A DUALITY OF QUANTALE-ENRICHED CATEGORIES

DIRK HOFMANN AND PAWEŁ WASZKIEWICZ

Abstract

We describe a duality for quantale-enriched categories that extends the Lawson duality for continuous dcpos: for any saturated class J of modules that commute with certain weighted limits, and under an appropriate choice of morphisms, the category of J-cocomplete and J-continuous quantale-enriched categories is self-dual.

1. Introduction

In [12] we observed that the left adjoint to the Yoneda embedding in a quantale-enriched category X can be interpreted as a notion of approximation in X. Thus in directed-complete posets, approximation is the way-below relation [11.I.1.; in complete lattices the totally-below relation [22]; and in (generalised) metric spaces a distance $\Downarrow: X \times X \rightarrow[0, \infty]$ such that every $x \in X$ is a "metric supremum" of $\Downarrow(-, x)$ [12].

The purpose of this paper is to develop a duality theory for \mathcal{Q}-categories that extends the Lawson duality for continuous dcpos [20. Recall that Lawson's theorem states that the category of continuous dcpos with Scott-open filter reflecting maps is self-dual. We show that under an appropriate choice of morphisms the category of J-cocomplete and J-continuous ($=$ admitting approximation) \mathcal{Q}-categories is self-dual. Our duality theorem holds for any saturated class J of modules that preserve certain limits; therefore it works uniformly for continuous domains, completely distributive complete lattices, Yoneda-complete quasi-metric spaces, totally distributive \mathcal{Q}-categories, and perhaps many other familiar structures from the borderline of metric and order theory.

Our feet rest on shoulders of many. Hausdorff's point of view that a metric is a relation valued in non-negative real numbers, brought to light by [21, led to a development of an unified categorical/algebraic description of topology, uniformity, order and metric [5, 7, 6]. The idea of relative cocompleteness was developed in [14, 1, 17, 16, 15, 25]. Our primary examples of classes of modules have already been studied in [10, 25, 27]. We do hope that our results will be of interest to those who work with categories where the left adjoint to Yoneda embedding has a left adjoint; research in this direction include: [13, 18, 9, 24, [26].

2. Preliminaries

2.1. Quantales. A $\mathcal{Q}=(Q, \leqslant, \otimes, \mathbf{1})$ is a commutative unital quantale (in short: a quantale) such that the unit element $\mathbf{1}$ is greatest with respect to the order on (Q, \leqslant). We also assume that $\perp \neq \mathbf{1}$. Examples of quantales include: the two element lattice $\mathbf{2}=(\{\perp, \mathbf{1}\}, \leqslant, \wedge, \mathbf{1})$; the unit interval $[0,1]$ in the natural order, with multiplication as tensor; the extended real half

[^0]line $[0, \infty]$ in the order opposite to the natural one, with addition as tensor. In general, every Heyting algebra with infimum as tensor is a quantale.
2.2. \mathcal{Q}-categories. We recall that a \mathcal{Q}-category is a set X with a map $X: X \times X \rightarrow Q$, called the structure of X, with two properties: $\mathbf{1} \leqslant X(x, x)$ for all $x \in X$ (reflexivity), and $X(x, y) \otimes X(y, z) \leqslant X(x, z)$ for all $x, y, z \in X$ (transitivity). In our paper \mathcal{Q}-Cat denotes the category of \mathcal{Q}-categories, where morphisms, called \mathcal{Q}-functors, are maps $f: X \rightarrow Y$ such that $X(x, z) \leqslant Y(f x, f z)$ for all $x, z \in X$. For example Met $:=[0, \infty]$-Cat is Lawvere's category of generalised metric spaces [21], where reflexivity and transitivity correspond respectively to the assumption of self-distance being zero and to the triangle inequality. As another example we consider 2-Cat, which is isomorphic to the category of preordered sets and monotone maps, and will henceforth be denoted by Ord.

A \mathcal{Q}-category is separated if $X(x, y)=X(y, x)=\mathbf{1}$ implies $x=y$, for all $x, y \in X$. For example a separated $[0, \infty]$-category is a quasi-metric space, where points can possibly be at infinite distance. Any \mathcal{Q}-category X is preordered by the relation $x \leqslant x y$ iff $\mathbf{1} \leqslant X(x, y)$, which is antisymmetric iff X is separated. Clearly, \mathcal{Q}-functors are $\leqslant x$-preserving.

The internal hom of \mathcal{Q}-Cat is the set Y^{X} of all \mathcal{Q}-functors of type $X \rightarrow Y$ considered with the structure $Y^{X}(f, g):=\bigwedge_{x \in X} Y(f x, g x)$. The induced order on Y^{X} is pointwise. The quantale \mathcal{Q} is made into a separated \mathcal{Q}-category by its internal hom. The induced order $\leqslant_{\mathcal{Q}}$ coincides with the original order on Q. By $X^{\text {op }}$ we mean the \mathcal{Q}-category dual to $X . \widehat{X}$ is defined as $\mathcal{Q}^{X^{\mathrm{op}}}$, that is $\widehat{X}(f, g)=\bigwedge_{x \in X} \mathcal{Q}(f x, g x)$. For any X, we have the \mathcal{Q}-functor $\mathrm{y}_{X}: X \rightarrow \widehat{X}, \mathrm{y}_{X} x=X(-, x)$, called the Yoneda embedding. The Yoneda embedding is fully faithful. Furthermore, for all $x \in X$ and $f \in \widehat{X}$, we have $\widehat{X}\left(\mathrm{y}_{X} x, f\right)=f x$, and this equality is the statement of the Yoneda Lemma for \mathcal{Q}-categories.

Lastly, \mathcal{Q}-Cat admits a tensor product $X \otimes Y((x, y),(z, w))=X(x, z) \otimes Y(y, w)$. Since tensor is left adjoint to internal hom, every \mathcal{Q}-functor $g: X \otimes Y \rightarrow Z$ has its exponential mate ${ }^{\ulcorner } g$ $: Y \rightarrow$ Z^{X}. It is worth noting that the structure of X is always a \mathcal{Q}-functor of type $X^{\mathrm{op}} \otimes X \rightarrow Q$, and its exponential mate is the Yoneda embedding $\mathrm{y}_{X}: X \rightarrow \widehat{X}$.
2.3. \mathcal{Q}-modules. A \mathcal{Q}-functor of type $X^{\mathrm{op}} \otimes Y \rightarrow Q$ is called a \mathcal{Q}-module (or plainly: a module). For example, the structure of any \mathcal{Q}-category X is a module. Moreover, any two modules $\phi: X^{\mathrm{op}} \otimes Y \rightarrow Q$ and $\psi: Y^{\mathrm{op}} \otimes Z \rightarrow Q$ can be composed to give a module of type $X^{\mathrm{op}} \otimes Z \rightarrow Q:$

$$
(\psi \cdot \phi)(x, z):=\bigvee_{y \in Y}(\phi(x, y) \otimes \psi(y, z))
$$

Therefore we think of $\phi: X^{\text {op }} \otimes Y \rightarrow Q$ as an arrow $\phi: X \rightarrow Y$, which, by the above, can be composed with $\psi: Y \mapsto Z$ to give $\psi \cdot \phi: X \mapsto Z$. Note also that $Y \cdot \phi=\phi=\phi \cdot X$.

Any function $f: X \rightarrow Y$ gives rise to two modules, namely $f_{*}: X \rightarrow Y, f_{*}(x, y)=Y(f x, y)$ and $f^{*}: Y \leadsto X, f^{*}(y, x)=Y(y, f x)$. We further observe that for any element $x: 1 \rightarrow X$ (1 is the one-element \mathcal{Q}-category that should not be confused with the unit of the quantale), the module $x^{*}: X \rightarrow 1$ is in fact the same as the \mathcal{Q}-functor $\mathrm{y}_{X} x:=X(-, x) \in \widehat{X}$. Dually, the module $x_{*}: 1 \multimap X$ corresponds to the \mathcal{Q}-functor $\lambda_{X} x:=X(x,-)$.

The set of all modules of type $X \rightarrow Y$ becomes a complete lattice via the pointwise order where the supremum ϕ of a family $\phi_{i}: X \rightarrow Y(i \in I)$ of modules can be calculated as $\phi(x, y)=$ $\bigvee_{i \in I} \phi_{i}(x, y)$. Furthermore, composition of modules preserves this suprema on both sides, and therefore the maps $-\phi \phi$ and $\phi \cdot-$ have right adjoints $-\bullet \phi$ and $\phi \bullet-$ respectively. Explicitly, given $\phi: X \rightarrow Y$,

$$
(\psi \bullet \phi)(y, z)=\bigwedge_{x \in X} \mathcal{Q}(\phi(x, y), \psi(x, z)
$$

for any $\psi: X \mapsto Z$, and

$$
(\phi \bullet \psi)(z, x)=\bigwedge_{y \in Y} Q(\phi(x, y), \psi(z, y))
$$

for any $\psi: Z \multimap Y$. We call $\psi \bullet \phi$ the extension of ψ along ϕ, and $\phi \bullet \psi$ the lifting of ψ along ϕ. This construction will be used to define the so called way-below module in Section 2.5.

