TOPOLOGICAL CENTERS OF THE $N-T H$ DUAL OF MODULE ACTIONS

KAZEM HAGHNEJAD AZAR AND ABDOLHAMID RIAZI

Communicated by

Abstract

In this paper, we will study the topological centers of $n-t h$ dual of Banach A-module and we extend some propositions from Lau and Ülger into $n-t h$ dual of Banach A-modules where $n \geq 0$ is even number. Let B be a Banach A-bimodule. By using some new conditions, we show that $Z_{A^{(n)}}^{\ell}\left(B^{(n)}\right)=B^{(n)}$ and $Z^{\ell}{ }_{B^{(n)}}\left(A^{(n)}\right)=A^{(n)}$. We also have some conclusions in group algebras.

1. Introduction

Throughout this paper, A is a Banach algebra and $A^{*}, A^{* *}$, respectively, are the first and second dual of A. Recall that a left approximate identity ($=L A I$) [resp. right approximate identity $(=R A I)]$ in Banach algebra A is a net $\left(e_{\alpha}\right)_{\alpha \in I}$ in A such that $e_{\alpha} a \longrightarrow a\left[\right.$ resp. $\left.a e_{\alpha} \longrightarrow a\right]$. We say that a net $\left(e_{\alpha}\right)_{\alpha \in I} \subseteq A$ is a approximate identity $(=A I)$ for A if it is LAI and $R A I$ for A. If $\left(e_{\alpha}\right)_{\alpha \in I}$ in A is bounded and $A I$ for A, then we say that $\left(e_{\alpha}\right)_{\alpha \in I}$ is a bounded approximate identity $(=B A I)$ for A. For $a \in$ A and $a^{\prime} \in A^{*}$, we denote by $a^{\prime} a$ and $a a^{\prime}$ respectively, the functionals on A^{*} defined by $\left\langle a^{\prime} a, b\right\rangle=\left\langle a^{\prime}, a b\right\rangle=a^{\prime}(a b)$ and $\left\langle a a^{\prime}, b\right\rangle=\left\langle a^{\prime}, b a\right\rangle=a^{\prime}(b a)$ for all $b \in A$. The Banach algebra A is embedded in its second dual via the identification $\left\langle a, a^{\prime}\right\rangle-\left\langle a^{\prime}, a\right\rangle$ for every $a \in A$ and $a^{\prime} \in A^{*}$. We denote

[^0]the set $\left\{a^{\prime} a: a \in A\right.$ and $\left.a^{\prime} \in A^{*}\right\}$ and $\left\{a a^{\prime}: a \in A\right.$ and $\left.a^{\prime} \in A^{*}\right\}$ by $A^{*} A$ and $A A^{*}$, respectively, clearly these two sets are subsets of A^{*}.
Let A have a $B A I$. If the equality $A^{*} A=A^{*},\left(A A^{*}=A^{*}\right)$ holds, then we say that A^{*} factors on the left (right). If both equalities $A^{*} A=$ $A A^{*}=A^{*}$ hold, then we say that A^{*} factors on both sides.
The extension of bilinear maps on normed space and the concept of regularity of bilinear maps were studied by $[1,2,3,6,8,14]$. We start by recalling these definitions as follows.
Let X, Y, Z be normed spaces and $m: X \times Y \rightarrow Z$ be a bounded bilinear mapping. Arens in [1] offers two natural extensions $m^{* * *}$ and $m^{t * * * t}$ of m from $X^{* *} \times Y^{* *}$ into $Z^{* *}$ as following

1. $m^{*}: Z^{*} \times X \rightarrow Y^{*}$, given by $\left\langle m^{*}\left(z^{\prime}, x\right), y\right\rangle=\left\langle z^{\prime}, m(x, y)\right\rangle$ where $x \in X, y \in Y, z^{\prime} \in Z^{*}$,
2. $m^{* *}: Y^{* *} \times Z^{*} \rightarrow X^{*}$, given by $\left\langle m^{* *}\left(y^{\prime \prime}, z^{\prime}\right), x\right\rangle=\left\langle y^{\prime \prime}, m^{*}\left(z^{\prime}, x\right)\right\rangle$ where $x \in X, y^{\prime \prime} \in Y^{* *}, z^{\prime} \in Z^{*}$,
3. $m^{* * *}: X^{* *} \times Y^{* *} \rightarrow Z^{* *}$, given by $\left\langle m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right), z^{\prime}\right\rangle$
$=\left\langle x^{\prime \prime}, m^{* *}\left(y^{\prime \prime}, z^{\prime}\right)\right\rangle$ where $x^{\prime \prime} \in X^{* *}, y^{\prime \prime} \in Y^{* *}, z^{\prime} \in Z^{*}$.
The mapping $m^{* * *}$ is the unique extension of m such that
$x^{\prime \prime} \rightarrow m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ from $X^{* *}$ into $Z^{* *}$ is weak* - to - weak ${ }^{*}$ continuous for every $y^{\prime \prime} \in Y^{* *}$, but the mapping $y^{\prime \prime} \rightarrow m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is not in general weak ${ }^{*}$-to-weak ${ }^{*}$ continuous from $Y^{* *}$ into $Z^{* *}$ unless $x^{\prime \prime} \in X$. Hence the first topological center of m may be defined as following

$$
Z_{1}(m)=\left\{x^{\prime \prime} \in X^{* *}: y^{\prime \prime} \rightarrow m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right) \text { is weak } k^{*}-\text { to }- \text { weak }^{*}\right.
$$

continuous $\}$.
Let now $m^{t}: Y \times X \rightarrow Z$ be the transpose of m defined by $m^{t}(y, x)=$ $m(x, y)$ for every $x \in X$ and $y \in Y$. Then m^{t} is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to $m^{t * * *}: Y^{* *} \times X^{* *} \rightarrow Z^{* *}$. The mapping $m^{t * * * t}: X^{* *} \times Y^{* *} \rightarrow Z^{* *}$ in general is not equal to $m^{* * *}$, see [1], if $m^{* * *}=m^{t * * * t}$, then m is called Arens regular. The mapping $y^{\prime \prime} \rightarrow m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is weak $k^{*}-t o-w e a k^{*}$ continuous for every $y^{\prime \prime} \in Y^{* *}$, but the mapping $x^{\prime \prime} \rightarrow m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ from $X^{* *}$ into $Z^{* *}$ is not in general weak k^{*} to - weak* continuous for every $y^{\prime \prime} \in Y^{* *}$. So we define the second topological center of m as

$$
Z_{2}(m)=\left\{y^{\prime \prime} \in Y^{* *}: x^{\prime \prime} \rightarrow m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right) \text { is weak } k^{*}-t o-\text { weak }^{*}\right.
$$

continuous $\}$.

