QX → J-Cocts(X,Q), f 7→ fL · ⇓X (where fL is left Kan

extension of f) is right adjoint to J-Cocts(X,Q) →֒ QX in Ord, hence it underlies v. Hence

in this case we can write v as the corestriction of the composite of left adjoints

QX −→ J-Cocts(JX,Q) →֒ QJX
−·⇓X

−−−−→ QX

to J-Cocts(X,Q), hence v is itself left-adjoint.

Lemma 2.11. If X is J-cocomplete and J-continuous, then J-Cocts(X,Q) is totally continu-

ous.

Proof. QX is totally continuous, and J-Cocts(X,Q) inherits this property since v : QX →

J-Cocts(X,Q) is a left and a right adjoint. �

We put now FX := J-Cocts(X,Q) ∩ J(Xop) and call α ∈ FX an open module. More

precisely, FX is defined via the pullback in J-Cocts of two inclusions: J-Cocts(X,Q) →֒ QX ,

J(Xop) →֒ QX , which tells us that:

• FX is J-cocomplete,

• both inclusion maps FX →֒ J(Xop) and FX →֒ J-Cocts(X,Q) preserve J-suprema.

Definition 2.12. We say that a J-continuous Q-category X is open module determined if for

all x, y ∈ X:

(2.3) ⇓X(x, y) =
∨

α∈FX

(α(y)⊗ [α, λX (x)]).

Note that, for all α ∈ FX and x, y ∈ X,

α(y)⊗ [α, λX(x)] =
∨

z∈X

(α(z) ⊗ ⇓X(z, y) ⊗ [α,X(x,−)]) 6
∨

z∈X

X(x, z) ⊗ ⇓X(z, y) = ⇓X(x, y),
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hence (2.3) is equivalent to

⇓X(x, y) 6
∨

α∈FX

(α(y)⊗ [α, λX (x)]).

Furthermore, (2.3) is equivalent to

⇓X(x, y) =
∨

α∈FX

(α(y) ⊗ [α,⇓X(x,−)])

since ⇓X(x,−) 6 λX(x) and

⇓X(x, y) =
∨

z∈X

⇓X(x, z) ⊗ ⇓X(z, y)

=
∨

z∈X

⇓X(x, z) ⊗
∨

α∈FX

(α(y) ⊗ [α, λX (z)])

=
∨

α∈FX

α(y)⊗
∨

z∈X

(⇓X(x, z)⊗ [α, λX (z)])

6
∨

α∈FX

α(y)⊗ [α,
∨

z∈X

⇓X(x, z) ⊗X(z,−)]

=
∨

α∈FX

(α(y) ⊗ [α,⇓X(x,−)]).

3. The duality

In this section we assume that a class Φ of limit weights φ : 1−→◦ I is given, and we consider

the corresponding class J of modules as described in Example 2.1. Furthermore, let X be a

J-cocomplete, J-continuous and open module determined Q-category.

Each x ∈ X defines:

evx : FX → Q

α 7→ α(x).

Lemma 3.1. For any x ∈ X, the map evx is an open module on FX.

Proof. Certainly, evx is J-continuous, since it is the restriction of

− · x∗ : J(X
op) → Q (here x ∈ Xop and therefore x∗ : 1−→◦ Xop)

to FX. We show now that evx ∈ J(FXop), that is,

Cx := evx · − : Q-Mod(FX, 1) → Q, Ψ 7→
∨

α∈FX

Ψ(α)⊗ α(x)

preserves Φ-weighted limits. Note that Q-Mod(FX, 1) ∼= Q-Mod(1, FXop). Furthermore,

since α ∈ FX is J-cocontinuous, Cx =
∨
y∈X Cy ⊗ ⇓X(y, x). Let φ : 1−→◦ I be in Φ and
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Ψ− : I → Q-Mod(FX, 1), i 7→ Ψi be a Q-functor. Then

∧

i∈I

Q(φ(i), Cx(Ψi)) =
∧

i∈I

Q(φ(i),
∨

y∈X

Cy(Ψi)⊗ ⇓X(y, x))

=
∨

y∈X

(
∧

i∈I

Q(φ(i), Cy(Ψi))

)
⊗ ⇓X(y, x) (⇓(−, x) is in J)