In Ord, modules of type $X \rightarrow 1$ are precisely (characteristic maps of) lower sets, and modules of type $1 \rightarrow X$ are upper sets of the poset X. Furthermore, the up-set of all upper bounds of $\psi: ~: X \leftrightarrow 1$ is given by $\phi=(\leqslant \bullet \psi)$, and $x \in X$ is a smallest upper bound of ψ if and only if $x_{*}=(\leqslant \bullet \psi)$. On the other hand, in Met, any Cauchy sequence $\left(x_{n}\right)_{n \in \omega}$ induces a module $\phi: 1 \longrightarrow X$ via $\phi(x)=\lim _{n \rightarrow \infty} X\left(x_{n}, x\right)$, and a module $\psi: X \rightarrow 1$ via $\psi(x)=\lim _{n \rightarrow \infty} X\left(x, x_{n}\right)$. Observe that $\psi \cdot \phi \leqslant 0$ and $\phi \cdot \psi \geqslant X$ in the pointwise order. Conversely, any pair of modules that satisfies the above equations comes from some Cauchy sequence on X. More generally, we will say that modules $\phi: Z \multimap X, \psi: X \mapsto Z$ are adjoint iff $\phi \cdot \psi \leqslant X$ and $\psi \cdot \phi \geqslant Z$. In this case we say that ϕ is a left adjoint to ψ and ψ is a right adjoint to ϕ.
2.4. J-cocomplete \mathcal{Q}-categories. We recall here briefly the notions of weighted limit and weighted colimit, for further details we refer to [14, 16]. For a module $\phi: 1 \multimap I$, a ϕ-weighted limit of a \mathcal{Q}-functor $h: I \rightarrow X$ is an element $x \in X$ with $x^{*}=\phi \bullet h^{*}$. Dually, for a module $\psi: I \multimap 1$, a ψ-weighted colimit of a \mathcal{Q}-functor $h: I \rightarrow X$ is an element $x \in X$ with $x_{*}=h_{*} \bullet \psi$. A \mathcal{Q}-category X is called complete if X admits all weighted limits, and cocomplete if X admits all weighted colimits. For instance, \mathcal{Q} is both complete and cocomplete where the limit of h and ϕ is given by $\bigwedge_{i \in I} \mathcal{Q}(\phi(i), h(i))$ and the colimit of h and ψ by $\bigvee_{i \in I} \psi(i) \otimes h(i)$. This argument extends pointwise to \widehat{X}, and we also note that a \mathcal{Q}-category X is complete if and only if X is cocomplete.

One says that a \mathcal{Q}-functor $f: X \rightarrow Y$ preserves the ϕ-weighted limit x of $h: I \rightarrow X$ if $f(x)$ is a ϕ-weighted limit of $f h: I \rightarrow Y$, likewise, $f: X \rightarrow Y$ preserves the ψ-weighted colimit x of $h: I \rightarrow X$ if $f(x)$ is a ψ-weighted colimit of $f h: I \rightarrow Y$. Then $f: X \rightarrow Y$ is called continuous if f preserves all existing weighted limits in X, and f is called cocontinuous if f preserves all existing weighted colimits in X.

In the sequel we will be interested in special kinds of colimits, hence we suppose that there is given a collection J of modules of type $X \leftrightarrow 1$, called thereafter J-ideals. The set of those modules in J with domain X we denote as $J X$. Then we define X to be J-cocomplete if X admits all ψ-weighted colimits with ψ in J, and a \mathcal{Q}-functor $f: X \rightarrow Y$ is called J-cocontinuous if f preserves all existing J-weighted colimits in X. We will also assume that our class J of modules is saturated, which amounts to saying that $J X$ contains all modules $x^{*}: X \leftrightarrow 1$ and is closed in \widehat{X} under J-weighted colimits. In this case, X is J-cocomplete if and only if X admits all ψ-weighted colimits with $\psi: X \rightarrow 1$ in J-Mod, which in turn is equivalent to $\mathrm{y}_{X}: X \rightarrow J X$ having a left adjoint in \mathcal{Q}-Cat. That is, there must exist a \mathcal{Q}-functor $\mathrm{S}_{X}: J X \rightarrow X$ such that
for all $\phi \in J X$ and all $x \in X$:

$$
\begin{equation*}
X\left(\mathrm{~S}_{X} \phi, x\right)=\widehat{X}\left(\phi, \mathrm{y}_{X} x\right) . \tag{2.1}
\end{equation*}
$$

The element $\mathrm{S}_{X} \phi \in X$ is called the supremum of ϕ. If $J X=\widehat{X}$ and $\Psi: \widehat{X} \mapsto 1$, then $\mathrm{S}_{X}(\Psi)(x)=\bigvee_{\psi \in \widehat{X}} \Psi(\psi) \otimes \psi(x)=\bigvee_{\psi \in \widehat{X}} \Psi(\psi) \otimes[\mathrm{y}(x), \psi]$, hence $\mathrm{S}_{X}(\Psi)=\Psi \cdot \mathrm{y}_{*}(x)$. Since $J X$ is closed in \widehat{X} under J-colimits, the same formula describes J-suprema in $J X$. For example, if $\mathcal{Q}=\mathbf{2}$, then \widehat{X} is a poset of lower subsets of the poset X ordered by inclusion, ψ is a lower set of lower sets of X, and the supremum of ψ is nothing else but $\bigcup \psi$.

A \mathcal{Q}-functor $f: X \rightarrow Y$ between J-cocomplete \mathcal{Q}-categories is J-cocontinuous if and only if $f(\mathrm{~S} \phi)=\mathrm{S}(J f(\phi))$, for all $\phi \in J X$. Here we make use of the fact that J defines a functor $J: \mathcal{Q}$-Cat $\rightarrow J$-Cocts which sends a \mathcal{Q}-category X to $J X$, and a \mathcal{Q}-functor $f: X \rightarrow Y$ to $J f: J X \rightarrow J Y, \psi \mapsto \psi \cdot f^{*}$. We use the occasion to remark that $J: \mathcal{Q}$-Cat $\rightarrow J$-Cocts is left adjoint to the inclusion functor J-Cocts $\rightarrow \mathcal{Q}$-Cat. Even better, J-Cocts $\rightarrow \mathcal{Q}$-Cat is monadic which we need here only to conclude that J-Cocts is complete and limits in J-Cocts are calculated as in \mathcal{Q}-Cat. For details we refer to [15].

There is a well-known general procedure to specify a saturated class J of modules which we describe now.

Example 2.1. Fix a collection Φ of modules $\phi: 1 \multimap I$, and define J as the class of all those modules $\psi: X \longrightarrow 1$ where the \mathcal{Q}-functors

$$
\psi \cdot-: \mathcal{Q}^{X} \rightarrow \mathcal{Q}, \alpha \mapsto \psi \cdot \alpha=\bigvee_{x \in X} \alpha(x) \otimes \psi(x)
$$

preserve Φ-weighted limits. Here we identify a \mathcal{Q}-functor $\alpha: X \rightarrow \mathcal{Q}$ with a module $\alpha: 1 \multimap X$. Explicitly, we require that, for any $\phi: 1 \multimap I$ in Φ and any \mathcal{Q}-functor $\alpha_{-}: I \rightarrow \mathcal{Q}^{X}$,

$$
\bigwedge_{i \in I} \mathcal{Q}\left(\phi(i), \bigvee_{x \in X} \alpha_{i}(x) \otimes \psi(x)\right)=\bigvee_{x \in X}\left(\bigwedge_{i \in I} \mathcal{Q}\left(\phi(i), \alpha_{i}(x)\right)\right) \otimes \psi(x)
$$

Note that \mathcal{Q}-functoriality of $\psi \cdot$ - implies already that the left hand side is larger or equal to the right hand side.

Cocompleteness relative to J allows for a unified presentation of seemingly unrelated notions of order- and metric completeness:

Example 2.2. For any \mathcal{Q}, there is a largest and a smallest choice of J : let either J consist of all modules of type $X \rightarrow 1$, or only of representable modules $x^{*}: X \mapsto 1$ where $x \in X$. In the first case a \mathcal{Q}-category X is J-cocomplete if and only if it is cocomplete, and in the second case every \mathcal{Q}-category is J-cocomplete.

Example 2.3. For $\mathcal{Q}=\mathbf{2}$, we consider all modules of type $X \leftrightarrow 1$ corresponding to order-ideals in X (i.e. directed and lower subsets of X), and write $J=\mathbf{I d l}$. Then X is Idl-cocomplete iff X is a directed-complete.

Example 2.4. For $\mathcal{Q}=[0, \infty]$ we consider all modules of type $X \rightarrow 1$ corresponding to ideals in X in the sense of [4], and write $J=\mathbf{F C}$. These ideals in turn correspond to equivalence classes of forward Cauchy sequences on X. Hence, X is FC-cocomplete if and only if each forward Cauchy sequence on X converges if and only if X is sequentially Yoneda complete.

