TOPOLOGICAL CENTERS OF THE N - TH DUAL OF MODULE ACTIONS

KAZEM HAGHNEJAD AZAR AND ABDOLHAMID RIAZI

Communicated by

ABSTRACT. In this paper, we will study the topological centers of n-th dual of Banach A-module and we extend some propositions from Lau and Ülger into n-th dual of Banach A-modules where $n \geq 0$ is even number. Let B be a Banach A-bimodule. By using some new conditions, we show that $Z^{\ell}_{A^{(n)}}(B^{(n)}) = B^{(n)}$ and $Z^{\ell}_{B^{(n)}}(A^{(n)}) = A^{(n)}$. We also have some conclusions in group algebras.

1. Introduction

Throughout this paper, A is a Banach algebra and A^* , A^{**} , respectively, are the first and second dual of A. Recall that a left approximate identity (= LAI) [resp. right approximate identity (= RAI)] in Banach algebra A is a net $(e_{\alpha})_{\alpha \in I}$ in A such that $e_{\alpha}a \longrightarrow a$ [resp. $ae_{\alpha} \longrightarrow a$]. We say that a net $(e_{\alpha})_{\alpha \in I} \subseteq A$ is a approximate identity (= AI) for A if it is LAIand RAI for A. If $(e_{\alpha})_{\alpha \in I}$ in A is bounded and AI for A, then we say that $(e_{\alpha})_{\alpha \in I}$ is a bounded approximate identity (= BAI) for A. For $a \in$ A and $a' \in A^*$, we denote by a'a and aa' respectively, the functionals on A^* defined by $\langle a'a, b \rangle = \langle a', ab \rangle = a'(ab)$ and $\langle aa', b \rangle = \langle a', ba \rangle = a'(ba)$ for all $b \in A$. The Banach algebra A is embedded in its second dual via the identification $\langle a, a' \rangle - \langle a', a \rangle$ for every $a \in A$ and $a' \in A^*$. We denote

MSC(2000): Primary: 46L06, 46L07, 46L10; Secondary:47L25 11Y50

Keywords: Arens regularity, bilinear mappings, Topological center, n-th dual, Module action Received: January 26, 2010, Accepted: 17 August 2010

^{*}Corresponding author: Abdolhamid Riazi

^{© 2008} Iranian Mathematical Society.

the set $\{a'a : a \in A \text{ and } a' \in A^*\}$ and $\{aa' : a \in A \text{ and } a' \in A^*\}$ by A^*A and AA^* , respectively, clearly these two sets are subsets of A^* .

Let A have a BAI. If the equality $A^*A = A^*$, $(AA^* = A^*)$ holds, then we say that A^* factors on the left (right). If both equalities $A^*A = AA^* = A^*$ hold, then we say that A^* factors on both sides.

The extension of bilinear maps on normed space and the concept of regularity of bilinear maps were studied by [1, 2, 3, 6, 8, 14]. We start by recalling these definitions as follows.

Let X, Y, Z be normed spaces and $m : X \times Y \to Z$ be a bounded bilinear mapping. Arens in [1] offers two natural extensions m^{***} and m^{t***t} of m from $X^{**} \times Y^{**}$ into Z^{**} as following

1. $m^*: Z^* \times X \to Y^*$, given by $\langle m^*(z', x), y \rangle = \langle z', m(x, y) \rangle$ where $x \in X, y \in Y, z' \in Z^*$,

2. $m^{**}: Y^{**} \times Z^* \to X^*$, given by $\langle m^{**}(y'', z'), x \rangle = \langle y'', m^*(z', x) \rangle$ where $x \in X, y'' \in Y^{**}, z' \in Z^*$,

3.
$$m^{***}: X^{**} \times Y^{**} \to Z^{**}$$
, given by $\langle m^{***}(x'', y''), z' \rangle$

 $= \langle x^{\prime\prime}, m^{**}(y^{\prime\prime}, z^\prime) \rangle \text{ where } x^{\prime\prime} \in X^{**}, \, y^{\prime\prime} \in Y^{**}, \, z^\prime \in Z^*.$

The mapping m^{***} is the unique extension of m such that

 $x'' \to m^{***}(x'', y'')$ from X^{**} into Z^{**} is $weak^* - to - weak^*$ continuous for every $y'' \in Y^{**}$, but the mapping $y'' \to m^{***}(x'', y'')$ is not in general $weak^* - to - weak^*$ continuous from Y^{**} into Z^{**} unless $x'' \in X$. Hence the first topological center of m may be defined as following

$$Z_1(m) = \{x'' \in X^{**}: y'' \to m^{***}(x'', y'') \text{ is weak}^* - to - weak^*$$

continuous}.

Let now $m^t: Y \times X \to Z$ be the transpose of m defined by $m^t(y, x) = m(x, y)$ for every $x \in X$ and $y \in Y$. Then m^t is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to $m^{t***}: Y^{**} \times X^{**} \to Z^{**}$. The mapping $m^{t***t}: X^{**} \times Y^{**} \to Z^{**}$ in general is not equal to m^{***} , see [1], if $m^{***} = m^{t***t}$, then m is called Arens regular. The mapping $y'' \to m^{t***t}(x'', y'')$ is $weak^* - to - weak^*$ continuous for every $y'' \in Y^{**}$, but the mapping $x'' \to m^{t***t}(x'', y'')$ from X^{**} into Z^{**} is not in general $weak^* - to - weak^*$ continuous for every $y'' \in Y^{**}$. So we define the second topological center of m as

$$Z_2(m) = \{y'' \in Y^{**}: x'' \to m^{t^{**}t}(x'', y'') \text{ is weak}^* - to - weak\}$$

continuous}.

It is clear that m is Arens regular if and only if $Z_1(m) = X^{**}$ or $Z_2(m) = Y^{**}$. Arens regularity of m is equivalent to the following

$$\lim_{i} \lim_{j} \langle z', m(x_i, y_j) \rangle = \lim_{j} \lim_{i} \langle z', m(x_i, y_j) \rangle,$$

whenever both limits exist for all bounded sequences $(x_i)_i \subseteq X$, $(y_i)_i \subseteq Y$ and $z' \in Z^*$, see [18].