It is clear that m is Arens regular if and only if $Z_{1}(m)=X^{* *}$ or $Z_{2}(m)=$ $Y^{* *}$. Arens regularity of m is equivalent to the following

$$
\lim _{i} \lim _{j}\left\langle z^{\prime}, m\left(x_{i}, y_{j}\right)\right\rangle=\lim _{j} \lim _{i}\left\langle z^{\prime}, m\left(x_{i}, y_{j}\right)\right\rangle,
$$

whenever both limits exist for all bounded sequences $\left(x_{i}\right)_{i} \subseteq X,\left(y_{i}\right)_{i} \subseteq$ Y and $z^{\prime} \in Z^{*}$, see [18].
The mapping m is left strongly Arens irregular if $Z_{1}(m)=X$ and m is right strongly Arens irregular if $Z_{2}(m)=Y$.
Let now B be a Banach A-bimodule, and let

$$
\pi_{\ell}: A \times B \rightarrow B \text { and } \pi_{r}: B \times A \rightarrow B .
$$

be the left and right module actions of A on B, respectively. Then $B^{* *}$ is a Banach $A^{* *}$ - bimodule with the following module actions where $A^{* *}$ is equipped with the left Arens product

$$
\pi_{\ell}^{* * *}: A^{* *} \times B^{* *} \rightarrow B^{* *} \text { and } \pi_{r}^{* * *}: B^{* *} \times A^{* *} \rightarrow B^{* *} .
$$

Similarly, $B^{* *}$ is a Banach $A^{* *}$ - bimodule with the following module actions where $A^{* *}$ is equipped with the right Arens product

$$
\pi_{\ell}^{t * * * t}: A^{* *} \times B^{* *} \rightarrow B^{* *} \text { and } \pi_{r}^{t * * * t}: B^{* *} \times A^{* *} \rightarrow B^{* *} .
$$

We may therefore define the topological centers of the left and right module actions of A on B as follows:

$$
\begin{gathered}
Z_{B^{* *}}\left(A^{* *}\right)=Z\left(\pi_{\ell}\right)=\left\{a^{\prime \prime} \in A^{* *}: \text { the map } b^{\prime \prime} \rightarrow \pi_{\ell}^{* * *}\left(a^{\prime \prime}, b^{\prime \prime}\right):\right. \\
\left.B^{* *} \rightarrow B^{* *} \text { is weak }- \text { to }- \text { weak } k^{*} \text { continuous }\right\} \\
Z_{B^{* *}}^{t}\left(A^{* *}\right)=Z\left(\pi_{r}^{t}\right)=\left\{a^{\prime \prime} \in A^{* *}: \text { the map } b^{\prime \prime} \rightarrow \pi_{r}^{t * *}\left(a^{\prime \prime}, b^{\prime \prime}\right):\right. \\
\left.B^{* *} \rightarrow B^{* *} \text { is weak}- \text { to }- \text { weak } k^{*} \text { continuous }\right\} \\
Z_{A^{* *}}\left(B^{* *}\right)=Z\left(\pi_{r}\right)=\left\{b^{\prime \prime} \in B^{* *}: \text { the map } a^{\prime \prime} \rightarrow \pi_{r}^{* *}\left(b^{\prime \prime}, a^{\prime \prime}\right):\right. \\
\left.A^{* *} \rightarrow B^{* *} \text { is weak}- \text { to }- \text { weak } k^{*} \text { continuous }\right\} \\
Z_{A^{* *}}^{t}\left(B^{* *}\right)=Z\left(\pi_{\ell}^{t}\right)=\left\{b^{\prime \prime} \in B^{* *}: \text { the map } a^{\prime \prime} \rightarrow \pi_{\ell}^{t * * *}\left(b^{\prime \prime}, a^{\prime \prime}\right):\right. \\
\left.A^{* *} \rightarrow B^{* *} \text { is weak }- \text { to }- \text { weak } k^{*} \text { continuous }\right\} .
\end{gathered}
$$

We note also that if B is a left(resp. right) Banach A - module and $\pi_{\ell}: A \times B \rightarrow B$ (resp. $\pi_{r}: B \times A \rightarrow B$) is left (resp. right) module action of A on B, then B^{*} is a right (resp. left) Banach A - module.
We write $a b=\pi_{\ell}(a, b), b a=\pi_{r}(b, a), \pi_{\ell}\left(a_{1} a_{2}, b\right)=\pi_{\ell}\left(a_{1}, a_{2} b\right)$,
$\pi_{r}\left(b, a_{1} a_{2}\right)=\pi_{r}\left(b a_{1}, a_{2}\right), \pi_{\ell}^{*}\left(a_{1} b^{\prime}, a_{2}\right)=\pi_{\ell}^{*}\left(b^{\prime}, a_{2} a_{1}\right)$,
$\pi_{r}^{*}\left(b^{\prime} a, b\right)=\pi_{r}^{*}\left(b^{\prime}, a b\right)$, for all $a_{1}, a_{2}, a \in A, b \in B$ and $b^{\prime} \in B^{*}$ when there
is no confusion.
Regarding A as a Banach A - bimodule, the operation $\pi: A \times A \rightarrow$ A extends to $\pi^{* * *}$ and $\pi^{t * * * t}$ defined on $A^{* *} \times A^{* *}$. These extensions are known, respectively, as the first(left) and the second (right) Arens products, and with each of them, the second dual space $A^{* *}$ becomes a Banach algebra. In this situation, we shall also simplify our notations. So the first (left) Arens product of $a^{\prime \prime}, b^{\prime \prime} \in A^{* *}$ shall be simply indicated by $a^{\prime \prime} b^{\prime \prime}$ and defined by the three steps:

$$
\begin{aligned}
\left\langle a^{\prime} a, b\right\rangle & =\left\langle a^{\prime}, a b\right\rangle \\
\left\langle a^{\prime \prime} a^{\prime}, a\right\rangle & =\left\langle a^{\prime \prime}, a^{\prime} a\right\rangle \\
\left\langle a^{\prime \prime} b^{\prime \prime}, a^{\prime}\right\rangle & =\left\langle a^{\prime \prime}, b^{\prime \prime} a^{\prime}\right\rangle
\end{aligned}
$$

for every $a, b \in A$ and $a^{\prime} \in A^{*}$. Similarly, the second (right) Arens product of $a^{\prime \prime}, b^{\prime \prime} \in A^{* *}$ shall be indicated by $a^{\prime \prime} o b^{\prime \prime}$ and defined by :