6
∨

α∈FX

α(x) ⊗
∨

y∈X

∧

i∈I

Q(φ(i), Cy(Ψi)⊗ [α, λXy])

6
∨

α∈FX

α(x) ⊗
∧

i∈I

Q(φ(i),Ψi(α))

since

Cy(Ψi)⊗ [α, λXy] =
∨

β∈FX

Ψi(β)⊗ [α, λXy]⊗ [λXy, β] 6
∨

β∈FX

Ψi(β)⊗ [α, β] = Ψi(α). �

We further obtain a map ηX : X → FFX given by:

x 7→ evx.(3.1)

This is indeed a Q-functor, since for any y, z ∈ X we have:

[ηX(y), ηX (z)] =
∧

α∈FX

Q(α(y), α(z)) > X(y, z).

Lemma 3.2. FX is J-continuous with the way-below module ⇓FX : FX−→◦ FX given by:

(3.2) ⇓FX(β, α) =
∨

x∈X

(α(x) ⊗ [β, λX(x)]).

Proof. Note that (3.2) states that the way-below module on FX is the restriction of the way-

below module on J(Xop) (see (2.2)). First we wish to show that

⇓FX(−, α) :=
∨

x∈X

(α(x)⊗ [−, λX(x)])

is a J-module of type FX−→◦ 1, for every α ∈ FX. To this end, we consider a diagram

1
φ

−→◦ A
h
→ QFX
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where φ belongs to Φ. We calculate:
∧

a∈A

Q(φ(a),
∨

β∈FX

(⇓FX(β, α) ⊗ h(a, β)))

=
∧

a∈A

Q(φ(a),
∨

x∈X

(α(x) ⊗ (
∨

β∈FX

([β, λX(x)]⊗ h(a, β)))))

{put k(a, x) :=
∨

β∈FX

([β, λX (x)]⊗ h(a, β)) where k : A→ QXop

}

=
∨

x∈X

(α(x) ⊗
∧

a∈A

(Q(φ(a), k(a, x))))

=
∨

x,y∈X

((α(y) ⊗ ⇓X(y, x)) ⊗
∧

a∈A

(Q(φ(a), k(a, x))))

=
∨

γ∈FX

∨

x,y∈X

((γ(x)⊗ α(y)⊗ [γ, λX(y)]) ⊗
∧

a∈A

(Q(φ(a), k(a, x))))

=
∨

γ∈FX

∨

y∈X

(α(y) ⊗ [γ, λX(y)]⊗ (
∨

x∈X

(γ(x)⊗
∧

a∈A

(Q(φ(a), k(a, x))))))

=
∨

γ∈FX

(⇓FX(γ, α) ⊗
∧

a∈A

(Q(φ(a),
∨

x∈X

(γ(x)⊗ k(a, x)))))

=
∨

γ∈FX

(⇓FX(γ, α) ⊗
∧

a∈A

(Q(φ(a),
∨

β∈FX

∨

x∈X

(γ(x)⊗ [β, λX(x)]⊗ h(a, β)))))

=
∨

γ∈FX

(⇓FX(γ, α) ⊗
∧

a∈A

(Q(φ(a),
∨

β∈FX

([β, γ] ⊗ h(a, β)))))

6
∨

γ∈FX

(⇓FX(γ, α) ⊗
∧

a∈A

(Q(φ(a), h(a, β)))),

as required (recall that the other inequality we get for free). Furthermore, we calculate:

SFX(⇓FX(−, α))(x) =
∨

β∈FX

(⇓FX(β, α) ⊗ β(x))

=
∨

β∈FX

∨

y∈X

(α(y) ⊗ [β, λX (y)]⊗ β(x))

=
∨

y∈X

(α(y) ⊗
∨

β∈FX

([β, λX (y)]⊗ β(x)))

=
∨

y∈X

(α(y) ⊗
∨

β∈FX

([β, λX (y)]⊗ [λX(x), β]))

=
∨

y∈X

(α(y) ⊗ ⇓X(y, x))

= α(x),

hence SFX(⇓FX(−, α)) = α. Finally, to conclude that p⇓q
FX ⊣ yFX , let ψ : FX−→◦ 1 in J . Let

i denote the inclusion Q-functor FX →֒ J(Xop) and ⇓J(Xop) the way-below module on J(Xop).