Example 2.5. For any \mathcal{Q} we can choose J to consist of all right adjoint modules (i.e. modules that have left adjoints). Recall from [21] that, for $\mathcal{Q}=[0, \infty]$, a right adjoint module $X \rightarrow 1$ corresponds to an equivalence class of Cauchy sequences on X. A generalised metric space X is J-cocomplete if and only if each Cauchy sequence on X converges.

Example 2.6. For a completely distributive quantale \mathcal{Q} with totally below relation \prec and any \mathcal{Q}-category X, a module $\psi: X \longrightarrow 1$ is a FSW-ideal if: (a) $\bigvee_{z \in X} \psi z=1$, and (b) for all $e_{1}, e_{2}, d \prec \mathbf{1}$, for all $x_{1}, x_{2} \in X$, whenever $e_{1} \prec \psi x_{1}$ and $e_{2} \prec \psi x_{2}$, then there exists $z \in X$ such that $d \prec \psi z, e_{1} \prec X\left(x_{1}, z\right)$ and $e_{2} \prec X\left(x_{2}, z\right)$. Now for $\mathcal{Q}=[0, \infty]$ FSW-ideals on X are in a bijective correspondence with equivalence classes of forward Cauchy nets on X [10]; for $\mathcal{Q}=\mathbf{2}, \mathbf{F S W}$-ideals are characteristic maps of order-ideals on X. Therefore this example unifies Examples 2.3, 2.4.

Example 2.7. For any quantale \mathcal{Q}, a module $\psi: X \rightarrow 1$ is called flat if the map $(\psi \cdot-)$ taking modules of type $1 \longrightarrow X$ to \mathcal{Q} preserves finite meets. For $\mathcal{Q}=\mathbf{2}$, one verifies that $\psi: X \longrightarrow 1$ is flat if and only if $\psi: X^{\mathrm{op}} \rightarrow \mathbf{2}$ is the characteristic map of a directed down-set. For $\mathcal{Q}=[0, \infty]$ with $\otimes=+$, Theorem 7.15 of [27] states that flat modules are the same as $\mathbf{F S W}$-ideals, therefore this example unifies Examples 2.3, 2.4 as well. However, as we will show in Subsection 4.3, flat modules and FSW-ideals are in general different.

Example 2.8. For any \mathcal{Q}, put $J X$ to be the set of all modules $\psi: X \mapsto 1$ of the form $\psi=u \cdot x^{*}$ where $x \in X$ and $u \in Q$. Here we think of $u \in Q$ as a module $1 \rightarrow 1$. Spelled out, for $y \in X$ one has $\psi(y)=X(y, x) \otimes u$. Note that $\psi(y)=\perp$ whenever $u=\perp$, independently of $x \in X$. A \mathcal{Q}-category X is J-cocomplete if it admits "tensoring" with elements of \mathcal{Q} in the following sense: for any $x \in X$ and $u \in Q$, there exists a (necessarily unique up to equivalence) element $z \in X$ with

$$
X(z, y)=\mathcal{Q}(u, X(x, y))
$$

for all $y \in X$, and one denotes z as $u \otimes x$.
2.5. J-continuous J-cocomplete \mathcal{Q}-categories. J-continuity for \mathcal{Q}-categories, introduced in [12], allows for a unified treatment of many structures that play a major role in theoretical computer science, e.g. continuous domains, complete metric spaces, or completely distributive complete lattices.

Definition 2.9. A J-cocomplete \mathcal{Q}-category X is J-continuous if the supremum $\mathrm{S}_{X}: J X \rightarrow X$ has a left adjoint.

Note that any \mathcal{Q}-functor of type $X \rightarrow J X$ corresponds to a certain module $X \mapsto X$ belonging to J. Hence, X is J-continuous if and only if there exists a module $\Downarrow_{X}: X \rightarrow X$ in J with ${ }^{\Downarrow_{X}} \dashv \mathrm{~S}_{X}$. It is not difficult to see that $\mathrm{S}_{X}^{*} \cdot \Downarrow_{X} \leqslant \mathrm{y}_{X *}$, and \Downarrow_{X} is the largest module that satisfies this inequality; hence we have identified $\Downarrow_{X}: X \rightarrow X$ as the lifting $\Downarrow_{X}=\mathrm{S}_{X}^{*} \rightarrow \mathrm{y}_{X *}$. In fact, module $\Downarrow_{X}:=\mathrm{S}_{X}^{*} \longrightarrow \mathrm{y}_{X *}$ exists for any J-cocomplete \mathcal{Q}-category, and we refer to it as the way-below module. It is worth noting that $J X$ is J-continuous for every \mathcal{Q}-category X. In this case, the way-below module is given by

$$
\begin{equation*}
\Downarrow\left(\psi, \psi^{\prime}\right)=\bigvee_{x \in X} \psi^{\prime}(x) \otimes\left[\psi, x^{*}\right] \tag{2.2}
\end{equation*}
$$

In the simplest case, $\mathcal{Q}=\mathbf{2}$ and $J=\mathbf{I d} \mathbf{l}$, the module \Downarrow_{X} is indeed the (characteristic map of the) way-below relation on X. In the case of metric spaces, as a consequence of symmetry, $\Downarrow_{X}: X \mapsto X$ is the same as the structure $X: X \mapsto X$.

We call a module $v: X \mapsto X$ auxiliary, if $v \leqslant X$; interpolative, if $v \leqslant v \cdot v$; approximating, if $v \in J$ and $X \bullet v=X ; J$-cocontinuous, if $\mathrm{S}_{X}^{*} \cdot v=\mathrm{y}_{X *} \cdot v$. In a J-continuous J-cocomplete \mathcal{Q} category, the way-below module is auxiliary, interpolative, approximating and J-cocontinuous. In fact, we show [12] that a J-cocomplete \mathcal{Q}-category is J-continuous iff the way-below module is approximating.

Consider some examples: FSW-continuous FSW-cocomplete 2-categories are precisely continuous domains; cocontinuous cocomplete 2-categories are completely distributive complete lattices (there the way-below module becomes the 'totally-below' relation associated with complete distributivity of the underlying lattice); $[0, \infty]$ considered with the generalised metric structure $[0, \infty](x, y)=\max \{y-x, 0\}$ is an FSW-continuous FSW-complete $[0, \infty]$-category; complete metric spaces are FSW-continuous FSW-cocomplete $[0, \infty]$-categories.
2.6. Open modules. Let J - $\operatorname{Cocts}(X, Y)$ denote the set of all J-cocontinuous \mathcal{Q}-functors from X to Y, and we view J - $\operatorname{Cocts}(X, \mathcal{Q})$ as a sub- \mathcal{Q}-category of \mathcal{Q}^{X}.

Lemma 2.10. J - $\operatorname{Cocts}(X, \mathcal{Q})$ is closed under arbitrary suprema in $\mathcal{Q}^{X} . H e n c e, J-\operatorname{Cocts}(X, \mathcal{Q})$ is cocomplete.

Proof. Just observe that $\bigvee: \mathcal{Q}^{I} \rightarrow \mathcal{Q}$ is a \mathcal{Q}-functor left adjoint to the diagonal $\Delta: \mathcal{Q} \rightarrow \mathcal{Q}^{I}$, for any set I; and $u \otimes-: \mathcal{Q} \rightarrow \mathcal{Q}$ is a \mathcal{Q}-functor left adjoint to $\mathcal{Q}(u,-): \mathcal{Q} \rightarrow \mathcal{Q}$.

From the lemma above we deduce that the inclusion functor J - $\operatorname{Cocts}(X, \mathcal{Q}) \hookrightarrow \mathcal{Q}^{X}$ has a right adjoint $v: \mathcal{Q}^{X} \rightarrow J$ - $\operatorname{Cocts}(X, \mathcal{Q})$.

If X is J-cocomplete and J-continuous, this right adjoint has a simple description. In fact, since $\Downarrow_{X} \dashv \mathrm{~S}_{X}$ and $\mathrm{S}_{X} \dashv \mathrm{y}_{X}$, the map $\mathcal{Q}^{X} \rightarrow J$ - $\operatorname{Cocts}(X, \mathcal{Q}), f \mapsto f_{L} \cdot \Downarrow_{X}$ (where f_{L} is left Kan extension of f) is right adjoint to J - $\operatorname{Cocts}(X, \mathcal{Q}) \hookrightarrow \mathcal{Q}^{X}$ in Ord, hence it underlies v. Hence in this case we can write v as the corestriction of the composite of left adjoints

$$
\mathcal{Q}^{X} \longrightarrow J-\operatorname{Cocts}(J X, \mathcal{Q}) \hookrightarrow \mathcal{Q}^{J X} \xrightarrow{-\cdot \Downarrow_{X}} \mathcal{Q}^{X}
$$

to J - $\operatorname{Cocts}(X, \mathcal{Q})$, hence v is itself left-adjoint.
Lemma 2.11. If X is J-cocomplete and J-continuous, then J - $\operatorname{Cocts}(X, \mathcal{Q})$ is totally continuous.

Proof. \mathcal{Q}^{X} is totally continuous, and J - $\operatorname{Cocts}(X, \mathcal{Q})$ inherits this property since $v: \mathcal{Q}^{X} \rightarrow$ J - $\operatorname{Cocts}(X, \mathcal{Q})$ is a left and a right adjoint.