$$
\begin{aligned}
\left\langle a o a^{\prime}, b\right\rangle & =\left\langle a^{\prime}, b a\right\rangle \\
\left\langle a^{\prime} o a^{\prime \prime}, a\right\rangle & =\left\langle a^{\prime \prime}, a o a^{\prime}\right\rangle \\
\left\langle a^{\prime \prime} o b^{\prime \prime}, a^{\prime}\right\rangle & =\left\langle b^{\prime \prime}, a^{\prime} o b^{\prime \prime}\right\rangle
\end{aligned}
$$

for all $a, b \in A$ and $a^{\prime} \in A^{*}$.
The regularity of a normed algebra A is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Let $a^{\prime \prime}$ and $b^{\prime \prime}$ be elements of $A^{* *}$, the second dual of A. By Goldstine's Theorem [4, P.424-425], there are nets $\left(a_{\alpha}\right)_{\alpha}$ and $\left(b_{\beta}\right)_{\beta}$ in A such that $a^{\prime \prime}=w e a k^{*}-\lim _{\alpha} a_{\alpha}$ and $b^{\prime \prime}=w e a k^{*}-\lim _{\beta} b_{\beta}$. So it is easy to see that for all $a^{\prime} \in A^{*}$,

$$
\lim _{\alpha} \lim _{\beta}\left\langle a^{\prime}, \pi\left(a_{\alpha}, b_{\beta}\right)\right\rangle=\left\langle a^{\prime \prime} b^{\prime \prime}, a^{\prime}\right\rangle
$$

and

$$
\lim _{\beta} \lim _{\alpha}\left\langle a^{\prime}, \pi\left(a_{\alpha}, b_{\beta}\right)\right\rangle=\left\langle a^{\prime \prime} o b^{\prime \prime}, a^{\prime}\right\rangle
$$

where $a^{\prime \prime} b^{\prime \prime}$ and $a^{\prime \prime} o b^{\prime \prime}$ are the first and second Arens products of $A^{* *}$, respectively, see [14, 18].
We find the usual first and second topological center of $A^{* *}$, which are

$$
\begin{gathered}
Z_{A^{* *}}\left(A^{* *}\right)=Z(\pi)=\left\{a^{\prime \prime} \in A^{* *}: b^{\prime \prime} \rightarrow a^{\prime \prime} b^{\prime \prime} \text { is weak }{ }^{*}-\text { to }- \text { weak }^{*}\right. \\
\text { continuous }\} \\
Z_{A^{* *}}^{t}\left(A^{* *}\right)=Z\left(\pi^{t}\right)=\left\{a^{\prime \prime} \in A^{* *}: a^{\prime \prime} \rightarrow a^{\prime \prime} \text { ob } b^{\prime \prime} \text { is weak } k^{*} \text { to }- \text { weak }^{*}\right. \\
\text { continuous }\} .
\end{gathered}
$$

An element $e^{\prime \prime}$ of $A^{* *}$ is said to be a mixed unit if $e^{\prime \prime}$ is a right unit for the first Arens multiplication and a left unit for the second Arens multiplication. That is, $e^{\prime \prime}$ is a mixed unit if and only if, for each $a^{\prime \prime} \in A^{* *}$, $a^{\prime \prime} e^{\prime \prime}=e^{\prime \prime} o a^{\prime \prime}=a^{\prime \prime}$. By [4, p.146], an element $e^{\prime \prime}$ of $A^{* *}$ is mixed unit if and only if it is a weak* cluster point of some $\operatorname{BAI}\left(e_{\alpha}\right)_{\alpha \in I}$ in A.
A functional a^{\prime} in A^{*} is said to be wap (weakly almost periodic) on A if the mapping $a \rightarrow a^{\prime} a$ from A into A^{*} is weakly compact. Pym in [18] showed that this definition is equivalent to the following condition For any two net $\left(a_{\alpha}\right)_{\alpha}$ and $\left(b_{\beta}\right)_{\beta}$ in $\{a \in A:\|a\| \leq 1\}$, we have

$$
\lim _{\alpha} \lim _{\beta}\left\langle a^{\prime}, a_{\alpha} b_{\beta}\right\rangle=\lim _{\beta} \lim _{\alpha}\left\langle a^{\prime}, a_{\alpha} b_{\beta}\right\rangle,
$$

whenever both iterated limits exist. The collection of all wap functionals on A is denoted by $\operatorname{wap}(A)$. Also we have $a^{\prime} \in \operatorname{wap}(A)$ if and only if $\left\langle a^{\prime \prime} b^{\prime \prime}, a^{\prime}\right\rangle=\left\langle a^{\prime \prime} o b^{\prime \prime}, a^{\prime}\right\rangle$ for every $a^{\prime \prime}, b^{\prime \prime} \in A^{* *}$.
This paper is organized as follows:
a) Let B be a Banach A - bimodule and $\phi \in U_{n, r}$ for even number $n \geq 0$ and $0 \leq r \leq \frac{n}{2}$ whenever $\left.U_{n, r}=A^{(n-r)} A^{(r)}\right)^{(r)}$ or $U_{n, r}=$ $\left.A^{(n-r)} A^{(r-1)}\right)^{(r)}$. Then $\phi \in Z^{\ell}{ }_{B^{(n)}}\left(U_{n, r}\right)$ if and only if $b^{(n-1)} \phi \in B^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.
b) Let B be a Banach A-bimodule. Then we have the following assertions.
(1) $b^{(n)} \in Z^{\ell}{ }_{A^{(n)}}\left(B^{(n)}\right)$ if and only if $b^{(n-1)} b^{(n)} \in A^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.
(2) If $\phi \in Z^{\ell}{ }_{B^{(n)}}\left(U_{n, r}\right)$, then $a^{(n-2)} \phi \in Z^{\ell}{ }_{B^{(n)}}\left(A^{(n)}\right)$ for all $a^{(n-2)} \in$ $A^{(n-2)}$.
c) Let B be a Banach space such that $B^{(n)}$ is weakly compact. Then for Banach A-bimodule B, we have the following assertions.
(1) Suppose that $\left(e_{\alpha}^{(n)}\right)_{\alpha} \subseteq A^{(n)}$ is a BLAI for $B^{(n)}$ such that

$$
e_{\alpha}^{(n)} B^{(n+2)} \subseteq B^{(n)},
$$

for every α. Then B is reflexive.
(2) Suppose that $\left(e_{\alpha}^{(n)}\right)_{\alpha} \subseteq A^{(n)}$ is a BRAI for $B^{(n)}$ and

$$
Z_{e^{(n+2)}}^{\ell}\left(B^{(n+2)}\right)=B^{(n+2)}
$$

where $e_{\alpha}^{(n)} \xrightarrow{w^{*}} e^{(n+2)}$ on $A^{(n)}$. If $B^{(n+2)} e_{\alpha}^{(n)} \subseteq B^{(n)}$ for every α, then $Z_{A^{(n+2)}}^{\ell}\left(B^{(n+2)}\right)=B^{(n+2)}$.
d) Assume that B is a Banach A-bimodule. Then we have the following assertions.
(1) $B^{(n+1)} A^{(n)} \subseteq \operatorname{wap}_{\ell}\left(B^{(n)}\right)$ if and only if