We observed already that ⇓FX = i∗ · ⇓J(Xop) · i∗. Hence,

p⇓q
FX · SFX(ψ) = (SFX(ψ))

∗ · ⇓FX = (SFX(ψ))
∗ · i∗ · ⇓J(Xop) · i∗

= (SJ(Xop)(ψ · i∗))∗ · ⇓J(Xop) · i∗ 6 ψ · i∗ · i∗ = ψ. �

Lemma 3.3. FX is open module determined.
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Proof. For all α, β ∈ FX:

⇓FX(β, α) =
∨

z∈X

(α(z) ⊗ [β, λX(z)]) =
∨

z∈X

(evz(α)⊗ [λX(z)∗, β∗])

=
∨

z∈X

(evz(α)⊗ [evz, λFX(β)]) =
∨

A∈FFX

(A(α)⊗ [A, λFX(β)]) �

By the discussion in Section 2.6 and Lemmata 3.2, 3.3 we obtain:

Theorem 3.4. If X is a J-continuous, J-cocomplete and open module determined Q-category,

then so is FX.

Our next aim is to show that ηX : : X → FFX is an isomorphism. To do so, let now A : FX →

Q be an open module on FX. We define:

ψA(x) :=
∨

α∈FX

(A(α)⊗ [α, λX (x)]).

Such defined ψA is a module X−→◦ 1, since it is the composite:

X
λX∗

−→◦ J(Xop)op i∗

−→◦ FXop A
−→◦ 1.

We also need to have:

Lemma 3.5. For every A ∈ FFX, we have ψA ∈ JX.

Proof. In order to check that ψA : X−→◦ 1 belongs to JX, we need to check whether ψA·− : QX →

Q preserves Φ-weighted limits. Let

1
φ

−→◦ A
h
→ QX

be a limit diagram with φ in Φ. Spelled out, we have to show that

∨

x∈X

(ψA(x)⊗
∧

y∈A

(Q(φ(y), h(y, x)))) >
∧

y∈A

(Q(φ(y),
∨

x∈X

(ψA(x)⊗ h(y, x)))).
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To this end, we calculate:

∧

y∈A

(Q(φ(y),
∨

x∈X

(ψA(x)⊗ h(y, x))))

=
∧

y∈A

(Q(φ(y),
∨

x∈X

∨

α∈FX

(A(α)⊗ [α, λX (x)]⊗ h(y, x))))

=
∧

y∈A

(Q(φ(y),
∨

α∈FX

(A(α)⊗ ⇓FX(α, h(y))))) {since Aop ∈ J}

=
∨

α∈FX

(A(α)⊗
∧

y∈A

(Q(φ(y),⇓FX(α, h(y)))))

=
∨

α,β∈FX

((A(β) ⊗ ⇓FX(β, α)) ⊗
∧

y∈A

(Q(φ(y),⇓FX(α, h(y)))))

=
∨

α,β∈FX

∨

x∈X

((A(β)⊗ α(x)⊗ [β, λX(x)]) ⊗
∧

y∈A

(Q(φ(y),⇓FX(α, h(y)))))

=
∨

x∈X

∨

β∈FX

(A(β)⊗ [β, λX(x)])⊗
∨

α∈FX

evx(α)⊗
∧

y∈A

(Q(φ(y),⇓FX(α, h(y))))

{evx is a filter}

=
∨

x∈X

(ψA(x)⊗
∧

y∈X

Q(φ(y),
∨

α∈FX

(α(x) ⊗ ⇓FX(α, h(y)))))

6
∨

x∈X

(ψA(x)⊗
∧

y∈X

Q(φ(y), α(x) ⊗ [α, h(y)]))

6
∨

x∈X

(ψA(x)⊗
∧

y∈X

Q(φ(y), h(y, x))),

which proves ψA ∈ JX. �

Lemma 3.6. For any α ∈ FX, we have A(α) = α(SX(ψA)).

Proof.