The mapping m is left strongly Arens irregular if $Z_1(m) = X$ and m is right strongly Arens irregular if $Z_2(m) = Y$. Let now B be a Banach A - bimodule, and let

$$\pi_{\ell}: A \times B \to B \text{ and } \pi_r: B \times A \to B.$$

be the left and right module actions of A on B, respectively. Then B^{**} is a Banach $A^{**} - bimodule$ with the following module actions where A^{**} is equipped with the left Arens product

$$\pi_{\ell}^{***}: A^{**} \times B^{**} \to B^{**} and \pi_{r}^{***}: B^{**} \times A^{**} \to B^{**}.$$

Similarly, B^{**} is a Banach $A^{**} - bimodule$ with the following module actions where A^{**} is equipped with the right Arens product

$$\pi_{\ell}^{t***t}: A^{**} \times B^{**} \to B^{**} and \pi_{r}^{t***t}: B^{**} \times A^{**} \to B^{**}.$$

We may therefore define the topological centers of the left and right module actions of A on B as follows:

$$\begin{aligned} Z_{B^{**}}(A^{**}) &= Z(\pi_{\ell}) = \{a'' \in A^{**} : \text{ the map } b'' \to \pi_{\ell}^{***}(a'',b'') : \\ B^{**} \to B^{**} \text{ is weak}^* - to - weak^* \text{ continuous} \} \\ Z_{B^{**}}^t(A^{**}) &= Z(\pi_r^t) = \{a'' \in A^{**} : \text{ the map } b'' \to \pi_r^{t***}(a'',b'') : \\ B^{**} \to B^{**} \text{ is weak}^* - to - weak^* \text{ continuous} \} \\ Z_{A^{**}}(B^{**}) &= Z(\pi_r) = \{b'' \in B^{**} : \text{ the map } a'' \to \pi_r^{***}(b'',a'') : \\ A^{**} \to B^{**} \text{ is weak}^* - to - weak^* \text{ continuous} \} \\ Z_{A^{**}}(B^{**}) &= Z(\pi_{\ell}^t) = \{b'' \in B^{**} : \text{ the map } a'' \to \pi_{\ell}^{t***}(b'',a'') : \\ A^{**} \to B^{**} \text{ is weak}^* - to - weak^* \text{ continuous} \} \end{aligned}$$

We note also that if B is a left(resp. right) Banach A - module and $\pi_{\ell} : A \times B \to B$ (resp. $\pi_r : B \times A \to B$) is left (resp. right) module action of A on B, then B^* is a right (resp. left) Banach A - module. We write $ab = \pi_{\ell}(a, b), ba = \pi_r(b, a), \pi_{\ell}(a_1a_2, b) = \pi_{\ell}(a_1, a_2b), \pi_r(b, a_1a_2) = \pi_r(ba_1, a_2), \pi_{\ell}^*(a_1b', a_2) = \pi_{\ell}^*(b', a_2a_1), \pi_r^*(b'a, b) = \pi_r^*(b', ab),$ for all $a_1, a_2, a \in A, b \in B$ and $b' \in B^*$ when there is no confusion.

Regarding A as a Banach A - bimodule, the operation $\pi : A \times A \rightarrow A$ extends to π^{***} and π^{t***t} defined on $A^{**} \times A^{**}$. These extensions are known, respectively, as the first(left) and the second (right) Arens products, and with each of them, the second dual space A^{**} becomes a Banach algebra. In this situation, we shall also simplify our notations. So the first (left) Arens product of $a'', b'' \in A^{**}$ shall be simply indicated by a''b'' and defined by the three steps:

$$\langle a'a, b \rangle = \langle a', ab \rangle, \langle a''a', a \rangle = \langle a'', a'a \rangle, \langle a''b'', a' \rangle = \langle a'', b''a' \rangle.$$

for every $a, b \in A$ and $a' \in A^*$. Similarly, the second (right) Arens product of $a'', b'' \in A^{**}$ shall be indicated by a''ob'' and defined by :

$$\begin{split} \langle aoa',b\rangle &= \langle a',ba\rangle,\\ \langle a'oa'',a\rangle &= \langle a'',aoa'\rangle,\\ \langle a''ob'',a'\rangle &= \langle b'',a'ob''\rangle. \end{split}$$

for all $a, b \in A$ and $a' \in A^*$.

The regularity of a normed algebra A is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Let a'' and b'' be elements of A^{**} , the second dual of A. By *Goldstine's* Theorem [4, P.424-425], there are nets $(a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in A such that $a'' = weak^* - \lim_{\alpha} a_{\alpha}$ and $b'' = weak^* - \lim_{\beta} b_{\beta}$. So it is easy to see that for all $a' \in A^*$,

$$\lim_{\alpha} \lim_{\beta} \langle a', \pi(a_{\alpha}, b_{\beta}) \rangle = \langle a''b'', a' \rangle$$

and

$$\lim_{\beta} \lim_{\alpha} \langle a', \pi(a_{\alpha}, b_{\beta}) \rangle = \langle a''ob'', a' \rangle,$$

where a''b'' and a''ob'' are the first and second Arens products of A^{**} , respectively, see [14, 18].

We find the usual first and second topological center of A^{**} , which are

$$Z_{A^{**}}(A^{**}) = Z(\pi) = \{a'' \in A^{**} : b'' \to a''b'' \text{ is weak}^* - to - weak^* \\ continuous\},\$$

$$Z_{A^{**}}^t(A^{**}) = Z(\pi^t) = \{a'' \in A^{**} : a'' \to a''ob'' \text{ is weak}^* - to - weak^* continuous\}.$$

An element e'' of A^{**} is said to be a mixed unit if e'' is a right unit for the first Arens multiplication and a left unit for the second Arens multiplication. That is, e'' is a mixed unit if and only if, for each $a'' \in A^{**}$, a''e'' = e''oa'' = a''. By [4, p.146], an element e'' of A^{**} is mixed unit if and only if it is a weak* cluster point of some BAI $(e_{\alpha})_{\alpha \in I}$ in A. A functional a' in A^* is said to be wap (weakly almost periodic) on Aif the mapping $a \to a'a$ from A into A^* is weakly compact. Pym in [18] showed that this definition is equivalent to the following condition For any two net $(a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in $\{a \in A : || a || \leq 1\}$, we have

$$\lim_{lpha}\lim_{eta}\langle a',a_{lpha}b_{eta}
angle = \lim_{eta}\lim_{lpha}\langle a',a_{lpha}b_{eta}
angle,$$

whenever both iterated limits exist. The collection of all wap functionals on A is denoted by wap(A). Also we have $a' \in wap(A)$ if and only if $\langle a''b'', a' \rangle = \langle a''ob'', a' \rangle$ for every $a'', b'' \in A^{**}$.

This paper is organized as follows:

a) Let *B* be a Banach A - bimodule and $\phi \in U_{n,r}$ for even number $n \ge 0$ and $0 \le r \le \frac{n}{2}$ whenever $U_{n,r} = A^{(n-r)}A^{(r)})^{(r)}$ or $U_{n,r} = A^{(n-r)}A^{(r-1)})^{(r)}$. Then $\phi \in Z^{\ell}{}_{B^{(n)}}(U_{n,r})$ if and only if $b^{(n-1)}\phi \in B^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.

b) Let *B* be a Banach A-bimodule. Then we have the following assertions.

- (1) $b^{(n)} \in Z^{\ell}{}_{A^{(n)}}(B^{(n)})$ if and only if $b^{(n-1)}b^{(n)} \in A^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.
- (2) If $\phi \in Z^{\ell}_{B^{(n)}}(U_{n,r})$, then $a^{(n-2)}\phi \in Z^{\ell}_{B^{(n)}}(A^{(n)})$ for all $a^{(n-2)} \in A^{(n-2)}$.

c) Let B be a Banach space such that $B^{(n)}$ is weakly compact. Then for Banach A - bimodule B, we have the following assertions.