$$
A^{(n)} A^{(n+2)} \subseteq Z_{B^{(n+2)}}^{\ell}\left(A^{(n+2)}\right)
$$

(2) If $A^{(n)} A^{(n+2)} \subseteq A^{(n)} Z^{\ell}{ }_{B^{(n+2)}}\left(A^{(n+2)}\right)$, then

$$
A^{(n)} A^{(n+2)} \subseteq Z_{B^{(n+2)}}^{\ell}\left(A^{(n+2)}\right)
$$

e) Let B be a left Banach A - bimodule and $n \geq 0$ be a even. Suppose that $b_{0}^{(n+1)} \in B^{(n+1)}$. Then $b_{0}^{(n+1)} \in \operatorname{wap}_{\ell}\left(B^{(n)}\right)$ if and only if the mapping $T: b^{(n+2)} \rightarrow b^{(n+2)} b_{0}^{(n+1)}$ form $B^{(n+2)}$ into $A^{(n+1)}$ is weak* to - weak continuous.
f) Let B be a left Banach A-bimodule. Then for $n \geq 2$, we have the following assertions.
(1) If $A^{(n)}=a_{0}^{(n-2)} A^{(n)}\left[\right.$ resp. $\left.A^{(n)}=A^{(n)} a_{0}^{(n-2)}\right]$ for some $a_{0}^{(n-2)} \in$ $A^{(n-2)}$ and $a_{0}^{(n-2)}$ has $R w^{*} w-$ property [resp. $L w^{*} w-$ property] with respect to $B^{(n)}$, then $Z_{B^{(n)}}\left(A^{(n)}\right)=A^{(n)}$.
(2) If $B^{(n)}=a_{0}^{(n-2)} B^{(n)}\left[\right.$ resp. $\left.B^{(n)}=B^{(n)} a_{0}^{(n-2)}\right]$ for some $a_{0}^{(n-2)} \in$ $A^{(n-2)}$ and $a_{0}^{(n-2)}$ has $R w^{*} w-$ property [resp. $L w^{*} w-$ property] with respect to $B^{(n)}$, then $Z_{A^{(n)}}\left(B^{(n)}\right)=B^{(n)}$.

2. Topological centers of module actions

Suppose that A is a Banach algebra and B is a Banach A - bimodule. According to [5, pp. 27 and 28], $B^{* *}$ is a Banach $A^{* *}$ - bimodule, where $A^{* *}$ is equipped with the first Arens product. So we recalled the topological centers of module actions of $A^{* *}$ on $B^{* *}$ as in the following.

$$
\begin{aligned}
Z_{A^{* *}}^{\ell}\left(B^{* *}\right)= & \left\{b^{\prime \prime} \in B^{* *}: \text { the map } a^{\prime \prime} \rightarrow b^{\prime \prime} a^{\prime \prime}: A^{* *} \rightarrow B^{* *}\right. \\
& \text { is weak } \left.- \text { to }- \text { weak } k^{*} \text { continuous }\right\} \\
Z_{B^{* *}}^{\ell}\left(A^{* *}\right)= & \left\{a^{\prime \prime} \in A^{* *}: \text { the map } b^{\prime \prime} \rightarrow a^{\prime \prime} b^{\prime \prime}: B^{* *} \rightarrow B^{* *}\right. \\
& \text { is weak }- \text { to }- \text { weak } \text { continuous }\} .
\end{aligned}
$$

Let $A^{(n)}$ and $B^{(n)}$ be $n-t h d u a l$ of A and B, respectively. By [25, page 4132-4134], if $n \geq 0$ is an even number, then $B^{(n)}$ is a Banach $A^{(n)}$ - bimodule. Then for $n \geq 2$, we define $B^{(n)} B^{(n-1)}$ as a subspace of $A^{(n-1)}$, that is, for all $b^{(n)} \in B^{(n)}, b^{(n-1)} \in B^{(n-1)}$ and $a^{(n-2)} \in A^{(n-2)}$ we define

$$
\left\langle b^{(n)} b^{(n-1)}, a^{(n-2)}\right\rangle=\left\langle b^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle .
$$

If n is odd number, we define $B^{(n)} B^{(n-1)}$ as a subspace of $A^{(n)}$, that is, for all $b^{(n)} \in B^{(n)}, b^{(n-1)} \in B^{(n-1)}$ and $a^{(n-1)} \in A^{(n-1)}$, we define

$$
<b^{(n)} b^{(n-1)}, a^{(n-1)}>=<b^{(n)}, b^{(n-1)} a^{(n-1)}>.
$$

If $n=0$, we take $A^{(0)}=A$ and $B^{(0)}=B$.
We also define the topological centers of module actions of $A^{(n)}$ on $B^{(n)}$ as follows

$$
\begin{aligned}
Z_{A^{(n)}}^{\ell}\left(B^{(n)}\right)= & \left\{b^{(n)} \in B^{(n)}: \text { the map } a^{(n)} \rightarrow b^{(n)} a^{(n)}: A^{(n)} \rightarrow B^{(n)}\right. \\
& \text { is weak} \left.k^{*}-\text { to }- \text { weak }^{*} \text { continuous }\right\} \\
Z_{B^{(n)}}^{\ell}\left(A^{(n)}\right)= & \left\{a^{(n)} \in A^{(n)}: \text { the map } b^{(n)} \rightarrow a^{(n)} b^{(n)}: B^{(n)} \rightarrow B^{(n)}\right. \\
& \text { is weak } \left.k^{*}-\text { to }- \text { weak }^{*} \text { continuous }\right\} .
\end{aligned}
$$

Let A be a Banach algebra and let $A^{(n)}$ and $A^{(m)}$ be n-th dual and m - th dual of A, respectively. Suppose that at least one of n or m is an even number. Then we define the set $A^{(n)} A^{(m)}$ as a linear space that generated by the following set

$$
\left\{a^{(n)} a^{(m)}: a^{(n)} \in A^{(n)} \text { and } a^{(m)} \in A^{(m)}\right\} .
$$