We put now $F X:=J-\operatorname{Cocts}(X, \mathcal{Q}) \cap J\left(X^{\mathrm{op}}\right)$ and call $\alpha \in F X$ an open module. More precisely, $F X$ is defined via the pullback in J-Cocts of two inclusions: J - $\operatorname{Cocts}(X, \mathcal{Q}) \hookrightarrow \mathcal{Q}^{X}$, $J\left(X^{\mathrm{op}}\right) \hookrightarrow \mathcal{Q}^{X}$, which tells us that:

- $F X$ is J-cocomplete,
- both inclusion maps $F X \hookrightarrow J\left(X^{\mathrm{op}}\right)$ and $F X \hookrightarrow J$ - $\operatorname{Cocts}(X, \mathcal{Q})$ preserve J-suprema.

Definition 2.12. We say that a J-continuous \mathcal{Q}-category X is open module determined if for all $x, y \in X$:

$$
\begin{equation*}
\Downarrow_{X}(x, y)=\bigvee_{\alpha \in F X}\left(\alpha(y) \otimes\left[\alpha, \lambda_{X}(x)\right]\right) \tag{2.3}
\end{equation*}
$$

Note that, for all $\alpha \in F X$ and $x, y \in X$,

$$
\alpha(y) \otimes\left[\alpha, \lambda_{X}(x)\right]=\bigvee_{z \in X}\left(\alpha(z) \otimes \Downarrow_{X}(z, y) \otimes[\alpha, X(x,-)]\right) \leqslant \bigvee_{z \in X} X(x, z) \otimes \Downarrow_{X}(z, y)=\Downarrow_{X}(x, y),
$$

hence (2.3) is equivalent to

$$
\Downarrow_{X}(x, y) \leqslant \bigvee_{\alpha \in F X}\left(\alpha(y) \otimes\left[\alpha, \lambda_{X}(x)\right]\right)
$$

Furthermore, (2.3) is equivalent to

$$
\Downarrow_{X}(x, y)=\bigvee_{\alpha \in F X}\left(\alpha(y) \otimes\left[\alpha, \Downarrow_{X}(x,-)\right]\right)
$$

since $\Downarrow_{X}(x,-) \leqslant \lambda_{X}(x)$ and

$$
\begin{aligned}
\Downarrow_{X}(x, y) & =\bigvee_{z \in X} \Downarrow_{X}(x, z) \otimes \Downarrow_{X}(z, y) \\
& =\bigvee_{z \in X} \Downarrow_{X}(x, z) \otimes \bigvee_{\alpha \in F X}\left(\alpha(y) \otimes\left[\alpha, \lambda_{X}(z)\right]\right) \\
& =\bigvee_{\alpha \in F X} \alpha(y) \otimes \bigvee_{z \in X}\left(\Downarrow_{X}(x, z) \otimes\left[\alpha, \lambda_{X}(z)\right]\right) \\
& \leqslant \bigvee_{\alpha \in F X} \alpha(y) \otimes\left[\alpha, \bigvee_{z \in X} \Downarrow_{X}(x, z) \otimes X(z,-)\right] \\
& =\bigvee_{\alpha \in F X}\left(\alpha(y) \otimes\left[\alpha, \Downarrow_{X}(x,-)\right]\right)
\end{aligned}
$$

3. The duality

In this section we assume that a class Φ of limit weights $\phi: 1 \multimap I$ is given, and we consider the corresponding class J of modules as described in Example 2.1. Furthermore, let X be a J-cocomplete, J-continuous and open module determined \mathcal{Q}-category.

Each $x \in X$ defines:

$$
\begin{aligned}
\mathrm{ev}_{x}: F X & \rightarrow \mathcal{Q} \\
\alpha & \mapsto \alpha(x)
\end{aligned}
$$

Lemma 3.1. For any $x \in X$, the $\operatorname{map}_{\mathrm{ev}_{x}}$ is an open module on $F X$.

Proof. Certainly, ev_{x} is J-continuous, since it is the restriction of

$$
-\cdot x_{*}: J\left(X^{\mathrm{op}}\right) \rightarrow \mathcal{Q} \quad\left(\text { here } x \in X^{\mathrm{op}} \text { and therefore } x_{*}: 1 \multimap X^{\mathrm{op}}\right)
$$

to $F X$. We show now that $\mathrm{ev}_{x} \in J\left(F X^{\mathrm{op}}\right)$, that is,

$$
C_{x}:=\mathrm{ev}_{x} \cdot-: \mathcal{Q}-\operatorname{Mod}(F X, 1) \rightarrow \mathcal{Q}, \Psi \mapsto \bigvee_{\alpha \in F X} \Psi(\alpha) \otimes \alpha(x)
$$

preserves Φ-weighted limits. Note that $\mathcal{Q}-\operatorname{Mod}(F X, 1) \cong \mathcal{Q}-\operatorname{Mod}\left(1, F X^{\mathrm{op}}\right)$. Furthermore, since $\alpha \in F X$ is J-cocontinuous, $C_{x}=\bigvee_{y \in X} C_{y} \otimes \Downarrow_{X}(y, x)$. Let $\phi: 1 \multimap I$ be in Φ and
$\Psi_{-}: I \rightarrow \mathcal{Q}-\operatorname{Mod}(F X, 1), i \mapsto \Psi_{i}$ be a \mathcal{Q}-functor. Then

$$
\begin{aligned}
\bigwedge_{i \in I} \mathcal{Q}\left(\phi(i), C_{x}\left(\Psi_{i}\right)\right) & =\bigwedge_{i \in I} \mathcal{Q}\left(\phi(i), \bigvee_{y \in X} C_{y}\left(\Psi_{i}\right) \otimes \Downarrow_{X}(y, x)\right) \\
& =\bigvee_{y \in X}\left(\bigwedge_{i \in I} \mathcal{Q}\left(\phi(i), C_{y}\left(\Psi_{i}\right)\right)\right) \otimes \Downarrow_{X}(y, x) \quad(\Downarrow(-, x) \text { is in } J) \\
& \leqslant \bigvee_{\alpha \in F X} \alpha(x) \otimes \bigvee_{y \in X} \bigwedge_{i \in I} \mathcal{Q}\left(\phi(i), C_{y}\left(\Psi_{i}\right) \otimes\left[\alpha, \lambda_{X} y\right]\right) \\
& \leqslant \bigvee_{\alpha \in F X} \alpha(x) \otimes \bigwedge_{i \in I} \mathcal{Q}\left(\phi(i), \Psi_{i}(\alpha)\right)
\end{aligned}
$$

since

$$
C_{y}\left(\Psi_{i}\right) \otimes\left[\alpha, \lambda_{X} y\right]=\bigvee_{\beta \in F X} \Psi_{i}(\beta) \otimes\left[\alpha, \lambda_{X} y\right] \otimes\left[\lambda_{X} y, \beta\right] \leqslant \bigvee_{\beta \in F X} \Psi_{i}(\beta) \otimes[\alpha, \beta]=\Psi_{i}(\alpha) .
$$

We further obtain a map $\eta_{X}: X \rightarrow F F X$ given by:

$$
\begin{equation*}
x \mapsto \mathrm{ev}_{x} . \tag{3.1}
\end{equation*}
$$

This is indeed a \mathcal{Q}-functor, since for any $y, z \in X$ we have:

$$
\left[\eta_{X}(y), \eta_{X}(z)\right]=\bigwedge_{\alpha \in F X} \mathcal{Q}(\alpha(y), \alpha(z)) \geqslant X(y, z)
$$

Lemma 3.2. $F X$ is J-continuous with the way-below module $\Downarrow_{F X}: F X \mapsto F X$ given by:

$$
\begin{equation*}
\Downarrow_{F X}(\beta, \alpha)=\bigvee_{x \in X}\left(\alpha(x) \otimes\left[\beta, \lambda_{X}(x)\right]\right) \tag{3.2}
\end{equation*}
$$