(1) Suppose that $(e_{\alpha}^{(n)})_{\alpha} \subseteq A^{(n)}$ is a *BLAI* for $B^{(n)}$ such that

$$e_{\alpha}^{(n)}B^{(n+2)} \subseteq B^{(n)}$$

for every α . Then *B* is reflexive.

(2) Suppose that $(e_{\alpha}^{(n)})_{\alpha} \subseteq A^{(n)}$ is a *BRAI* for $B^{(n)}$ and

$$Z^{\ell}_{e^{(n+2)}}(B^{(n+2)}) = B^{(n+2)}$$

where $e_{\alpha}^{(n)} \xrightarrow{w^*} e^{(n+2)}$ on $A^{(n)}$. If $B^{(n+2)}e_{\alpha}^{(n)} \subseteq B^{(n)}$ for every α , then $Z_{A^{(n+2)}}^{\ell}(B^{(n+2)}) = B^{(n+2)}$.

d) Assume that B is a Banach A-bimodule. Then we have the following assertions.

(1)
$$B^{(n+1)}A^{(n)} \subseteq wap_{\ell}(B^{(n)})$$
 if and only if
 $A^{(n)}A^{(n+2)} \subseteq Z^{\ell}_{B^{(n+2)}}(A^{(n+2)}).$
(2) If $A^{(n)}A^{(n+2)} \subseteq A^{(n)}Z^{\ell}_{B^{(n+2)}}(A^{(n+2)})$, then
 $A^{(n)}A^{(n+2)} \subseteq Z^{\ell}_{B^{(n+2)}}(A^{(n+2)}).$

e) Let B be a left Banach A - bimodule and $n \ge 0$ be a even. Suppose that $b_0^{(n+1)} \in B^{(n+1)}$. Then $b_0^{(n+1)} \in wap_{\ell}(B^{(n)})$ if and only if the mapping $T : b^{(n+2)} \to b^{(n+2)}b_0^{(n+1)}$ form $B^{(n+2)}$ into $A^{(n+1)}$ is $weak^* - to - weak$ continuous.

f) Let *B* be a left Banach A - bimodule. Then for $n \ge 2$, we have the following assertions.

- (1) If $A^{(n)} = a_0^{(n-2)} A^{(n)}$ [resp. $A^{(n)} = A^{(n)} a_0^{(n-2)}$] for some $a_0^{(n-2)} \in A^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w property [resp. Lw^*w property] with respect to $B^{(n)}$, then $Z_{B^{(n)}}(A^{(n)}) = A^{(n)}$.
- (2) If $B^{(n)} = a_0^{(n-2)} B^{(n)}$ [resp. $B^{(n)} = B^{(n)} a_0^{(n-2)}$] for some $a_0^{(n-2)} \in A^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w property [resp. Lw^*w property] with respect to $B^{(n)}$, then $Z_{A^{(n)}}(B^{(n)}) = B^{(n)}$.

2. Topological centers of module actions

Suppose that A is a Banach algebra and B is a Banach A - bimodule. According to [5, pp.27 and 28], B^{**} is a Banach $A^{**} - bimodule$, where A^{**} is equipped with the first Arens product. So we recalled the topological centers of module actions of A^{**} on B^{**} as in the following.

$$\begin{split} Z^{\ell}_{A^{**}}(B^{**}) &= \{b'' \in B^{**} : \ the \ map \ a'' \to b''a'' \ : \ A^{**} \to B^{**} \\ is \ weak^* - to - weak^* \ continuous\} \\ Z^{\ell}_{B^{**}}(A^{**}) &= \{a'' \in A^{**} : \ the \ map \ b'' \to a''b'' \ : \ B^{**} \to B^{**} \\ is \ weak^* - to - weak^* \ continuous\}. \end{split}$$

6

Let $A^{(n)}$ and $B^{(n)}$ be n - th dual of A and B, respectively. By [25, page 4132-4134], if $n \ge 0$ is an even number, then $B^{(n)}$ is a Banach $A^{(n)} - bimodule$. Then for $n \ge 2$, we define $B^{(n)}B^{(n-1)}$ as a subspace of $A^{(n-1)}$, that is, for all $b^{(n)} \in B^{(n)}$, $b^{(n-1)} \in B^{(n-1)}$ and $a^{(n-2)} \in A^{(n-2)}$ we define

$$\langle b^{(n)}b^{(n-1)}, a^{(n-2)} \rangle = \langle b^{(n)}, b^{(n-1)}a^{(n-2)} \rangle.$$

If n is odd number, we define $B^{(n)}B^{(n-1)}$ as a subspace of $A^{(n)}$, that is, for all $b^{(n)} \in B^{(n)}$, $b^{(n-1)} \in B^{(n-1)}$ and $a^{(n-1)} \in A^{(n-1)}$, we define

$$< b^{(n)}b^{(n-1)}, a^{(n-1)} > = < b^{(n)}, b^{(n-1)}a^{(n-1)} > .$$

If n = 0, we take $A^{(0)} = A$ and $B^{(0)} = B$. We also define the topological centers of module actions of $A^{(n)}$ on $B^{(n)}$ as follows

$$\begin{split} Z^{\ell}_{A^{(n)}}(B^{(n)}) &= \{ b^{(n)} \in B^{(n)}: \ the \ map \ a^{(n)} \to b^{(n)}a^{(n)} \ : \ A^{(n)} \to B^{(n)} \\ & is \ weak^* - to - weak^* \ continuous \} \\ Z^{\ell}_{B^{(n)}}(A^{(n)}) &= \{ a^{(n)} \in A^{(n)}: \ the \ map \ b^{(n)} \to a^{(n)}b^{(n)} \ : \ B^{(n)} \to B^{(n)} \\ & is \ weak^* - to - weak^* \ continuous \}. \end{split}$$

Let A be a Banach algebra and let $A^{(n)}$ and $A^{(m)}$ be n - th dual and m - th dual of A, respectively. Suppose that at least one of n or m is an even number. Then we define the set $A^{(n)}A^{(m)}$ as a linear space that generated by the following set

$$\{a^{(n)}a^{(m)}: a^{(n)} \in A^{(n)} \text{ and } a^{(m)} \in A^{(m)}\}.$$

Where the production of $a^{(n)}a^{(m)}$ is defined with respect to the first Arens product. If $n \ge m$, then $A^{(n)}A^{(m)}$ is a subspace of $A^{(n)}$. $A^{(n)}A^{(m)}$ is Banach algebra whenever n and m are even numbers, but if one of them is odd number, then $A^{(n)}A^{(m)}$ is in general not a Banach algebra. Let $n \ge 0$ be an even number and $0 \le r \le \frac{n}{2}$. For a Banach algebra A, we define a new Banach algebra $U_{n,r}$ with respect to the first Arens product as following.