Where the production of $a^{(n)} a^{(m)}$ is defined with respect to the first Arens product. If $n \geq m$, then $A^{(n)} A^{(m)}$ is a subspace of $A^{(n)} . A^{(n)} A^{(m)}$ is Banach algebra whenever n and m are even numbers, but if one of them is odd number, then $A^{(n)} A^{(m)}$ is in general not a Banach algebra. Let $n \geq 0$ be an even number and $0 \leq r \leq \frac{n}{2}$. For a Banach algebra A, we define a new Banach algebra $U_{n, r}$ with respect to the first Arens product as following.
If r is an even (resp. odd) number, then we write $U_{n, r}=\left(A^{(n-r)} A^{(r)}\right)^{(r)}$ (resp. $U_{n, r}=\left(A^{(n-r)} A^{(r-1)}\right)^{(r)}$). It is clear that $U_{n, r}$ is a subalgebra of $A^{(n)}$. For example, if we take $n=2$ and $r=1$, then $U_{2,1}=\left(A^{*} A\right)^{*}$ is a subalgebra of $A^{* *}$ with respect to the first Arens product.
Now if B is a Banach A-bimodule, then it is clear that $B^{(n)}$ is a Banach $U_{n, r}$ - bimodule with respect to the first Arens product, for detail
see [25], and so we can define the topological centers of module actions $U_{n, r}$ on $B^{(n)}$ as $Z_{B^{(n)}}^{\ell}\left(U_{n, r}\right)$ and $Z_{U_{n, r}}^{\ell}\left(B^{(n)}\right)$ similarly to the preceding definitions.
In every parts of this paper, $n \geq 0$ is even number.

Theorem 2.1. Let B be a Banach A - bimodule and $\phi \in U_{n, r}$. Then $\phi \in Z^{\ell}{ }_{B^{(n)}}\left(U_{n, r}\right)$ if and only if $b^{(n-1)} \phi \in B^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.

Proof. Let $\phi \in Z^{\ell}{ }_{B^{(n)}}\left(U_{n, r}\right)$. Suppose that $\left(b_{\alpha}^{(n)}\right)_{\alpha} \subseteq B^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)}$ on $B^{(n)}$. Then, for every $b^{(n-1)} \in B^{(n-1)}$, we have

$$
\begin{gathered}
\left\langle b^{(n-1)} \phi, b_{\alpha}^{(n)}\right\rangle=\left\langle b^{(n-1)}, \phi b_{\alpha}^{(n)}\right\rangle=\left\langle\phi b_{\alpha}^{(n)}, b^{(n-1)}\right\rangle \rightarrow\left\langle\phi b^{(n)}, b^{(n-1)}\right\rangle \\
=\left\langle b^{(n-1)} \phi, b^{(n)}\right\rangle .
\end{gathered}
$$

It follows that $b^{(n-1)} \phi \in\left(B^{(n+1)} \text {, weak }\right)^{*}=B^{(n-1)}$.
Conversely, let $b^{(n-1)} \phi \in B^{(n-1)}$ for every $b^{(n-1)} \in B^{(n-1)}$ and suppose that $\left(b_{\alpha}^{(n)}\right)_{\alpha} \subseteq B^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)}$ on $B^{(n)}$. Then

$$
\begin{aligned}
\left\langle\phi b_{\alpha}^{(n)}, b^{(n-1)}\right\rangle= & \left\langle\phi, b_{\alpha}^{(n)} b^{(n-1)}\right\rangle=\left\langle b_{\alpha}^{(n)} b^{(n-1)}, \phi\right\rangle=\left\langle b_{\alpha}^{(n)}, b^{(n-1)} \phi\right\rangle \\
& \rightarrow\left\langle b^{(n)}, b^{(n-1)} \phi\right\rangle=\left\langle\phi b^{(n)}, b^{(n-1)}\right\rangle .
\end{aligned}
$$

It follows that $\phi b_{\alpha}^{(n)} \xrightarrow{w^{*}} \phi b^{(n)}$, and so $\phi \in Z^{\ell}{ }_{B^{(n)}}\left(U_{n, r}\right)$.
In Theorem 2.1, if we take $B=A, n=2$ and $r=1$, we obtain Lemma 3.1 (b) from [14].

Theorem 2.2. Let B be a Banach A-bimodule and $b^{(n)} \in B^{(n)}$. Then we have the following assertions.
(1) $b^{(n)} \in Z^{\ell}{ }_{A^{(n)}}\left(B^{(n)}\right)$ if and only if $b^{(n-1)} b^{(n)} \in A^{(n-1)}$ for all $b^{(n-1)} \in B^{(n-1)}$.
(2) If $\phi \in Z^{\ell}{ }_{B^{(n)}}\left(U_{n, r}\right)$, then $a^{(n-2)} \phi \in Z^{\ell}{ }_{B^{(n)}}\left(A^{(n)}\right)$ for all $a^{(n-2)} \in$ $A^{(n-2)}$.
Proof.
(1) Let $b^{(n)} \in Z^{\ell}{ }_{A^{(n)}}\left(B^{(n)}\right)$. We show that $b^{(n-1)} b^{(n)} \in A^{(n-1)}$ where $b^{(n-1)} \in B^{(n-1)}$. Suppose that $\left(a_{\alpha}^{(n)}\right)_{\alpha} \subseteq A^{(n)}$ and $a_{\alpha}^{(n)} \xrightarrow{w^{*}} a^{(n)}$ on $A^{(n)}$. Then we have

$$
\left\langle b^{(n-1)} b^{(n)}, a_{\alpha}^{(n)}\right\rangle=\left\langle b^{(n-1)}, b^{(n)} a_{\alpha}^{(n)}\right\rangle=\left\langle b^{(n)} a_{\alpha}^{(n)}, b^{(n-1)}\right\rangle
$$

$$
\rightarrow\left\langle b^{(n)} a^{(n)}, b^{(n-1)}\right\rangle=\left\langle b^{(n-1)} b^{(n)}, a^{(n)}\right\rangle
$$

Consequently $b^{(n-1)} b^{(n)} \in\left(A^{(n+1)} \text {, weak }\right)^{*}=A^{(n-1)}$. It follows that
$b^{(n-1)} b^{(n)} \in A^{(n-1)}$.
Conversely, let $b^{(n-1)} b^{(n)} \in A^{(n-1)}$ for each $b^{(n-1)} \in B^{(n-1)}$. Suppose that $\left(a_{\alpha}^{(n)}\right)_{\alpha} \subseteq A^{(n)}$ and $a_{\alpha}^{(n)} \xrightarrow{w^{*}} a^{(n)}$ on $A^{(n)}$. Then we have

$$
\begin{aligned}
& \left\langle b^{(n)} a_{\alpha}^{(n)}, b^{(n-1)}\right\rangle=\left\langle b^{(n)}, a_{\alpha}^{(n)} b^{(n-1)}\right\rangle=\left\langle a_{\alpha}^{(n)} b^{(n-1)}, b^{(n)}\right\rangle \\
= & \left\langle a_{\alpha}^{(n)}, b^{(n-1)} b^{(n)}\right\rangle \rightarrow\left\langle a^{(n)}, b^{(n-1)} b^{(n)}\right\rangle=\left\langle b^{(n)} a^{(n)}, b^{(n-1)}\right\rangle .
\end{aligned}
$$