Proof. Note that (3.2) states that the way-below module on $F X$ is the restriction of the waybelow module on $J\left(X^{\mathrm{op}}\right)$ (see (2.2)). First we wish to show that

$$
\Downarrow_{F X}(-, \alpha):=\bigvee_{x \in X}\left(\alpha(x) \otimes\left[-, \lambda_{X}(x)\right]\right)
$$

is a J-module of type $F X \leftrightarrow 1$, for every $\alpha \in F X$. To this end, we consider a diagram

$$
1 \xrightarrow{\phi} A \xrightarrow{h} \mathcal{Q}^{F X}
$$

where ϕ belongs to Φ. We calculate:

$$
\begin{aligned}
& \bigwedge_{a \in A} \mathcal{Q}\left(\phi(a), \bigvee_{\beta \in F X}\left(\Downarrow_{F X}(\beta, \alpha) \otimes h(a, \beta)\right)\right) \\
& =\bigwedge_{a \in A} \mathcal{Q}\left(\phi(a), \bigvee_{x \in X}\left(\alpha(x) \otimes\left(\bigvee_{\beta \in F X}\left(\left[\beta, \lambda_{X}(x)\right] \otimes h(a, \beta)\right)\right)\right)\right) \\
& \left\{\text { put } k(a, x):=\bigvee_{\beta \in F X}\left(\left[\beta, \lambda_{X}(x)\right] \otimes h(a, \beta)\right) \text { where } k: A \rightarrow \mathcal{Q}^{X \text { op }}\right\} \\
& =\bigvee_{x \in X}\left(\alpha(x) \otimes \bigwedge_{a \in A}(\mathcal{Q}(\phi(a), k(a, x)))\right) \\
& =\bigvee_{x, y \in X}\left(\left(\alpha(y) \otimes \Downarrow_{X}(y, x)\right) \otimes \bigwedge_{a \in A}(\mathcal{Q}(\phi(a), k(a, x)))\right) \\
& =\bigvee_{\gamma \in F X} \bigvee_{x, y \in X}\left(\left(\gamma(x) \otimes \alpha(y) \otimes\left[\gamma, \lambda_{X}(y)\right]\right) \otimes \bigwedge_{a \in A}(\mathcal{Q}(\phi(a), k(a, x)))\right) \\
& =\bigvee_{\gamma \in F X} \bigvee_{y \in X}\left(\alpha(y) \otimes\left[\gamma, \lambda_{X}(y)\right] \otimes\left(\bigvee_{x \in X}\left(\gamma(x) \otimes \bigwedge_{a \in A}(\mathcal{Q}(\phi(a), k(a, x)))\right)\right)\right) \\
& =\bigvee_{\gamma \in F X}\left(\Downarrow_{F X}(\gamma, \alpha) \otimes \bigwedge_{a \in A}\left(\mathcal{Q}\left(\phi(a), \bigvee_{x \in X}(\gamma(x) \otimes k(a, x))\right)\right)\right) \\
& =\bigvee_{\gamma \in F X}\left(\Downarrow_{F X}(\gamma, \alpha) \otimes \bigwedge_{a \in A}\left(\mathcal{Q}\left(\phi(a), \bigvee_{\beta \in F X} \bigvee_{x \in X}\left(\gamma(x) \otimes\left[\beta, \lambda_{X}(x)\right] \otimes h(a, \beta)\right)\right)\right)\right) \\
& =\bigvee_{\gamma \in F X}\left(\Downarrow_{F X}(\gamma, \alpha) \otimes \bigwedge_{a \in A}\left(\mathcal{Q}\left(\phi(a), \bigvee_{\beta \in F X}([\beta, \gamma] \otimes h(a, \beta))\right)\right)\right) \\
& \leqslant \bigvee_{\gamma \in F X}\left(\Downarrow_{F X}(\gamma, \alpha) \otimes \bigwedge_{a \in A}(\mathcal{Q}(\phi(a), h(a, \beta)))\right),
\end{aligned}
$$

as required (recall that the other inequality we get for free). Furthermore, we calculate:

$$
\begin{aligned}
\mathrm{S}_{F X}\left(\Downarrow_{F X}(-, \alpha)\right)(x) & =\bigvee_{\beta \in F X}\left(\Downarrow_{F X}(\beta, \alpha) \otimes \beta(x)\right) \\
& =\bigvee_{\beta \in F X} \bigvee_{y \in X}\left(\alpha(y) \otimes\left[\beta, \lambda_{X}(y)\right] \otimes \beta(x)\right) \\
& =\bigvee_{y \in X}\left(\alpha(y) \otimes \bigvee_{\beta \in F X}\left(\left[\beta, \lambda_{X}(y)\right] \otimes \beta(x)\right)\right) \\
& =\bigvee_{y \in X}\left(\alpha(y) \otimes \bigvee_{\beta \in F X}\left(\left[\beta, \lambda_{X}(y)\right] \otimes\left[\lambda_{X}(x), \beta\right]\right)\right) \\
& =\bigvee_{y \in X}\left(\alpha(y) \otimes \Downarrow_{X}(y, x)\right) \\
& =\alpha(x),
\end{aligned}
$$

hence $\mathrm{S}_{F X}\left(\Downarrow_{F X}(-, \alpha)\right)=\alpha$. Finally, to conclude that ${ }^{\ulcorner } \Downarrow_{F X}{ }^{\top} \dashv \mathrm{y}_{F X}$, let $\psi: F X \multimap 1$ in J. Let i denote the inclusion \mathcal{Q}-functor $F X \hookrightarrow J\left(X^{\mathrm{op}}\right)$ and $\Downarrow_{J\left(X^{\mathrm{op}}\right)}$ the way-below module on $J\left(X^{\mathrm{op}}\right)$. We observed already that $\Downarrow_{F X}=i^{*} \cdot \Downarrow_{J\left(X^{\mathrm{op})}\right.} \cdot i_{*}$. Hence,

$$
\begin{aligned}
\left\ulcorner\Downarrow_{F X}\right\urcorner_{F X} \cdot \mathrm{~S}_{F X}(\psi)=\left(\mathrm{S}_{F X}(\psi)\right)^{*} \cdot \Downarrow_{F X}= & \left(\mathrm{S}_{F X}(\psi)\right)^{*} \cdot i^{*} \cdot \Downarrow_{J\left(X^{\mathrm{op})}\right.} \cdot i_{*} \\
& =\left(\mathrm{S}_{J\left(X^{\mathrm{op}}\right)}\left(\psi \cdot i^{*}\right)\right)^{*} \cdot \Downarrow_{J\left(X^{\mathrm{op}}\right)} \cdot i_{*} \leqslant \psi \cdot i^{*} \cdot i_{*}=\psi .
\end{aligned}
$$

Lemma 3.3. $F X$ is open module determined.

Proof. For all $\alpha, \beta \in F X$:

$$
\begin{aligned}
\Downarrow_{F X}(\beta, \alpha)=\bigvee_{z \in X}(\alpha(z) \otimes & {\left.\left[\beta, \lambda_{X}(z)\right]\right)=\bigvee_{z \in X}\left(\mathrm{ev}_{z}(\alpha) \otimes\left[\lambda_{X}(z)_{*}, \beta_{*}\right]\right) } \\
& =\bigvee_{z \in X}\left(\mathrm{ev}_{z}(\alpha) \otimes\left[\mathrm{ev}_{z}, \lambda_{F X}(\beta)\right]\right)=\bigvee_{\mathcal{A} \in F F X}\left(\mathcal{A}(\alpha) \otimes\left[\mathcal{A}, \lambda_{F X}(\beta)\right]\right)
\end{aligned}
$$

By the discussion in Section 2.6 and Lemmata 3.2, 3.3 we obtain:

Theorem 3.4. If X is a J-continuous, J-cocomplete and open module determined \mathcal{Q}-category, then so is $F X$.

Our next aim is to show that $\eta_{X}:: X \rightarrow F F X$ is an isomorphism. To do so, let now $\mathcal{A}: F X \rightarrow$ \mathcal{Q} be an open module on $F X$. We define:

$$
\psi_{\mathcal{A}}(x):=\bigvee_{\alpha \in F X}\left(\mathcal{A}(\alpha) \otimes\left[\alpha, \lambda_{X}(x)\right]\right)
$$

Such defined $\psi_{\mathcal{A}}$ is a module $X \multimap 1$, since it is the composite:

$$
X \xrightarrow{\lambda_{X}}, J\left(X^{\mathrm{op}}\right)^{\mathrm{op}} \xrightarrow{i^{*}} F X^{\mathrm{op}} \xrightarrow{\mathcal{A}} 1 .
$$

We also need to have:

Lemma 3.5. For every $\mathcal{A} \in F F X$, we have $\psi_{\mathcal{A}} \in J X$.

Proof. In order to check that $\psi_{\mathcal{A}}: X \rightarrow 1$ belongs to $J X$, we need to check whether $\psi_{\mathcal{A}}-:_{\mathcal{Q}^{X}} \rightarrow$ \mathcal{Q} preserves Φ-weighted limits. Let

$$
1 \xrightarrow{\phi} A \xrightarrow{h} \mathcal{Q}^{X}
$$

be a limit diagram with ϕ in Φ. Spelled out, we have to show that

$$
\bigvee_{x \in X}\left(\psi_{\mathcal{A}}(x) \otimes \bigwedge_{y \in A}(\mathcal{Q}(\phi(y), h(y, x)))\right) \geqslant \bigwedge_{y \in A}\left(\mathcal{Q}\left(\phi(y), \bigvee_{x \in X}\left(\psi_{\mathcal{A}}(x) \otimes h(y, x)\right)\right)\right) .
$$