α(SX(ψA)) = colim(α,ψA)

=
∨

x∈X

(α(x)⊗ ψA(x))

=
∨

x∈X

(α(x)⊗
∨

β∈FX

(A(β)⊗ [β, λX(x))))

=
∨

β∈FX

(A(β)⊗
∨

x∈X

(α(x) ⊗ [β, λX(x)]))

=
∨

β∈FX

(A(β)⊗ ⇓FX(β, α))

= colim(A,⇓FX(−, α))

= A(SFX(⇓FX(−, α)))

= A(α). �

Definition 3.7. We say that a Q-functor f : X → Y between Q-categories reflects open modules

if α ·f ∈ FX for every α ∈ FY . Let (J,Q)-Dom be the category of J-cocomplete, J-continuous

and open module determined Q-categories together with open module reflecting maps.
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Lemma 3.8. The pair of operations

X 7→ FX

f : X → Y 7→ − · f : FY → FX

defines a contravariant functor, i.e. F : (J,Q)-Domop → (J,Q)-Dom.

Proof. Functoriality is trivial; we only need to show that F (f) reflect open modules. Let A ∈

FFX. By Lemma 3.6 there exists x ∈ X such that A = evx, namely x = SXψA. Then, for any

α ∈ FY , we have (A · F (f))(α) = A(α · f) = α(f(x)) = evf(x)(α). Hence A · F (f) = evf(x), i.e.

A · F (f) ∈ FFX. �

Theorem 3.9 (The Duality Theorem). The category (J,Q)-Dom is self-dual.

Proof. The natural isomorphism η : 1(J,Q)-Dom → FF as defined in (3.1) has the converse

ε : FF → 1(J,Q)-Dom given by εX(A) = SXψA for every A ∈ FFX . �

4. Examples of the duality

4.1. Lawson duality. The case Q = 2 and J = FSW, perhaps the simplest possible, served us

as a proof guide throughout the paper. In fact, most of the crucial proof ideas (e.g. Lemma 3.6:

any open module on open modules A is of the form evSXψA
for some J-ideal ψA) come from an

analysis of this simple case. Observe that FSW-continuous, FSW-cocomplete 2-categories are

continuous dcpos (domains). Furthermore, open modules are nothing else but (the character-

istic maps of) Scott-open filters on domains. Recall that in this case any FX is open module

determined: the equality (2.3) reduces to

∀x, y ∈ X (x≪ y ⇒ ∃α ∈ FX (y ∈ α ⊆ ↑↑x)),

and we define such α ∈ FX by α :=
⋃
n∈ω ↑

↑xn, where the descending chain (xn)n∈ω has been

obtained by a repeated use of interpolation (see Prop. 3.3 of [11]):

x≪ . . . ≪ xn ≪ xn−1 ≪ . . .≪ x2 ≪ x1 ≪ x0 = y.

Consequently, the category (FSW,2)−Dom is the category of domains with open filter reflecting

maps; our Theorem 3.9 reduces to Theorem IV-2.12 of [11] establishing the Lawson duality for

domains. It is worth mentioning that the Lawson duality (originally proved in [20]) finds its

applications in the theory of locally compact spaces; in particular, the lattice of opens of a

locally compact sober space X is Lawson dual to the lattice of compact saturated subsets of X

(cf. Hofmann-Mislove theorem).

4.2. A metric duality. In the case Q = [0,∞] with ⊗ = + and J being the class of FSW-

ideals (or, equivalently, flat modules), our duality works in a certain subcategory of Met: its

FSW-cocomplete objects are known in the literature as Yoneda-complete gmses [4]. The FSW-

cocomplete and FSW-continuous ones form a class not previously discussed in the literature,

except in the forthcoming paper [19], where they are shown to be precisely the spaces hav-

ing continuous and directed-complete formal ball models [8, 2, 23] (this implies, in particular,

that their topology and metric structure can be respectively characterized as a subspace Scott

topology and a partial metric on a domain).