If r is an even (resp. odd) number, then we write $U_{n,r} = (A^{(n-r)}A^{(r)})^{(r)}$ (resp. $U_{n,r} = (A^{(n-r)}A^{(r-1)})^{(r)}$). It is clear that $U_{n,r}$ is a subalgebra of $A^{(n)}$. For example, if we take n = 2 and r = 1, then $U_{2,1} = (A^*A)^*$ is a subalgebra of A^{**} with respect to the first Arens product.

Now if B is a Banach A - bimodule, then it is clear that $B^{(n)}$ is a Banach $U_{n,r} - bimodule$ with respect to the first Arens product, for detail

see [25], and so we can define the topological centers of module actions $U_{n,r}$ on $B^{(n)}$ as $Z^{\ell}_{B^{(n)}}(U_{n,r})$ and $Z^{\ell}_{U_{n,r}}(B^{(n)})$ similarly to the preceding definitions.

In every parts of this paper, $n \ge 0$ is even number.

Theorem 2.1. Let B be a Banach A – bimodule and $\phi \in U_{n,r}$. Then $\phi \in Z^{\ell}_{B^{(n)}}(U_{n,r})$ if and only if $b^{(n-1)}\phi \in B^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.

Proof. Let $\phi \in Z^{\ell}{}_{B^{(n)}}(U_{n,r})$. Suppose that $(b^{(n)}_{\alpha})_{\alpha} \subseteq B^{(n)}$ such that $b^{(n)}_{\alpha} \xrightarrow{w} b^{(n)}$ on $B^{(n)}$. Then, for every $b^{(n-1)} \in B^{(n-1)}$, we have

$$\begin{split} \langle b^{(n-1)}\phi, b^{(n)}_{\alpha} \rangle &= \langle b^{(n-1)}, \phi b^{(n)}_{\alpha} \rangle = \langle \phi b^{(n)}_{\alpha}, b^{(n-1)} \rangle \to \langle \phi b^{(n)}, b^{(n-1)} \rangle \\ &= \langle b^{(n-1)}\phi, b^{(n)} \rangle. \end{split}$$

It follows that $b^{(n-1)}\phi \in (B^{(n+1)}, weak^*)^* = B^{(n-1)}$. Conversely, let $b^{(n-1)}\phi \in B^{(n-1)}$ for every $b^{(n-1)} \in B^{(n-1)}$ and suppose that $(b^{(n)}_{\alpha})_{\alpha} \subseteq B^{(n)}$ such that $b^{(n)}_{\alpha} \stackrel{w^*}{\to} b^{(n)}$ on $B^{(n)}$. Then

$$\begin{split} \langle \phi b_{\alpha}^{(n)}, b^{(n-1)} \rangle &= \langle \phi, b_{\alpha}^{(n)} b^{(n-1)} \rangle = \langle b_{\alpha}^{(n)} b^{(n-1)}, \phi \rangle = \langle b_{\alpha}^{(n)}, b^{(n-1)} \phi \rangle \\ &\to \langle b^{(n)}, b^{(n-1)} \phi \rangle = \langle \phi b^{(n)}, b^{(n-1)} \rangle. \end{split}$$

It follows that $\phi b_{\alpha}^{(n)} \xrightarrow{w^*} \phi b^{(n)}$, and so $\phi \in Z^{\ell}_{B^{(n)}}(U_{n,r})$. \Box

In Theorem 2.1, if we take B = A, n = 2 and r = 1, we obtain Lemma 3.1 (b) from [14].

Theorem 2.2. Let B be a Banach A-bimodule and $b^{(n)} \in B^{(n)}$. Then we have the following assertions.

- (1) $b^{(n)} \in Z^{\ell}_{A^{(n)}}(B^{(n)})$ if and only if $b^{(n-1)}b^{(n)} \in A^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.
- (2) If $\phi \in Z^{\ell}{}_{B^{(n)}}(U_{n,r})$, then $a^{(n-2)}\phi \in Z^{\ell}{}_{B^{(n)}}(A^{(n)})$ for all $a^{(n-2)} \in A^{(n-2)}$.

Proof.

(1) Let $b^{(n)} \in Z^{\ell}{}_{A^{(n)}}(B^{(n)})$. We show that $b^{(n-1)}b^{(n)} \in A^{(n-1)}$ where $b^{(n-1)} \in B^{(n-1)}$. Suppose that $(a^{(n)}_{\alpha})_{\alpha} \subseteq A^{(n)}$ and $a^{(n)}_{\alpha} \xrightarrow{w^*} a^{(n)}$ on $A^{(n)}$. Then we have

$$\langle b^{(n-1)}b^{(n)}, a^{(n)}_{\alpha} \rangle = \langle b^{(n-1)}, b^{(n)}a^{(n)}_{\alpha} \rangle = \langle b^{(n)}a^{(n)}_{\alpha}, b^{(n-1)} \rangle$$

$$\rightarrow \langle b^{(n)}a^{(n)}, b^{(n-1)}\rangle = \langle b^{(n-1)}b^{(n)}, a^{(n)}\rangle.$$

Consequently $b^{(n-1)}b^{(n)}\in (A^{(n+1)},weak^*)^*=A^{(n-1)}.$ It follows that

$$b^{(n-1)}b^{(n)} \in A^{(n-1)}$$

Conversely, let $b^{(n-1)}b^{(n)} \in A^{(n-1)}$ for each $b^{(n-1)} \in B^{(n-1)}$. Suppose that $(a_{\alpha}^{(n)})_{\alpha} \subseteq A^{(n)}$ and $a_{\alpha}^{(n)} \xrightarrow{w^*} a^{(n)}$ on $A^{(n)}$. Then we have

$$\langle b^{(n)} a^{(n)}_{\alpha}, b^{(n-1)} \rangle = \langle b^{(n)}, a^{(n)}_{\alpha} b^{(n-1)} \rangle = \langle a^{(n)}_{\alpha} b^{(n-1)}, b^{(n)} \rangle$$
$$= \langle a^{(n)}_{\alpha}, b^{(n-1)} b^{(n)} \rangle \to \langle a^{(n)}, b^{(n-1)} b^{(n)} \rangle = \langle b^{(n)} a^{(n)}, b^{(n-1)} \rangle.$$

It follows that $b^{(n)}a^{(n)}_{\alpha} \xrightarrow{w^*} b^{(n)}a^{(n)}$, and so $b^{(n)} \in \mathbb{Z}^{\ell}{}_{A^{(n)}}(B^{(n)})$.