To this end, we calculate:

$$
\begin{aligned}
& \bigwedge_{y \in A}\left(\mathcal{Q}\left(\phi(y), \bigvee_{x \in X}\left(\psi_{\mathcal{A}}(x) \otimes h(y, x)\right)\right)\right) \\
& =\bigwedge_{y \in A}\left(\mathcal{Q}\left(\phi(y), \bigvee_{x \in X} \bigvee_{\alpha \in F X}\left(\mathcal{A}(\alpha) \otimes\left[\alpha, \lambda_{X}(x)\right] \otimes h(y, x)\right)\right)\right) \\
& =\bigwedge_{y \in A}\left(\mathcal{Q}\left(\phi(y), \bigvee_{\alpha \in F X}\left(\mathcal{A}(\alpha) \otimes \Downarrow_{F X}(\alpha, h(y))\right)\right)\right) \quad\left\{\text { since } \mathcal{A}^{\mathrm{op}} \in J\right\} \\
& =\bigvee_{\alpha \in F X}\left(\mathcal{A}(\alpha) \otimes \bigwedge_{y \in A}\left(\mathcal{Q}\left(\phi(y), \Downarrow_{F X}(\alpha, h(y))\right)\right)\right) \\
& =\bigvee_{\alpha, \beta \in F X}\left(\left(\mathcal{A}(\beta) \otimes \Downarrow_{F X}(\beta, \alpha)\right) \otimes \bigwedge_{y \in A}\left(\mathcal{Q}\left(\phi(y), \Downarrow_{F X}(\alpha, h(y))\right)\right)\right) \\
& =\bigvee_{\alpha, \beta \in F X} \bigvee_{x \in X}\left(\left(\mathcal{A}(\beta) \otimes \alpha(x) \otimes\left[\beta, \lambda_{X}(x)\right]\right) \otimes \bigwedge_{y \in A}\left(\mathcal{Q}\left(\phi(y), \Downarrow_{F X}(\alpha, h(y))\right)\right)\right) \\
& =\bigvee_{x \in X} \bigvee_{\beta \in F X}\left(\mathcal{A}(\beta) \otimes\left[\beta, \lambda_{X}(x)\right]\right) \otimes \bigvee_{\alpha \in F X} \operatorname{ev}_{x}(\alpha) \otimes \bigwedge_{y \in A}\left(\mathcal{Q}\left(\phi(y), \Downarrow_{F X}(\alpha, h(y))\right)\right) \\
& \left\{\operatorname{ev}_{x} \text { is a filter }\right\} \\
& =\bigvee_{x \in X}\left(\psi_{\mathcal{A}}(x) \otimes \bigwedge_{y \in X} \mathcal{Q}\left(\phi(y), \bigvee_{\alpha \in F X}\left(\alpha(x) \otimes \Downarrow_{F X}(\alpha, h(y))\right)\right)\right) \\
& \leqslant \bigvee_{x \in X}\left(\psi_{\mathcal{A}}(x) \otimes \bigwedge_{y \in X} \mathcal{Q}(\phi(y), \alpha(x) \otimes[\alpha, h(y)])\right) \\
& \leqslant \bigvee_{x \in X}\left(\psi_{\mathcal{A}}(x) \otimes \bigwedge_{y \in X} \mathcal{Q}(\phi(y), h(y, x))\right),
\end{aligned}
$$

which proves $\psi_{\mathcal{A}} \in J X$.
Lemma 3.6. For any $\alpha \in F X$, we have $\mathcal{A}(\alpha)=\alpha\left(S_{X}\left(\psi_{\mathcal{A}}\right)\right)$.
Proof.

$$
\begin{aligned}
\alpha\left(\mathrm{S}_{X}\left(\psi_{\mathcal{A}}\right)\right) & =\operatorname{colim}\left(\alpha, \psi_{\mathcal{A}}\right) \\
& =\bigvee_{x \in X}\left(\alpha(x) \otimes \psi_{\mathcal{A}}(x)\right) \\
& =\bigvee_{x \in X}\left(\alpha(x) \otimes \bigvee_{\beta \in F X}\left(\mathcal{A}(\beta) \otimes\left[\beta, \lambda_{X}(x)\right)\right)\right) \\
& =\bigvee_{\beta \in F X}\left(\mathcal{A}(\beta) \otimes \bigvee_{x \in X}\left(\alpha(x) \otimes\left[\beta, \lambda_{X}(x)\right]\right)\right) \\
& =\bigvee_{\beta \in F X}\left(\mathcal{A}(\beta) \otimes \Downarrow_{F X}(\beta, \alpha)\right) \\
& =\operatorname{colim}\left(\mathcal{A}, \Downarrow_{F X}(-, \alpha)\right) \\
& =\mathcal{A}\left(\mathrm{S}_{F X}\left(\Downarrow_{F X}(-, \alpha)\right)\right) \\
& =\mathcal{A}(\alpha) .
\end{aligned}
$$

Definition 3.7. We say that a \mathcal{Q}-functor $f: X \rightarrow Y$ between \mathcal{Q}-categories reflects open modules if $\alpha \cdot f \in F X$ for every $\alpha \in F Y$. Let (J, \mathcal{Q})-Dom be the category of J-cocomplete, J-continuous and open module determined \mathcal{Q}-categories together with open module reflecting maps.

Lemma 3.8. The pair of operations

$$
\begin{aligned}
X & \mapsto F X \\
f: X \rightarrow Y & \mapsto
\end{aligned}-\cdot f: F Y \rightarrow F X
$$

defines a contravariant functor, i.e. $F:(J, \mathcal{Q})-$ Dom $^{\mathrm{op}} \rightarrow(J, \mathcal{Q})$-Dom.
Proof. Functoriality is trivial; we only need to show that $F(f)$ reflect open modules. Let $\mathcal{A} \in$ $F F X$. By Lemma 3.6 there exists $x \in X$ such that $\mathcal{A}=\operatorname{ev}_{x}$, namely $x=\mathrm{S}_{X} \psi_{\mathcal{A}}$. Then, for any $\alpha \in F Y$, we have $(\mathcal{A} \cdot F(f))(\alpha)=\mathcal{A}(\alpha \cdot f)=\alpha(f(x))=\mathrm{ev}_{f(x)}(\alpha)$. Hence $\mathcal{A} \cdot F(f)=\mathrm{ev}_{f(x)}$, i.e. $\mathcal{A} \cdot F(f) \in F F X$.

Theorem 3.9 (The Duality Theorem). The category (J, \mathcal{Q})-Dom is self-dual.
Proof. The natural isomorphism $\eta: 1_{(J, \mathcal{Q}) \text {-Dom }} \rightarrow F F$ as defined in (3.1) has the converse $\varepsilon: F F \rightarrow 1_{(J, \mathcal{Q}) \text {-Dom }}$ given by $\varepsilon_{X}(\mathcal{A})=\mathrm{S}_{X} \psi_{\mathcal{A}}$ for every $\mathcal{A} \in F F X$.

4. Examples of the duality

4.1. Lawson duality. The case $\mathcal{Q}=\mathbf{2}$ and $J=\mathbf{F S W}$, perhaps the simplest possible, served us as a proof guide throughout the paper. In fact, most of the crucial proof ideas (e.g. Lemma 3.6. any open module on open modules \mathcal{A} is of the form $\operatorname{ev}_{X_{X} \psi_{\mathcal{A}}}$ for some J-ideal $\psi_{\mathcal{A}}$) come from an analysis of this simple case. Observe that FSW-continuous, FSW-cocomplete 2-categories are continuous dcpos (domains). Furthermore, open modules are nothing else but (the characteristic maps of) Scott-open filters on domains. Recall that in this case any $F X$ is open module determined: the equality (2.3) reduces to

$$
\forall x, y \in X(x \ll y \Rightarrow \exists \alpha \in F X(y \in \alpha \subseteq \uparrow x)),
$$

and we define such $\alpha \in F X$ by $\alpha:=\bigcup_{n \in \omega} \uparrow x_{n}$, where the descending chain $\left(x_{n}\right)_{n \in \omega}$ has been obtained by a repeated use of interpolation (see Prop. 3.3 of [11):

$$
x \ll \ldots \ll x_{n} \ll x_{n-1} \ll \ldots \ll x_{2} \ll x_{1} \ll x_{0}=y .
$$

Consequently, the category (FSW, 2)-Dom is the category of domains with open filter reflecting maps; our Theorem 3.9 reduces to Theorem IV-2.12 of [11] establishing the Lawson duality for domains. It is worth mentioning that the Lawson duality (originally proved in [20]) finds its applications in the theory of locally compact spaces; in particular, the lattice of opens of a locally compact sober space X is Lawson dual to the lattice of compact saturated subsets of X (cf. Hofmann-Mislove theorem).
4.2. A metric duality. In the case $\mathcal{Q}=[0, \infty]$ with $\otimes=+$ and J being the class of FSWideals (or, equivalently, flat modules), our duality works in a certain subcategory of Met: its FSW-cocomplete objects are known in the literature as Yoneda-complete gmses [4. The FSWcocomplete and FSW-continuous ones form a class not previously discussed in the literature, except in the forthcoming paper [19], where they are shown to be precisely the spaces having continuous and directed-complete formal ball models [8, 2, 23] (this implies, in particular, that their topology and metric structure can be respectively characterized as a subspace Scott topology and a partial metric on a domain).

A proof that objects of (FSW, $[0, \infty])$-Dom are open filter determined can be found in [3]; below we present a sketch of the proof.