It follows that $b^{(n)} a_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)} a^{(n)}$, and so $b^{(n)} \in Z^{\ell}{ }_{A^{(n)}}\left(B^{(n)}\right)$.
(2) Let $\phi \in Z^{\ell}{ }_{B^{(n)}}\left(U_{n, r}\right)$ and $a^{(n-2)} \in A^{(n-2)}$. Assume that $\left(b_{\alpha}^{(n)}\right)_{\alpha} \subseteq$ $B^{(n)}$ and $b_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)}$ on $B^{(n)}$. Then for all $b^{(n-1)} \in B^{(n-1)}$, we have

$$
\begin{aligned}
\left\langle\left(a^{(n-2)} \phi\right) b_{\alpha}^{(n)}, b^{(n-1)}\right\rangle & =\left\langle\phi b_{\alpha}^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle \rightarrow\left\langle\phi b^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle \\
& =\left\langle\left(a^{(n-2)} \phi\right) b^{(n)}, b^{(n-1)}\right\rangle .
\end{aligned}
$$

It follows that $\left(a^{(n-2)} \phi\right) b_{\alpha}^{(n)} \xrightarrow{w^{*}}\left(a^{(n-2)} \phi\right) b^{(n)}$, and so $a^{(n-2)} \phi \in$ $Z^{\ell}{ }_{B^{(n)}}\left(A^{(n)}\right)$.

In the preceding theorem, part (1), if we take $B=A$ and $n=2$, we conclude Lemma 3.1 (a) from [14]. In part (2) of this theorem, if we take $B=A, n=2$ and $r=1$, we also obtain Lemma 3.1 (c) from [14].

Definition. Let B be a Banach A - bimodule and suppose that $a^{\prime \prime} \in$ $A^{* *}$. Assume that $\left(a_{\alpha}^{\prime \prime}\right)_{\alpha} \subseteq A^{* *}$ such that $a_{\alpha}^{\prime \prime} \xrightarrow{w^{*}} a^{\prime \prime}$. If for every $b^{\prime \prime} \in B^{* *}$, we have $a_{\alpha}^{\prime \prime} b^{\prime \prime} \xrightarrow{w^{*}} a^{\prime \prime} b^{\prime \prime}$, then we say that $a^{\prime \prime} \rightarrow b^{\prime \prime} a^{\prime \prime}$ is weak $k^{*}-$ to weak* point continuous.
Suppose that B is a Banach A-bimodule. Assume that $a^{\prime \prime} \in A^{* *}$. Then we define the locally topological center of $a^{\prime \prime}$ on $B^{* *}$ as follows

$$
Z_{a^{\prime \prime}}^{\ell}\left(B^{* *}\right)=\left\{b^{\prime \prime} \in B^{* *}: a^{\prime \prime} \rightarrow b^{\prime \prime} a^{\prime \prime} \text { is weak } k^{*}-\text { to }- \text { weak } k^{*}\right. \text { point }
$$

continuous $\}$.

The definition of $Z_{b^{\prime \prime}}^{\ell}\left(A^{* *}\right)$ where $b^{\prime \prime} \in B^{* *}$ are similar. It is clear that

$$
\begin{aligned}
& \bigcap_{a^{\prime \prime} \in A^{* *}} Z_{a^{\prime \prime}}^{\ell}\left(B^{* *}\right)=Z_{A^{* *}}^{\ell}\left(B^{* *}\right), \\
& \bigcap_{b^{\prime \prime} \in B^{* *}} Z_{b^{\prime \prime}}^{\ell}\left(A^{* *}\right)=Z_{B^{* *}}^{\ell}\left(A^{* *}\right) .
\end{aligned}
$$

Let B be a Banach space. Then $K \subseteq B$ is recalled weakly compact, if K is compact with respect to weak topology on B. By [7], we know that K is weakly compact if and only if K is weakly limit point compact.

Theorem 2.3. Assume that B is a Banach A-bimodule such that $B^{(n)}$ is weakly compact. Then we have the following assertions.
(1) Suppose that $\left(e_{\alpha}^{(n)}\right)_{\alpha} \subseteq A^{(n)}$ is a BLAI for $B^{(n)}$ such that

$$
e_{\alpha}^{(n)} B^{(n+2)} \subseteq B^{(n)}
$$

for every α. Then B is reflexive.
(2) Suppose that $\left(e_{\alpha}^{(n)}\right)_{\alpha} \subseteq A^{(n)}$ is a BRAI for $B^{(n)}$ and

$$
Z_{e^{(n+2)}}^{\ell}\left(B^{(n+2)}\right)=B^{(n+2)},
$$

where $e_{\alpha}^{(n)} \xrightarrow{w^{*}} e^{(n+2)}$ on $A^{(n)}$. If $B^{(n+2)} e_{\alpha}^{(n)} \subseteq B^{(n)}$ for every α, then $Z_{A^{(n+2)}}^{\ell}\left(B^{(n+2)}\right)=B^{(n+2)}$.

Proof.

(1) Let $b^{n+2} \in B^{n+2}$. Since $\left(e_{\alpha}^{(n)}\right)_{\alpha}$ is a $B L A I$ for $B^{(n)}$, without loss generality, there is left unit $e^{(n+2)} \in A^{n+2}$ for B^{n+2} such that $e_{\alpha}^{(n)} \xrightarrow{w^{*}} e^{(n+2)}$ on $A^{(n+2)}$, see [10]. Then we have $e_{\alpha}^{(n)} b^{(n+2)} \xrightarrow{w^{*}}$ $b^{(n+2)}$ on $B^{(n+2)}$. Since $e_{\alpha}^{(n)} b^{(n+2)} \in B^{(n)}$, we have $e_{\alpha}^{(n)} b^{(n+2)} \xrightarrow{w}$ $b^{(n+2)}$ on $B^{(n)}$. We conclude that $b^{n+2} \in B^{n}$ of course B^{n} is weakly compact.
(2) Suppose that $b^{(n+2)} \in Z_{A^{(n+2)}}^{\ell}\left(B^{(n+2)}\right)$ and $e_{\alpha}^{(n)} \xrightarrow{w^{*}} e^{(n+2)}$ on $A^{(n)}$ such that $e^{(n+2)}$ is right unit for $B^{(n+2)}$, see [10]. Then we have $b^{(n+2)} e_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n+2)}$ on $B^{(n+2)}$. Since $B^{(n+2)} e_{\alpha}^{(n)} \subseteq B^{(n)}$ for every $\alpha, b^{(n+2)} e_{\alpha}^{(n)} \xrightarrow{w} b^{(n+2)}$ on $B^{(n)}$ and since $B^{(n)}$ is weakly compact,