(2) Let $\phi \in Z^{\ell}{}_{B^{(n)}}(U_{n,r})$ and $a^{(n-2)} \in A^{(n-2)}$. Assume that $(b^{(n)}_{\alpha})_{\alpha} \subseteq B^{(n)}$ and $b^{(n)}_{\alpha} \xrightarrow{w^*} b^{(n)}$ on $B^{(n)}$. Then for all $b^{(n-1)} \in B^{(n-1)}$, we have

$$\begin{split} \langle (a^{(n-2)}\phi)b^{(n)}_{\alpha}, b^{(n-1)} \rangle &= \langle \phi b^{(n)}_{\alpha}, b^{(n-1)}a^{(n-2)} \rangle \to \langle \phi b^{(n)}, b^{(n-1)}a^{(n-2)} \rangle \\ &= \langle (a^{(n-2)}\phi)b^{(n)}, b^{(n-1)} \rangle. \end{split}$$

It follows that $(a^{(n-2)}\phi)b_{\alpha}^{(n)} \xrightarrow{w^*} (a^{(n-2)}\phi)b^{(n)}$, and so $a^{(n-2)}\phi \in Z^{\ell}{}_{B^{(n)}}(A^{(n)})$. \Box

In the preceding theorem, part (1), if we take B = A and n = 2, we conclude Lemma 3.1 (a) from [14]. In part (2) of this theorem, if we take B = A, n = 2 and r = 1, we also obtain Lemma 3.1 (c) from [14].

Definition. Let *B* be a Banach A - bimodule and suppose that $a'' \in A^{**}$. Assume that $(a''_{\alpha})_{\alpha} \subseteq A^{**}$ such that $a''_{\alpha} \stackrel{w^*}{\to} a''$. If for every $b'' \in B^{**}$, we have $a''_{\alpha}b'' \stackrel{w^*}{\to} a''b''$, then we say that $a'' \to b''a''$ is $weak^* - to - weak^*$ point continuous.

Suppose that B is a Banach A-bimodule. Assume that $a'' \in A^{**}$. Then we define the locally topological center of a'' on B^{**} as follows

$$Z^{\ell}_{a^{\prime\prime}}(B^{**}) = \{b^{\prime\prime} \in B^{**}: a^{\prime\prime} \rightarrow b^{\prime\prime}a^{\prime\prime} \text{ is weak}^* - to - weak^* \text{ point}$$
 continuous}.

The definition of $Z^{\ell}_{b''}(A^{**})$ where $b'' \in B^{**}$ are similar. It is clear that

$$\bigcap_{a'' \in A^{**}} Z_{a''}^{\ell}(B^{**}) = Z_{A^{**}}^{\ell}(B^{**}),$$
$$\bigcap_{b'' \in B^{**}} Z_{b''}^{\ell}(A^{**}) = Z_{B^{**}}^{\ell}(A^{**}).$$

Let B be a Banach space. Then $K \subseteq B$ is recalled weakly compact, if K is compact with respect to weak topology on B. By [7], we know that K is weakly compact if and only if K is weakly limit point compact.

Theorem 2.3. Assume that B is a Banach A-bimodule such that $B^{(n)}$ is weakly compact. Then we have the following assertions.

(1) Suppose that $(e_{\alpha}^{(n)})_{\alpha} \subseteq A^{(n)}$ is a BLAI for $B^{(n)}$ such that $e_{\alpha}^{(n)}B^{(n+2)} \subseteq B^{(n)},$

for every α . Then B is reflexive.

(2) Suppose that $(e_{\alpha}^{(n)})_{\alpha} \subseteq A^{(n)}$ is a BRAI for $B^{(n)}$ and $Z_{e^{(n+2)}}^{\ell}(B^{(n+2)}) = B^{(n+2)},$

where $e_{\alpha}^{(n)} \xrightarrow{w^*} e^{(n+2)}$ on $A^{(n)}$. If $B^{(n+2)}e_{\alpha}^{(n)} \subseteq B^{(n)}$ for every α , then $Z_{A^{(n+2)}}^{\ell}(B^{(n+2)}) = B^{(n+2)}$.

Proof.

- (1) Let $b^{n+2} \in B^{n+2}$. Since $(e_{\alpha}^{(n)})_{\alpha}$ is a *BLAI* for $B^{(n)}$, without loss generality, there is left unit $e^{(n+2)} \in A^{n+2}$ for B^{n+2} such that $e_{\alpha}^{(n)} \xrightarrow{w^*} e^{(n+2)}$ on $A^{(n+2)}$, see [10]. Then we have $e_{\alpha}^{(n)}b^{(n+2)} \xrightarrow{w^*} b^{(n+2)}$ on $B^{(n+2)}$. Since $e_{\alpha}^{(n)}b^{(n+2)} \in B^{(n)}$, we have $e_{\alpha}^{(n)}b^{(n+2)} \xrightarrow{w} b^{(n+2)}$ on $B^{(n)}$. We conclude that $b^{n+2} \in B^n$ of course B^n is weakly compact.
- (2) Suppose that $b^{(n+2)} \in Z^{\ell}_{A^{(n+2)}}(B^{(n+2)})$ and $e^{(n)}_{\alpha} \xrightarrow{w^*} e^{(n+2)}$ on $A^{(n)}$ such that $e^{(n+2)}$ is right unit for $B^{(n+2)}$, see [10]. Then we have $b^{(n+2)}e^{(n)}_{\alpha} \xrightarrow{w^*} b^{(n+2)}$ on $B^{(n+2)}$. Since $B^{(n+2)}e^{(n)}_{\alpha} \subseteq B^{(n)}$ for every $\alpha, b^{(n+2)}e^{(n)}_{\alpha} \xrightarrow{w} b^{(n+2)}$ on $B^{(n)}$ and since $B^{(n)}$ is weakly compact,

10

$$b^{(n+2)} \in B^{(n)}$$
. It follows that $Z^{\ell}_{A^{(n+2)}}(B^{(n+2)}) = B^{(n+2)}$.

Definition. Let *B* be a Banach A - bimodule and the integer $n \ge 0$ be an even number. Then $b^{(n+2)} \in B^{(n+2)}$ is said to be weakly left almost periodic functional if the set

$$\{b^{(n+1)}a^{(n)}: a^{(n)} \in A^{(n)}, \parallel a^{(n)} \parallel \le 1\},\$$

is relatively weakly compact, and $b^{(n+2)} \in B^{(n+2)}$ is said to be weakly right almost periodic functional if the set

$$\{a^{(n)}b^{(n+1)}: a^{(n)} \in A^{(n)}, \parallel a^{(n)} \parallel \le 1\},\$$

is relatively weakly compact. We denote by $wap_{\ell}(B^{(n)})$ [resp. $wap_r(B^{(n)})$] the closed subspace of $B^{(n+1)}$ consisting of all the weakly left [resp. right] almost periodic functionals in $B^{(n+1)}$. By [6, 14, 18], the definition of $wap_{\ell}(B^{(n)})$ and $wap_r(B^{(n)})$, respectively, are equivalent to the following

$$wap_{\ell}(B^{(n)}) = \{b^{(n+1)} \in B^{(n+1)} : \langle b^{(n+2)}a^{(n+2)}_{\alpha}, b^{(n+1)} \rangle \to \\ \langle b^{(n+2)}a^{(n+2)}, b^{(n+1)} \rangle \ where \ a^{(n+2)}_{\alpha} \xrightarrow{w^{*}} a^{(n+2)} \}.$$

and

$$\begin{split} wap_r(B^{(n)}) &= \{b^{(n+1)} \in B^{(n+1)}: \ \langle a^{(n+2)}b_{\alpha}^{(n+2)}, b^{(n+1)} \rangle \rightarrow \\ &\quad \langle a^{(n+2)}b^{(n+2)}, b^{(n+1)} \rangle \ where \ b_{\alpha}^{(n+2)} \xrightarrow{w^*} b^{(n+2)} \}. \end{split}$$
 If we take $A = B$ and $n = 0$, then $wap_{\ell}(A) = wap_r(A) = wap(A)$.