We abbreviate \Downarrow_{X} to \Downarrow and customarily use $+\operatorname{instead}$ of \otimes, inf instead of \bigvee, etc. In order to show (2.3) it is enough to find a family of open filters $\left(\alpha_{e, b}\right)_{e, b>0}$, such that $e>\Downarrow(x, y)$ implies

$$
e+b \geqslant \alpha_{e, b}(y)+\left[\alpha_{e, b}, \Downarrow(x,-)\right] \geqslant \inf _{\alpha \in F X}(\alpha(y)+[\alpha, \Downarrow(x,-)]),
$$

which, by complete distributivity of $([0, \infty], \geqslant)$, allows us to draw the desired conclusion. Take an arbitrary $e>\Downarrow(x, y)$ and $b>0$, and choose a chain $\left(e_{n}\right)_{n \in \omega}$ in $([0, \infty], \geqslant)$ such that:

$$
\begin{align*}
& b>e_{0}+e_{0}, \\
& e_{0}>e_{1}>e_{2}>\ldots>e_{n}>\ldots>0, \\
& e_{n} \geqslant e_{n+1}+e_{n+2}+\ldots, \tag{4.1}\\
& \inf _{n \in \omega} e_{n}=0 .
\end{align*}
$$

Now, by interpolation, we can find a sequence $\left(x_{n}\right)_{n \in \omega}$ such that:

$$
\begin{array}{ll}
e>\Downarrow\left(x, x_{0}\right)+\Downarrow\left(x_{0}, y\right) & \text { and } e_{0}>\Downarrow\left(x_{0}, y\right), \\
e>\Downarrow\left(x, x_{1}\right)+\Downarrow\left(x_{1}, x_{0}\right)+\Downarrow\left(x_{0}, y\right), & \text { and } e_{1}>\Downarrow\left(x_{1}, x_{0}\right), \\
e>\Downarrow\left(x, x_{2}\right)+\Downarrow\left(x_{2}, x_{1}\right)+\Downarrow\left(x_{1}, x_{0}\right)+\Downarrow\left(x_{0}, y\right) & \text { and } e_{2}>\Downarrow\left(x_{2}, x_{1}\right), \\
\ldots & \\
e>\Downarrow\left(x, x_{n}\right)+\Downarrow\left(x_{n}, x_{n-1}\right)+\cdots+\Downarrow\left(x_{1}, x_{0}\right)+\Downarrow\left(x_{0}, y\right) & \text { and } e_{n}>\Downarrow\left(x_{n}, x_{n-1}\right),
\end{array}
$$

Define $\alpha_{e, b}: X \rightarrow[0, \infty]$ as $\alpha_{e, b}(z):=\inf _{n \in \omega} \sup _{k \geq n} X\left(x_{k}, z\right)$; this map is an open module on X. In order to conclude (2.3), it is now enough to verify that

$$
\begin{equation*}
e+b \geqslant \alpha_{e, b}(y)+\left[\alpha_{e, b}, \Downarrow(x,-)\right] . \tag{4.2}
\end{equation*}
$$

However

$$
\begin{aligned}
\alpha_{e, b}(y) & =\inf _{n \in \omega} \sup _{k \geq n} X\left(x_{k}, y\right) \\
& \leqslant \sup _{k \geq 1}\left(X\left(x_{k}, x_{k-1}\right)+\cdots+X\left(x_{1}, x_{0}\right)+X\left(x_{0}, y\right)\right) \\
& \left.\leqslant \sup _{k \geq 1}\left(\Downarrow\left(x_{k}, x_{k-1}\right)+\cdots+\Downarrow\left(x_{1}, x_{0}\right)+\Downarrow\left(x_{0}, y\right)\right) \quad \text { bby (4.1) }\right\} \\
& \leqslant e_{0}+e_{0} \\
& <b .
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\alpha_{e, b}, \Downarrow(x,-)\right] } & =\sup _{z \in X}\left(\Downarrow(x, z)-\alpha_{e, b}(z)\right) \\
& \leqslant \sup _{z \in X}\left(\Downarrow(x, z)-\left(\inf _{n \in \omega} \sup _{k \geq n} X\left(x_{k}, z\right)\right)\right) \\
& \leqslant \sup _{z \in X}\left(\inf _{n \in \omega} \sup _{k \geq n}\left(\Downarrow(x, z)-X\left(x_{k}, z\right)\right)\right) \\
& \leqslant \sup _{n \in \omega} \sup _{k \geq n} \Downarrow\left(x, x_{k}\right) \\
& \leqslant e .
\end{aligned}
$$

so (4.2), and therefore also (2.3) are now verified.
4.3. An ultrametric duality. For the quantale $\mathcal{Q}=[0, \infty]$ with $\otimes=\max , \mathcal{Q}$-Cat is the category UMet of ultrametric spaces and contraction maps. As above, we can choose J to be the class of all flat modules (see Example 2.7), and obtain that the corresponding category (J, \mathcal{Q})-Dom is self-dual. However, in ultrametric spaces flat modules are not, in general, FSWideals, as the following example shows.
Example 4.1. Consider the set \mathbb{N} of natural numbers with the distance

$$
\mathbb{N}(n, m)= \begin{cases}0 & \text { if } n=m \\ \max (n, m) & \text { otherwise }\end{cases}
$$

This distance is a symmetric, separable ultrametric. Take

$$
\phi(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

Trivially, ϕ preserves the empty meet. Now, observe that the proof of (the equivalence of (1) and (2) of) Proposition 7.9 in [27] holds verbatim for $\otimes=\max$, hence it is enough to show that $(\phi \cdot-)$ preserves meets of modules of the form $\max (\mathbb{N}(-, x), c)$ for some $c \in[0, \infty]$. Suppose $A:=\max \left(\mathbb{N}(-, a), c_{1}\right)$ and $B:=\max \left(\mathbb{N}(-, b), c_{2}\right)$ for $c_{1}, c_{2} \in[0, \infty]$; we are heading to prove:

$$
\begin{equation*}
\inf _{z \in \mathbb{N}} \max (A z, B z, \phi z)=\max \left(\inf _{s \in \mathbb{N}}(\max (A s, \phi s)), \inf _{r \in \mathbb{N}}(\max (B r, \phi r))\right) . \tag{}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \inf _{z \in \mathbb{N}} \max (A z, B z, \phi z)=\inf _{z \in \mathbb{N}} \max \left(z, a, b, c_{1}, c_{2}, \phi z\right)=\max \left(a, b, c_{1}, c_{2}\right), \\
& \inf _{s \in \mathbb{N}} \max (A s, \phi s)=\inf _{s \in \mathbb{N}} \max \left(s, a, c_{1}, \phi s\right)=\max \left(a, c_{1}\right), \\
& \inf _{r \in \mathbb{N}} \max (B r, \phi r)=\inf _{r \in \mathbb{N}} \max \left(r, b, c_{2}, \phi r\right)=\max \left(b, c_{2}\right)
\end{aligned}
$$

since all these infima are attained for $z=r=s=0$. This shows (㘢), and so $\phi: X \longrightarrow 1$ is a flat module.
On the other hand, ϕ is not an FSW-ideal: we have $\phi(2)<2$ and $\phi(3)<2$ but there is no $z \in \mathbb{N}$ with $\phi(z)<1$ and $\mathbb{N}(2, z)<2$ and $\mathbb{N}(3, z)<2$.
4.4. The absolute case. For any quantale \mathcal{Q}, we can consider Φ being the empty class and therefore $J X=\widehat{X}$ is the collection of all modules of type $X \mapsto 1$. In this case, every cocontinuous \mathcal{Q}-functor $\alpha: X \rightarrow \mathcal{Q}$ is an open module. Furthermore, every totally continuous cocomplete \mathcal{Q}-category is open module determined since $\Downarrow_{X}(x,-): X \rightarrow \mathcal{Q}$ is in $F X$. Finally, a \mathcal{Q}-functor $f: X \rightarrow Y$ reflects open modules if and only if f is left adjoint. Therefore Theorem 3.9 states that the category of totally continuous cocomplete \mathcal{Q}-categories and left adjoint \mathcal{Q}-functors is self-dual.
4.5. A somehow different example. We consider now $\mathcal{Q}=[0, \infty]$ where $\otimes=+$, with the class J of modules described in Example [2.8. However, for technical reasons we consider the unique module $\varnothing \leftrightarrow 1$ as a formal ball, so that $J \varnothing=1$. Consequently, the empty space is not J-cocomplete. We will show now that our duality theorem holds in this case too, despite the fact that this class of modules is (to our knowledge) not defined via a class of limit weights.