A proof that objects of (FSW, [0,∞])−Dom are open filter determined can be found in [3];

below we present a sketch of the proof.
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We abbreviate ⇓X to ⇓ and customarily use + instead of ⊗, inf instead of
∨
, etc. In order to

show (2.3) it is enough to find a family of open filters (αe,b)e,b>0, such that e > ⇓(x, y) implies

e+ b > αe,b(y) + [αe,b,⇓(x,−)] > inf
α∈FX

(α(y) + [α,⇓(x,−)]),

which, by complete distributivity of ([0,∞],>), allows us to draw the desired conclusion. Take

an arbitrary e > ⇓(x, y) and b > 0, and choose a chain (en)n∈ω in ([0,∞],>) such that:

b > e0 + e0,

e0 > e1 > e2 > . . . > en > . . . > 0,

en > en+1 + en+2 + . . . ,

inf
n∈ω

en = 0.

(4.1)

Now, by interpolation, we can find a sequence (xn)n∈ω such that:

e > ⇓(x, x0) + ⇓(x0, y) and e0 > ⇓(x0, y),

e > ⇓(x, x1) + ⇓(x1, x0) + ⇓(x0, y), and e1 > ⇓(x1, x0),

e > ⇓(x, x2) + ⇓(x2, x1) + ⇓(x1, x0) + ⇓(x0, y) and e2 > ⇓(x2, x1),

· · ·

e > ⇓(x, xn) + ⇓(xn, xn−1) + · · · + ⇓(x1, x0) + ⇓(x0, y) and en > ⇓(xn, xn−1),

· · ·

Define αe,b : X → [0,∞] as αe,b(z) := infn∈ω supk≥nX(xk, z); this map is an open module on X.

In order to conclude (2.3), it is now enough to verify that

(4.2) e+ b > αe,b(y) + [αe,b,⇓(x,−)].

However

αe,b(y) = inf
n∈ω

sup
k≥n

X(xk, y)

6 sup
k≥1

(X(xk, xk−1) + · · ·+X(x1, x0) +X(x0, y))

6 sup
k≥1

(⇓(xk, xk−1) + · · ·+ ⇓(x1, x0) + ⇓(x0, y)) {by (4.1)}

6 e0 + e0

< b.

and

[αe,b,⇓(x,−)] = sup
z∈X

(⇓(x, z) − αe,b(z))

6 sup
z∈X

(⇓(x, z) − ( inf
n∈ω

sup
k≥n

X(xk, z)))

6 sup
z∈X

( inf
n∈ω

sup
k≥n

(⇓(x, z) −X(xk, z)))

6 sup
n∈ω

sup
k≥n

⇓(x, xk)

6 e.

so (4.2), and therefore also (2.3) are now verified.
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4.3. An ultrametric duality. For the quantale Q = [0,∞] with ⊗ = max, Q-Cat is the

category UMet of ultrametric spaces and contraction maps. As above, we can choose J to

be the class of all flat modules (see Example 2.7), and obtain that the corresponding category

(J,Q)-Dom is self-dual. However, in ultrametric spaces flat modules are not, in general, FSW-

ideals, as the following example shows.

Example 4.1. Consider the set N of natural numbers with the distance

N(n,m) =

{
0 if n = m,

max(n,m) otherwise.

This distance is a symmetric, separable ultrametric. Take

φ(x) =

{
0 if x = 0,

1 if x > 0.

Trivially, φ preserves the empty meet. Now, observe that the proof of (the equivalence of (1)

and (2) of) Proposition 7.9 in [27] holds verbatim for ⊗ = max, hence it is enough to show that

(φ · −) preserves meets of modules of the form max(N(−, x), c) for some c ∈ [0,∞]. Suppose

A := max(N(−, a), c1) and B := max(N(−, b), c2) for c1, c2 ∈ [0,∞]; we are heading to prove:

(*) inf
z∈N

max(Az,Bz, φz) = max(inf
s∈N

(max(As, φs)), inf
r∈N

(max(Br, φr))).

We have

inf
z∈N

max(Az,Bz, φz) = inf
z∈N

max(z, a, b, c1, c2, φz) = max(a, b, c1, c2),

inf
s∈N

max(As, φs) = inf
s∈N

max(s, a, c1, φs) = max(a, c1),

inf
r∈N

max(Br, φr) = inf
r∈N

max(r, b, c2, φr) = max(b, c2)

since all these infima are attained for z = r = s = 0. This shows (*), and so φ : X−→◦ 1 is a flat

module.

On the other hand, φ is not an FSW-ideal: we have φ(2) < 2 and φ(3) < 2 but there is no

z ∈ N with φ(z) < 1 and N(2, z) < 2 and N(3, z) < 2.