Theorem 2.4. Assume that B is a Banach A-bimodule and the integer $n \ge 0$ be an even number. Then we have the following assertions.

(1)
$$B^{(n+1)}A^{(n)} \subseteq wap_{\ell}(B^{(n)})$$
 if and only if
 $A^{(n)}A^{(n+2)} \subseteq Z^{\ell}_{B^{(n+2)}}(A^{(n+2)}).$
(2) If $A^{(n)}A^{(n+2)} \subseteq A^{(n)}Z^{\ell}_{B^{(n+2)}}(A^{(n+2)})$, then
 $A^{(n)}A^{(n+2)} \subseteq Z^{\ell}_{B^{(n+2)}}(A^{(n+2)}).$

Proof.

K. Haghnejad Azar and A. Riazi

(1) Suppose that $B^{(n+1)}A^{(n)} \subseteq wap_{\ell}(B^{(n)})$. Let $a^{(n)} \in A^{(n)}, a^{(n+2)} \in A^{(n+2)}$ and let $(b^{(n+2)}_{\alpha})_{\alpha} \subseteq B^{(n+2)}$ such that $b^{(n+2)}_{\alpha} \xrightarrow{w^*} b^{(n+2)}$. Then for every $b^{(n+1)} \in B^{(n+1)}$, we have

$$\langle (a^{(n)}a^{(n+2)})b^{(n+2)}_{\alpha}, b^{(n+1)} \rangle = \langle a^{(n+2)}b^{(n+2)}_{\alpha}, b^{(n+1)}a^{(n)} \rangle$$

$$\rightarrow \langle a^{(n+2)}b^{(n+2)}, b^{(n+1)}a^{(n)} \rangle = \langle (a^{(n)}a^{(n+2)})b^{(n+2)}, b^{(n+1)} \rangle.$$

It follows that $a^{(n)}a^{(n+2)} \in Z^{\ell}_{B^{(n+2)}}(A^{(n+2)})$. Conversely, let $a^{(n)}a^{(n+2)} \in Z^{\ell}_{B^{(n+2)}}(A^{(n+2)})$ for every $a^{(n)} \in A^{(n)}, a^{(n+2)} \in A^{(n+2)}$ and suppose that $(b^{(n+2)}_{\alpha})_{\alpha} \subseteq B^{(n+2)}$ such that $b^{(n+2)}_{\alpha} \xrightarrow{w^*} b^{(n+2)}$. Then for every $b^{(n+1)} \in B^{(n+1)}$, we have $\langle a^{(n+2)}b^{(n+2)}_{\alpha}, b^{(n+1)}a^{(n)} \rangle = \langle (a^{(n)}a^{(n+2)})b^{(n+2)}_{\alpha}, b^{(n+1)} \rangle$

$$\to \langle (a^{(n)}a^{(n+2)})b^{(n+2)}, b^{(n+1)} \rangle = \langle a^{(n+2)}b^{(n+2)}_{\alpha}, b^{(n+1)}a^{(n)} \rangle.$$

It follows that $B^{(n+1)}A^{(n)} \subseteq wap_{\ell}(B^{(n)})$.

(2) Since
$$A^{(n)}A^{(n+2)} \subseteq A^{(n)}Z^{\ell}{}_{B^{(n)}}((A^{(n+2)}), \text{ for every } a^{(n)} \in A^{(n)}$$

and $a^{(n+2)} \in A^{(n+2)}, \text{ we have } a^{(n)}a^{(n+2)} \in A^{(n)}Z^{\ell}{}_{B^{(n+2)}}(A^{(n+2)}).$
Then there are $x^{(n)} \in A^{(n)}$ and $\phi \in Z^{\ell}{}_{B^{(n+2)}}(A^{(n+2)})$ such that
 $a^{(n)}a^{(n+2)} = x^{(n)}\phi.$ Suppose that $(b^{(n+2)}_{\alpha})_{\alpha} \subseteq B^{(n+2)}$ such that
 $b^{(n+2)}_{\alpha} \xrightarrow{w^{*}} b^{(n+2)}.$ Then for every $b^{(n+1)} \in B^{(n+1)},$ we have
 $\langle (a^{(n)}a^{(n+2)})b^{(n+2)}_{\alpha}, b^{(n+1)} \rangle = \langle (x^{(n)}\phi)b^{(n+2)}_{\alpha}, b^{(n+1)} \rangle$
 $= \langle \phi b^{(n+2)}_{\alpha}, b^{(n+1)}x^{(n)} \rangle \to \langle \phi b^{(n+2)}, b^{(n+1)}x^{(n)} \rangle$
 $= \langle (a^{(n)}a^{(n+2)})b^{(n+2)}, b^{(n+1)} \rangle.$

In the preceding theorem, if we take B = A and n = 0, we conclude Theorem 3.6 (a) from [14].

Theorem 2.5. Assume that B is a Banach A – bimodule and the integer $n \ge 0$ be an even number. If $A^{(n)}$ is a left ideal in $A^{(n+2)}$, then $B^{(n+1)}A^{(n)} \subseteq wap_{\ell}(B^{(n)})$.

Proof. Proof is clear.

12

Theorem 2.6. Let B be a left Banach A – bimodule and $n \ge 0$ be a even number. Suppose that $b_0^{(n+1)} \in B^{(n+1)}$. Then $b_0^{(n+1)} \in wap_{\ell}(B^{(n)})$ if and only if the mapping $T : b^{(n+2)} \to b^{(n+2)}b_0^{(n+1)}$ form $B^{(n+2)}$ into $A^{(n+1)}$ is weak^{*} – to – weak continuous.

Proof. Let $b_0^{(n+1)} \in B^{(n+1)}$ and suppose that $b_{\alpha}^{(n+2)} \xrightarrow{w^*} b^{(n+2)}$ on $B^{(n+2)}$. Then for every $a^{(n+2)} \in A^{(n+2)}$, we have

$$\langle a^{(n+2)}, b^{(n+2)}_{\alpha} b^{(n+1)}_{0} \rangle = \langle a^{(n+2)} b^{(n+2)}_{\alpha}, b^{(n+1)}_{0} \rangle \to \langle a^{(n+2)} b^{(n+2)}_{0}, b^{(n+1)}_{0} \rangle$$

$$= \langle a^{(n+2)}, b^{(n+2)} b^{(n+1)}_{0} \rangle.$$

It follows that $b_{\alpha}^{(n+2)}b_0^{(n+1)} \xrightarrow{w} b^{(n+2)}b_0^{(n+1)}$ on $A^{(n+1)}$. The proof of the converse is similar of preceding proof.