Let now X be a J-cocomplete and J-continuous metric space. We write $\Downarrow: X \rightarrow J X$ for the left adjoint to $S: J X \rightarrow X$. Hence, for any $x \in X, \Downarrow(x) \in J X$ is of the form $\Downarrow(x)=X\left(-, x_{1}\right)+u$ for some $x_{1} \in X$ and $u \in[0, \infty]$. Note that $u<\infty$ if x is not the bottom element of X. Assume that $\Downarrow\left(x_{1}\right)=X\left(-, x_{2}\right)+u_{2}$. Then

$$
X\left(-, x_{1}\right)+u=\Downarrow(x)=\Downarrow\left(x_{1}+u_{1}\right)=\Downarrow\left(x_{1}\right)+u_{1}=X\left(-, x_{2}\right)+u_{2}+u_{1},
$$

hence, $X\left(-, x_{1}\right)=X\left(-, x_{2}\right)+u_{2}$. In particular, $0=X\left(x_{1}, x_{2}\right)+u_{2}$, and therefore $u_{2}=0$ and we obtain $\Downarrow\left(x_{1}\right)=\mathrm{y}\left(x_{1}\right)$. Let A be the equaliser of y and \Downarrow, that is, $A=\{x \in X \mid \Downarrow(x)=\mathrm{y}(x)\}$. By the considerations above, $\Downarrow: X \rightarrow J X$ factors through the inclusion $J A \hookrightarrow J X$. Moreover, for any $X(-, x)+u$ with $x \in A, \Downarrow(x+u)=\Downarrow(x)+u=X(-, x)+u$, which gives $X \cong J A$. We also remark that $x \in A$ if and only if $X(x,-): X \rightarrow[0, \infty]$ preserves tensoring. One has $\phi \in F X$ precisely if $\phi=X(x,-)+u$ for some $x \in X$ and $u \in[0, \infty]$ and if, moreover, ϕ preserves tensoring. If $u<\infty$, then also $X(x,-)$ preserves tensoring, hence $x \in A$. Consequently, $F X \cong J\left(A^{\mathrm{op}}\right)$.

Consider now $f: X \rightarrow Y$ with $X \cong J A$ and $Y \cong J B$ as above. Then f is open module reflecting if, and only if, for each $y_{0} \in B$, there exists some $x_{0} \in A$ and some $v \in[0, \infty]$ with $Y\left(y_{0}, f(-)\right)=X\left(x_{0},-\right)+v$. We show that f necessarily preserves tensoring. To this end, let $x \in X$ and $u \in[0, \infty]$. Then

$$
Y\left(y_{0}, f(x+u)\right)=X\left(x_{0}, x+u\right)+v=X\left(x_{0}, x\right)+v+u=Y\left(y_{0}, f(x)\right)+u=Y\left(y_{0}, f(x)+u\right)
$$

for all $y_{0} \in B$, hence $f(x+u)=f(x)+u$. Therefore f corresponds to a module $\phi: B \longrightarrow A$ in the sense that, when identifying X with $J A$ and Y with $J B$, then $f(\psi)=\psi \cdot \phi$. Hence, for any $x \in A, x^{*} \cdot \phi=\phi(-, x)$ belongs to $J B$, and the f being open module reflecting translates to $\phi \cdot y_{*}=\phi(y,-) \in J\left(A^{\mathrm{op}}\right)$ for all $y \in B$. Recall that for each module $\phi: B \longrightarrow A$ we have its dual $\phi^{\mathrm{op}}: A^{\mathrm{op}} \longrightarrow B^{\mathrm{op}}, \phi^{\mathrm{op}}(x, y)=\phi(y, x)$, and with this notation the latter condition reads as $y^{*} \cdot \phi^{\mathrm{op}} \in J\left(A^{\mathrm{op}}\right)$ for all $y \in B^{\mathrm{op}}$. We conclude that the category of J-cocomplete and J continuous metric spaces and open module reflecting contraction maps is dually equivalent to the category of all metric spaces with morphisms those modules $\phi: X \rightarrow Y$ satisfying

$$
\forall y \in Y \cdot\left(y^{*} \cdot \phi \in J X\right) \quad \text { and } \quad \forall x \in X^{\mathrm{op}} \cdot\left(x^{*} \cdot \phi^{\mathrm{op}} \in J\left(Y^{\mathrm{op}}\right)\right)
$$

and the latter category is obviously self-dual.

References

[1] Albert, M.H. and Kelly, G.M. (1998) The closure of a class of colimits, Journal of Pure and Applied Algebra 51, pp. 1-17.
[2] Ali-Akbari, M., Honari, B., Pourmahdian, M. and Rezaii, M.M. (2009) The space of formal balls and models of quasi-metric spaces. Mathematical Structures in Computer Science 19, pp. 337-355.
[3] Antoniuk, S. and Waszkiewicz, P. The duality of generalized metric spaces. Submitted.
[4] Bonsangue, M.M., van Breugel, F. and Rutten, J.J.M.M. (1998) Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding, Theoretical Computer Science 193(1-2), pp. 1-51.
[5] Clementino, M.M. and Hofmann, D. (2003) Topological Features of Lax Algebras, Applied Categorical Structures 11, pp. 267-286.
[6] Clementino, M.M., Hofmann, D. and Tholen, W. (2004) One setting for all: metric, topology, uniformity, approach structure, Applied Categorical Structures 12(2), pp. 127-154.
[7] Clementino, M.M. and Tholen, W. (2003) Metric, topology and multicategory - a common approach, Journal of Pure and Applied Algebra 179, pp. 13-47.
[8] Edalat, A. and Heckmann, R. (1998) A computational model for metric spaces. Theoretical Computer Science 193(1-2), pp. 53-73.
[9] Fawcett B. and Wood R.J. (1990) Constructive complete distributivity I. Mathematical Proceedings of the Cambridge Philosophical Society 107(1), pp. 81-89.
[10] Flagg, R.C., Sünderhauf, P. and Wagner, K.R. (1996) A Logical Approach to Quantitative Domain Theory, Topology Atlas Preprint no. 23, available on-line at: http://at.yorku.ca/e/a/p/p/23.htm.
[11] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M. and Scott, D.S. (2003) Continuous lattices and domains. Volume 93 of Encyclopedia of mathematics and its applications, Cambridge University Press.
[12] Hofmann, D. and Waszkiewicz, P. (2010) Approximation in quantale-enriched categories. Technical report, arXiv:math.CT/1004.2228.
[13] Johnstone, P. and Joyal, A. (1982) Continuous categories and exponentiable toposes, Journal of Pure and Applied Algebra 25, pp. 255-296.
[14] Kelly, G. M. (1982) Basic concepts of enriched category theory. Volume 64 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 245 pages, also in: Reprints in Theory and Application of Categories 10 (2005), pp. 1-136.
[15] Kelly, G. M. and Lack, S. (2000) On the monadicity of categories with chosen colimits, Theory and Application of Categories 7(7), pp. 148-170.
[16] Kelly, G. M. and Schmitt, V. (2005) Notes on enriched categories with colimits of some class, Theory and Applications of Categories 14(17), pp. 399-423.
[17] Kock, A. (1995) Monads for which structures are adjoint to units, Journal of Pure and Applied Algebra 104, pp. 41-59.
[18] Koslowski, J. (1986) Continuous categories, Lecture Notes in Computer Science 239, pp. 149-161.
[19] Kostanek, M. and Waszkiewicz, P. The formal ball model for \mathcal{Q}-categories. Mathematical Structures in Computer Science, to appear.
[20] Lawson, J.D. (1979) The duality of continuous posets. Houston Journal of Mathematics 5(3), pp. 357-386.
[21] Lawvere, F.W. (1973) Metric spaces, generalized logic, and closed categories. Rendiconti del Seminario Matematico e Fisico di Milano 43, pp. 135-166. Also reprinted in: Theory and Applications of Categories 1 (2002), pp. 1-37.
[22] Raney, G.N. (1953) A Subdirect-Union Representation for Completely Distributive Complete Lattices, Proceedings of the American Mathematical Society 4(4), pp. 518-522.
[23] Romaguera, S. and Valero, O. (2009) A quantitative computational model for complete metric spaces via formal balls. Mathematical Structures in Computer Science 19, pp. 541-563.
[24] Rosebrugh, R. and Wood R.J. (1991) Constructive complete distributivity IV. Applied Categorical Structures 2(2), pp. 119-144.
[25] Schmitt, V. (2006) Flatness, preorders and general metric spaces, The Georgian Mathematical Journal, to appear, arXiv:math.CT/0602463.
[26] Stubbe, I. (2007) Towards "dynamic domains": totally continuous cocomplete \mathcal{Q}-categories. Theoretical Computer Science, 373(1-2), pp. 142-160.
[27] Vickers, S. (2005) Localic Completion of Generalized Metric Spaces I. Theory and Applications of Categories 14(15), pp. 328-356.

Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, Portugal
E-mail address: dirk@ua.pt
Theoretical Computer Science, Jagiellonian University, ul.Prof.S.Łojasiewicza 6, 30-348 Kraków, Poland

E-mail address: pqw@tcs.uj.edu.pl

[^0]: 2010 Mathematics Subject Classification. 06B35, 06D10, 06F07, 18B35, 18D20, 68Q55.
 Key words and phrases. Lawson duality, continuous domain, way-below, quantale-enriched category, flat module, open module, complete distributivity.

 The first author acknowledges partial financial assistance by Centro de Investigação e Desenvolvimento Matemática e Aplicações da Universidade de Aveiro/FCT and the project MONDRIAN (under the contract PTDC/EIA-CCO/108302/2008).

 The second author is supported by grant number N206 376137 funded by Polish Ministry of Science and Higher Education.