Topological centers of $n-t h$ dual of module actions

$$
b^{(n+2)} \in B^{(n)} . \text { It follows that } Z_{A^{(n+2)}}^{\ell}\left(B^{(n+2)}\right)=B^{(n+2)}
$$

Definition. Let B be a Banach A-bimodule and the integer $n \geq 0$ be an even number. Then $b^{(n+2)} \in B^{(n+2)}$ is said to be weakly left almost periodic functional if the set

$$
\left\{b^{(n+1)} a^{(n)}: a^{(n)} \in A^{(n)},\left\|a^{(n)}\right\| \leq 1\right\}
$$

is relatively weakly compact, and $b^{(n+2)} \in B^{(n+2)}$ is said to be weakly right almost periodic functional if the set

$$
\left\{a^{(n)} b^{(n+1)}: a^{(n)} \in A^{(n)},\left\|a^{(n)}\right\| \leq 1\right\}
$$

is relatively weakly compact. We denote by $\operatorname{wap}_{\ell}\left(B^{(n)}\right)\left[\operatorname{resp} . \operatorname{wap}_{r}\left(B^{(n)}\right)\right]$ the closed subspace of $B^{(n+1)}$ consisting of all the weakly left [resp. right] almost periodic functionals in $B^{(n+1)}$. By $[6,14,18]$, the definition of $\operatorname{wap}_{\ell}\left(B^{(n)}\right)$ and $\operatorname{wap}_{r}\left(B^{(n)}\right)$, respectively, are equivalent to the following

$$
\begin{gathered}
\operatorname{wap}_{\ell}\left(B^{(n)}\right)=\left\{b^{(n+1)} \in B^{(n+1)}:\left\langle b^{(n+2)} a_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle \rightarrow\right. \\
\left.\left\langle b^{(n+2)} a^{(n+2)}, b^{(n+1)}\right\rangle \text { where } a_{\alpha}^{(n+2)} \xrightarrow{w^{*}} a^{(n+2)}\right\} .
\end{gathered}
$$

and

$$
\begin{gathered}
\operatorname{wap}_{r}\left(B^{(n)}\right)=\left\{b^{(n+1)} \in B^{(n+1)}:\left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle \rightarrow\right. \\
\left.\left\langle a^{(n+2)} b^{(n+2)}, b^{(n+1)}\right\rangle \text { where } b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}\right\} .
\end{gathered}
$$

If we take $A=B$ and $n=0$, then $\operatorname{wap}_{\ell}(A)=\operatorname{wap}_{r}(A)=\operatorname{wap}(A)$.

Theorem 2.4. Assume that B is a Banach A-bimodule and the integer $n \geq 0$ be an even number. Then we have the following assertions.
(1) $B^{(n+1)} A^{(n)} \subseteq \operatorname{wap}_{\ell}\left(B^{(n)}\right)$ if and only if

$$
A^{(n)} A^{(n+2)} \subseteq Z_{B^{(n+2)}}^{\ell}\left(A^{(n+2)}\right)
$$

(2) If $A^{(n)} A^{(n+2)} \subseteq A^{(n)} Z^{\ell}{ }_{B^{(n+2)}}\left(A^{(n+2)}\right)$, then

$$
A^{(n)} A^{(n+2)} \subseteq Z_{B^{(n+2)}}^{\ell}\left(A^{(n+2)}\right)
$$

Proof.

(1) Suppose that $B^{(n+1)} A^{(n)} \subseteq \operatorname{wap}_{\ell}\left(B^{(n)}\right)$. Let $a^{(n)} \in A^{(n)}, a^{(n+2)} \in$ $A^{(n+2)}$ and let $\left(b_{\alpha}^{(n+2)}\right)_{\alpha} \subseteq B^{(n+2)}$ such that $b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}$. Then for every $b^{(n+1)} \in B^{(n+1)}$, we have

$$
\begin{aligned}
\left\langle\left(a^{(n)} a^{(n+2)}\right) b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle=\left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b^{(n+1)} a^{(n)}\right\rangle \\
\rightarrow\left\langle a^{(n+2)} b^{(n+2)}, b^{(n+1)} a^{(n)}\right\rangle=\left\langle\left(a^{(n)} a^{(n+2)}\right) b^{(n+2)}, b^{(n+1)}\right\rangle
\end{aligned}
$$

It follows that $a^{(n)} a^{(n+2)} \in Z_{B^{(n+2)}}^{\ell}\left(A^{(n+2)}\right)$.
Conversely, let $a^{(n)} a^{(n+2)} \in Z_{B^{(n+2)}}^{\ell}\left(A^{(n+2)}\right)$ for every $a^{(n)} \in$ $A^{(n)}, a^{(n+2)} \in A^{(n+2)}$ and suppose that $\left(b_{\alpha}^{(n+2)}\right)_{\alpha} \subseteq B^{(n+2)}$ such that $b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}$. Then for every $b^{(n+1)} \in B^{(n+1)}$, we have

$$
\begin{aligned}
& \left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b^{(n+1)} a^{(n)}\right\rangle=\left\langle\left(a^{(n)} a^{(n+2)}\right) b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle \\
\rightarrow & \left\langle\left(a^{(n)} a^{(n+2)}\right) b^{(n+2)}, b^{(n+1)}\right\rangle=\left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b^{(n+1)} a^{(n)}\right\rangle .
\end{aligned}
$$

It follows that $B^{(n+1)} A^{(n)} \subseteq \operatorname{wap}_{\ell}\left(B^{(n)}\right)$.
(2) Since $A^{(n)} A^{(n+2)} \subseteq A^{(n)} Z^{\ell}{ }_{B^{(n)}}\left(\left(A^{(n+2)}\right)\right.$, for every $a^{(n)} \in A^{(n)}$ and $a^{(n+2)} \in A^{(n+2)}$, we have $a^{(n)} a^{(n+2)} \in A^{(n)} Z^{\ell}{ }_{B}{ }^{(n+2)}\left(A^{(n+2)}\right)$.