Corollary 2.7. Assume that B is a Banach A – bimodule. Then $Z_{A^{(n+2)}}^{\ell}(B^{(n+2)}) = B^{(n+2)}$ if and only if the mapping $T : b^{(n+2)} \rightarrow b^{(n+2)}b_0^{(n+1)}$ form $B^{(n+2)}$ into $A^{(n+1)}$ is weak^{*} – to – weak continuous for every $b_0^{(n+1)} \in B^{(n+1)}$.

Corollary 2.8. Let A be a Banach algebra. Assume that $a' \in A^*$ and $T_{a'}$ is the linear operator from A into A^* defined by $T_{a'}a = a'a$. Then, $a' \in wap(A)$ if and only if the adjoint of $T_{a'}$ is weak^{*} - to - weak continuous. So A is Arens regular if and only if the adjoint of the mapping $T_{a'}a = a'a$ is weak^{*} - to - weak continuous for every $a' \in A^*$.

Definition. Let *B* be a left Banach A - bimodule. We say that $a^{(n)} \in A^{(n)}$ has $Left-weak^*-weak$ property $(=Lw^*w-$ property) with respect to $B^{(n)}$, if for every $(b_{\alpha}^{(n+1)})_{\alpha} \subseteq B^{(n+1)}, a^{(n)}b_{\alpha}^{(n+1)} \xrightarrow{w^*} 0$ implies $a^{(n)}b_{\alpha}^{(n+1)} \xrightarrow{w} 0$. If every $a^{(n)} \in A$ has Lw^*w- property with respect to $B^{(n)}$, then we say that $A^{(n)}$ has Lw^*w- property with respect to $B^{(n)}$. The definition of the $Right - weak^* - weak$ property $(=Rw^*w-$ property) is the same.

We say that $a^{(n)} \in A^{(n)}$ has $weak^* - weak$ property (= w^*w - property) with respect to $B^{(n)}$ if it has Lw^*w - property and Rw^*w - property with respect to $B^{(n)}$.

If $a^{(n)} \in A^{(n)}$ has Lw^*w property with respect to itself, then we say that $a^{(n)} \in A^{(n)}$ has Lw^*w property.

Example.

- (1) If B is Banach A-bimodule and reflexive, then A has w^*w -property with respect to B.
- (2) $L^{1}(G)$, M(G) and A(G) have $w^{*}w$ -property when G is finite.
- (3) Let G be locally compact group. $L^{1}(G)$ [resp. M(G)] has $w^{*}w$ -property [resp. $Lw^{*}w$ property] with respect to $L^{p}(G)$ whenever p > 1.
- (4) Suppose that B is a left Banach A module and e is left unit element of A such that eb = b for all $b \in B$. If e has Lw^*w -property, then B is reflexive.
- (5) If S is a compact semigroup, then $C^+(S) = \{f \in C(S) : f > 0\}$ has w^*w -property.

Theorem 2.9. Let B be a left Banach A – bimodule and the integer $n \ge 2$ be an even number. Then we have the following assertions.

- $\begin{array}{ll} (1) \ \ If \ A^{(n)} = a_0^{(n-2)} A^{(n)} \ [resp. \ A^{(n)} = A^{(n)} a_0^{(n-2)}] \ for \ some \ a_0^{(n-2)} \in \\ A^{(n-2)} \ and \ a_0^{(n-2)} \ has \ Rw^*w \ property \ [resp. \ Lw^*w \ property] \\ with \ respect \ to \ B^{(n)}, \ then \ Z_{B^{(n)}}(A^{(n)}) = A^{(n)}. \end{array}$
- (2) If $B^{(n)} = a_0^{(n-2)} B^{(n)}$ [resp. $B^{(n)} = B^{(n)} a_0^{(n-2)}$] for some $a_0^{(n-2)} \in A^{(n-2)}$ and $a_0^{(n-2)}$ has Rw^*w property [resp. Lw^*w property] with respect to $B^{(n)}$, then $Z_{A^{(n)}}(B^{(n)}) = B^{(n)}$.

Proof.

(1) Suppose that $A^{(n)} = a_0^{(n-2)} A^{(n)}$ for some $a_0^{(n-2)} \in A$ and $a_0^{(n-2)}$ has Rw^*w - property. Let $(b_{\alpha}^{(n)})_{\alpha} \subseteq B^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^*} b^{(n)}$. Then for every $a^{(n-2)} \in A^{(n-2)}$ and $b^{(n-1)} \in B^{(n-1)}$, we have

$$\langle b_{\alpha}^{(n)} b^{(n-1)}, a^{(n-2)} \rangle = \langle b_{\alpha}^{(n)}, b^{(n-1)} a^{(n-2)} \rangle \to \langle b^{(n)}, b^{(n-1)} a^{(n-2)} \rangle$$
$$= \langle b^{(n)} b^{(n-1)}, a^{(n-2)} \rangle.$$

It follows that $b_{\alpha}^{(n)}b^{(n-1)} \xrightarrow{w^*} b^{(n)}b^{(n-1)}$. Also it is clear that $(b_{\alpha}^{(n)}b^{(n-1)})a_0^{(n-2)} \xrightarrow{w^*} (b^{(n)}b^{(n-1)})a_0^{(n-2)}$. Since $a_0^{(n-2)}$ has Rw^*w -property, $(b_{\alpha}^{(n)}b^{(n-1)})a_0^{(n-2)} \xrightarrow{w} (b^{(n)}b^{(n-1)})a_0^{(n-2)}$. Now, let $a^{(n)} \in A^{(n)}$. Since $A^{(n)} = a_0^{(n-2)}A^{(n)}$, there is $x^{(n)} \in A^{(n)}$ such that

$$\begin{aligned} a^{(n)} &= a_0^{(n-2)} x^{(n)}. \text{ Thus we have} \\ \langle a^{(n)} b^{(n)}_{\alpha}, b^{(n-1)} \rangle &= \langle a^{(n)}, b^{(n)}_{\alpha} b^{(n-1)} \rangle = \langle a^{(n-2)}_0 x^{(n)}, b^{(n)}_{\alpha} b^{(n-1)} \rangle \\ &= \langle x^{(n)}, (b^{(n)}_{\alpha} b^{(n-1)}) a^{(n-2)}_0 \rangle \to \langle x^{(n)}, (b^{(n)} b^{(n-1)}) a^{(n-2)}_0 \rangle \\ &= \langle a^{(n)} b, b^{(n-1)} \rangle. \end{aligned}$$

It follows that $a^{(n)} \in Z_{A^{(n)}}(B^{(n)})$.