4.4. The absolute case. For any quantale Q, we can consider Φ being the empty class and

therefore JX = X̂ is the collection of all modules of typeX−→◦ 1. In this case, every cocontinuous

Q-functor α : X → Q is an open module. Furthermore, every totally continuous cocomplete

Q-category is open module determined since ⇓X(x,−) : X → Q is in FX. Finally, a Q-functor

f : X → Y reflects open modules if and only if f is left adjoint. Therefore Theorem 3.9 states

that the category of totally continuous cocomplete Q-categories and left adjoint Q-functors is

self-dual.

4.5. A somehow different example. We consider now Q = [0,∞] where ⊗ = +, with the

class J of modules described in Example 2.8. However, for technical reasons we consider the

unique module ∅−→◦ 1 as a formal ball, so that J∅ = 1. Consequently, the empty space is not

J-cocomplete. We will show now that our duality theorem holds in this case too, despite the

fact that this class of modules is (to our knowledge) not defined via a class of limit weights.

Let now X be a J-cocomplete and J-continuous metric space. We write ⇓ : X → JX for the

left adjoint to S : JX → X. Hence, for any x ∈ X, ⇓(x) ∈ JX is of the form ⇓(x) = X(−, x1)+u

for some x1 ∈ X and u ∈ [0,∞]. Note that u <∞ if x is not the bottom element of X. Assume

that ⇓(x1) = X(−, x2) + u2. Then

X(−, x1) + u = ⇓(x) = ⇓(x1 + u1) = ⇓(x1) + u1 = X(−, x2) + u2 + u1,
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hence, X(−, x1) = X(−, x2)+u2. In particular, 0 = X(x1, x2)+u2, and therefore u2 = 0 and we

obtain ⇓(x1) = y(x1). Let A be the equaliser of y and ⇓, that is, A = {x ∈ X | ⇓(x) = y(x)}. By

the considerations above, ⇓ : X → JX factors through the inclusion JA →֒ JX. Moreover, for

any X(−, x) + u with x ∈ A, ⇓(x+ u) = ⇓(x) + u = X(−, x) + u, which gives X ∼= JA. We also

remark that x ∈ A if and only if X(x,−) : X → [0,∞] preserves tensoring. One has φ ∈ FX

precisely if φ = X(x,−) + u for some x ∈ X and u ∈ [0,∞] and if, moreover, φ preserves

tensoring. If u < ∞, then also X(x,−) preserves tensoring, hence x ∈ A. Consequently,

FX ∼= J(Aop).

Consider now f : X → Y with X ∼= JA and Y ∼= JB as above. Then f is open module

reflecting if, and only if, for each y0 ∈ B, there exists some x0 ∈ A and some v ∈ [0,∞] with

Y (y0, f(−)) = X(x0,−) + v. We show that f necessarily preserves tensoring. To this end, let

x ∈ X and u ∈ [0,∞]. Then

Y (y0, f(x+ u)) = X(x0, x+ u) + v = X(x0, x) + v + u = Y (y0, f(x)) + u = Y (y0, f(x) + u)

for all y0 ∈ B, hence f(x + u) = f(x) + u. Therefore f corresponds to a module φ : B−→◦ A

in the sense that, when identifying X with JA and Y with JB, then f(ψ) = ψ · φ. Hence, for

any x ∈ A, x∗ · φ = φ(−, x) belongs to JB, and the f being open module reflecting translates

to φ · y∗ = φ(y,−) ∈ J(Aop) for all y ∈ B. Recall that for each module φ : B−→◦ A we have

its dual φop : Aop−→◦ Bop, φop(x, y) = φ(y, x), and with this notation the latter condition reads

as y∗ · φop ∈ J(Aop) for all y ∈ Bop. We conclude that the category of J-cocomplete and J-

continuous metric spaces and open module reflecting contraction maps is dually equivalent to

the category of all metric spaces with morphisms those modules φ : X → Y satisfying

∀y ∈ Y . (y∗ · φ ∈ JX) and ∀x ∈ Xop . (x∗ · φop ∈ J(Y op)),

and the latter category is obviously self-dual.
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