Proof of the next part is similar to preceding proof. (2) Let $B^{(n)} = a_0^{(n-2)} B^{(n)}$ for some $a_0^{(n-2)} \in A$ and $a_0^{(n-2)}$ has Rw^*w - property with respect to $B^{(n)}$. Assume that $(a^{(n)}_{\alpha})_{\alpha} \subseteq$ $A^{(n)}$ such that $a^{(n)}_{\alpha} \xrightarrow{w^*} a^{(n)}$. Then for every $b^{(n-1)} \in B^{(n-1)}$, we have

$$\begin{split} \langle a_{\alpha}^{(n)} b^{(n-1)}, b^{(n-2)} \rangle &= \langle a_{\alpha}^{(n)}, b^{(n-1)} b^{(n-2)} \rangle \to \langle a^{(n)}, b^{(n-1)} b^{(n-2)} \rangle \\ &= \langle a^{(n)} b^{(n-1)}, b^{(n-2)} \rangle \end{split}$$

We conclude that $a_{\alpha}^{(n)}b^{(n-1)} \xrightarrow{w^*} a^{(n)}b^{(n-1)}$. It is clear that

$$(a_{\alpha}^{(n)}b^{(n-1)})a_{0}^{(n-2)} \xrightarrow{w^{*}} (a^{(n)}b^{(n-1)})a_{0}^{(n-2)}.$$

Since $a_0^{(n-2)}$ has Rw^*w – property,

 $(a_{0}^{(n)}b^{(n-1)})a_{0}^{(n-2)} \xrightarrow{w} (a^{(n)}b^{(n-1)})a_{0}^{(n-2)}$

Suppose that $b^{(n)} \in B^{(n)}$. Since $B^{(n)} = a_0^{(n-2)}B^{(n)}$, there is $y^{(n)} \in B^{(n)}$ such that $b^{(n)} = a_0^{(n-2)} y^{(n)}$. Consequently, we have $\langle b^{(n)}a^{(n)}_{\alpha}, b^{(n-1)} \rangle = \langle b^{(n)}, a^{(n)}_{\alpha}b^{(n-1)} \rangle = \langle a^{(n-2)}_{0}y^{(n)}, a^{(n)}_{\alpha}b^{(n-1)} \rangle$ $= \langle y^{(n)}, (a^{(n)}_{\alpha} b^{(n-1)}) a^{(n-2)}_{0} \rangle \to \langle y^{(n)}, (a^{(n)} b^{(n-1)}) a^{(n-2)}_{0} \rangle$ $= \langle a_{0}^{(n-2)} y^{(n)}, (a^{(n)} b^{(n-1)}) \rangle = \langle b^{(n)} a^{(n)}, b^{(n-1)} \rangle.$

Thus $b^{(n)}a^{(n)}_{\alpha} \xrightarrow{w} b^{(n)}a^{(n)}$. It follows that $b^{(n)} \in Z_{A^{(n)}}(B^{(n)})$. The proof of the next part similar to the preceding proof.

Example. Let G be a locally compact group. Since M(G) is a Banach $L^{1}(G)$ -bimodule and the unit element of $M(G)^{(n)}$ has not $Lw^{*}w$ property or Rw^*w property, by Theorem 2.9, $Z_{L^1(G)^{(n)}}(M(G)^{(n)}) \neq$ $M(G)^{(n)}$.

ii) If G is finite, then by Theorem 2.9, we have $Z_{M(G)^{(n)}}(L^1(G)^{(n)}) =$

K. Haghnejad Azar and A. Riazi

 $L^{1}(G)^{(n)}$ and $Z_{L^{1}(G)^{(n)}}(M(G)^{(n)}) = M(G)^{(n)}$.

Acknowledgments

We would like to thank the referee for his/her careful reading of our paper and many valuable suggestions.

References

- R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
- [2] N. Arikan, A simple condition ensuring the Arens regularity of bilinear mappings, Proc. Amer. Math. Soc. 84 (4) (1982), 525-532.
- [3] J. Baker, A.T. Lau, J.S. Pym Module homomorphism and topological centers associated with weakly sequentially compact Banach algebras, Journal of Functional Analysis. 158 (1998), 186-208.
- [4] F. F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, Berlin 1973.
- [5] H. G. Dales, A. Rodrigues-Palacios, M.V. Velasco, The second transpose of a derivation, J. London. Math. Soc. 2 64 (2001) 707-721.
- [6] H. G. Dales, Banach algebra and automatic continuity, Oxford 2000.
- [7] N. Dunford, J. T. Schwartz, Linear operators.I, Wiley, New york 1958.
- [8] M. Eshaghi Gordji, M. Filali, Arens regularity of module actions, Studia Math. 181 3 (2007), 237-254.
- [9] M. Eshaghi Gordji, M. Filali, Weak amenability of the second dual of a Banach algebra, Studia Math. 182 3 (2007), 205-213.
- [10] K. Haghnejad Azar, A. Riazi, Arens regularity of bilinear forms and unital Banach module space, arXiv. math (Submitted).
- [11] E. Hewitt, K. A. Ross, Abstract harmonic analysis, Springer, Berlin, Vol I 1963.
- [12] E. Hewitt, K. A. Ross, Abstract harmonic analysis, Springer, Berlin, Vol II 1970.
- [13] A. T. Lau, V. Losert, On the second Conjugate Algebra of locally compact groups, J. London Math. Soc. 37 (2)(1988), 464-480.
- [14] A. T. Lau, A. Ulger, Topological center of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212.
- [15] S. Mohamadzadih, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bulletin of the Australian Mathematical Society 77 (2008), 465-476.
- [16] M. Neufang, Solution to a conjecture by Hofmeier-Wittstock, Journal of Functional Analysis. 217 (2004), 171-180.
- [17] M. Neufang, On a conjecture by Ghahramani-Lau and related problem concerning topological center, Journal of Functional Analysis. 224 (2005), 217-229.

- [18] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math Soc. 15 (1965), 84-104.
- [19] A. Ülger, Arens regularity of the algebra $A \hat{\otimes} B$, Trans. Amer. Math. Soc. **305** (2) (1988) 623-639.
- [20] A. Ülger, Arens regularity sometimes implies the RNP, Pacific Journal of Math. 143 (1990), 377-399.
- [21] A. Ülger, Some stability properties of Arens regular bilinear operators, Proc. Amer. Math. Soc. (1991) 34, 443-454.
- [22] A. Ülger, Arens regularity of weakly sequentially compact Banach algebras, Proc. Amer. Math. Soc. 127 (11) (1999), 3221-3227.
- [23] P. K. Wong, The second conjugate algebras of Banach algebras, J. Math. Sci. 17 (1) (1994), 15-18.
- [24] N. J. Young The irregularity of multiplication in group algebra, Quart. J. Math. Oxford 24 (2) (1973), 59-62.
- [25] Y. Zhang, Weak amenability of module extentions of Banach algebras Trans. Amer. Math. Soc. 354 (10) (2002), 4131-4151.

K. Haghnejad Azar

Department of Mathematics, Amirkabir University of Technology, P.O.Box 15914, Tehran, Iran.

Email: haghnejad@aut.ac.ir

A. Riazi

Department of Mathematics, Amirkabir University of Technology, P.O.Box 15914, Tehran, Iran.

Email: riazi@aut.ac.ir