Then there are $x^{(n)} \in A^{(n)}$ and $\phi \in Z_{B^{(n+2)}}^{\ell}\left(A^{(n+2)}\right)$ such that $a^{(n)} a^{(n+2)}=x^{(n)} \phi$. Suppose that $\left(b_{\alpha}^{(n+2)}\right)_{\alpha} \subseteq B^{(n+2)}$ such that
$b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}$. Then for every $b^{(n+1)} \in B^{(n+1)}$, we have

$$
\begin{gathered}
\left\langle\left(a^{(n)} a^{(n+2)}\right) b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle=\left\langle\left(x^{(n)} \phi\right) b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle \\
=\left\langle\phi b_{\alpha}^{(n+2)}, b^{(n+1)} x^{(n)}\right\rangle \rightarrow\left\langle\phi b^{(n+2)}, b^{(n+1)} x^{(n)}\right\rangle \\
=\left\langle\left(a^{(n)} a^{(n+2)}\right) b^{(n+2)}, b^{(n+1)}\right\rangle
\end{gathered}
$$

In the preceding theorem, if we take $B=A$ and $n=0$, we conclude Theorem 3.6 (a) from [14].

Theorem 2.5. Assume that B is a Banach A-bimodule and the integer $n \geq 0$ be an even number. If $A^{(n)}$ is a left ideal in $A^{(n+2)}$, then $B^{(n+1)} A^{(n)} \subseteq \operatorname{wap}_{\ell}\left(B^{(n)}\right)$.

Proof. Proof is clear.

Theorem 2.6. Let B be a left Banach A-bimodule and $n \geq 0$ be a even number. Suppose that $b_{0}^{(n+1)} \in B^{(n+1)}$. Then $b_{0}^{(n+1)} \in$ wap $_{\ell}\left(B^{(n)}\right)$ if and only if the mapping $T: b^{(n+2)} \rightarrow b^{(n+2)} b_{0}^{(n+1)}$ form $B^{(n+2)}$ into $A^{(n+1)}$ is weak ${ }^{*}$ - to - weak continuous.

Proof. Let $b_{0}^{(n+1)} \in B^{(n+1)}$ and suppose that $b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}$ on $B^{(n+2)}$. Then for every $a^{(n+2)} \in A^{(n+2)}$, we have

$$
\begin{aligned}
\left\langle a^{(n+2)}, b_{\alpha}^{(n+2)} b_{0}^{(n+1)}\right\rangle= & \left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b_{0}^{(n+1)}\right\rangle \rightarrow\left\langle a^{(n+2)} b^{(n+2)}, b_{0}^{(n+1)}\right\rangle \\
& =\left\langle a^{(n+2)}, b^{(n+2)} b_{0}^{(n+1)}\right\rangle
\end{aligned}
$$

It follows that $b_{\alpha}^{(n+2)} b_{0}^{(n+1)} \xrightarrow{w} b^{(n+2)} b_{0}^{(n+1)}$ on $A^{(n+1)}$.
The proof of the converse is similar of preceding proof.

Corollary 2.7. Assume that B is a Banach A-bimodule. Then $Z_{A^{(n+2)}}^{\ell}\left(B^{(n+2)}\right)=B^{(n+2)}$ if and only if the mapping $T: b^{(n+2)} \rightarrow$ $b^{(n+2)} b_{0}^{(n+1)}$ form $B^{(n+2)}$ into $A^{(n+1)}$ is weak ${ }^{*}$ - to - weak continuous for every $b_{0}^{(n+1)} \in B^{(n+1)}$.

Corollary 2.8. Let A be a Banach algebra. Assume that $a^{\prime} \in A^{*}$ and $T_{a^{\prime}}$ is the linear operator from A into A^{*} defined by $T_{a^{\prime}} a=a^{\prime} a$. Then, $a^{\prime} \in \operatorname{wap}(A)$ if and only if the adjoint of $T_{a^{\prime}}$ is weak ${ }^{*}$ - to - weak continuous. So A is Arens regular if and only if the adjoint of the mapping $T_{a^{\prime}} a=a^{\prime} a$ is weak k^{*} to - weak continuous for every $a^{\prime} \in A^{*}$.

Definition. Let B be a left Banach A-bimodule. We say that $a^{(n)} \in A^{(n)}$ has Left-weak ${ }^{*}-w e a k$ property $\left(=L w^{*} w-\right.$ property $)$ with respect to $B^{(n)}$, if for every $\left(b_{\alpha}^{(n+1)}\right)_{\alpha} \subseteq B^{(n+1)}, a^{(n)} b_{\alpha}^{(n+1)} \xrightarrow{w^{*}} 0$ implies $a^{(n)} b_{\alpha}^{(n+1)} \xrightarrow{w} 0$. If every $a^{(n)} \in A$ has $L w^{*} w-$ property with respect to $B^{(n)}$, then we say that $A^{(n)}$ has $L w^{*} w-$ property with respect to $B^{(n)}$. The definition of the Right - weak* - weak property $\left(=R w^{*} w-\right.$ property) is the same.
We say that $a^{(n)} \in A^{(n)}$ has weak ${ }^{*}$ - weak property ($=w^{*} w$ - property) with respect to $B^{(n)}$ if it has $L w^{*} w$ - property and $R w^{*} w$ - property with respect to $B^{(n)}$.
If $a^{(n)} \in A^{(n)}$ has $L w^{*} w$ - property with respect to itself, then we say that $a^{(n)} \in A^{(n)}$ has $L w^{*} w-$ property.

Example.

(1) If B is Banach A-bimodule and reflexive, then A has $w^{*} w$-property with respect to B.
(2) $L^{1}(G), M(G)$ and $A(G)$ have $w^{*} w$-property when G is finite.
(3) Let G be locally compact group. $L^{1}(G)$ [resp. $\left.M(G)\right]$ has $w^{*} w$-property [resp. $L w^{*} w-$ property] with respect to $L^{p}(G)$ whenever $p>1$.
(4) Suppose that B is a left Banach A-module and e is left unit element of A such that $e b=b$ for all $b \in B$. If e has $L w^{*} w-$ property, then B is reflexive.
(5) If S is a compact semigroup, then $C^{+}(S)=\{f \in C(S): f>0\}$ has $w^{*} w$-property.

Theorem 2.9. Let B be a left Banach A-bimodule and the integer $n \geq 2$ be an even number. Then we have the following assertions.
(1) If $A^{(n)}=a_{0}^{(n-2)} A^{(n)}$ [resp. $\left.A^{(n)}=A^{(n)} a_{0}^{(n-2)}\right]$ for some $a_{0}^{(n-2)} \in$ $A^{(n-2)}$ and $a_{0}^{(n-2)}$ has $R w^{*} w$ - property [resp. L $w^{*} w$ - property] with respect to $B^{(n)}$, then $Z_{B^{(n)}}\left(A^{(n)}\right)=A^{(n)}$.
(2) If $B^{(n)}=a_{0}^{(n-2)} B^{(n)}$ [resp. $B^{(n)}=B^{(n)} a_{0}^{(n-2)}$] for some $a_{0}^{(n-2)} \in$ $A^{(n-2)}$ and $a_{0}^{(n-2)}$ has $R w^{*} w-$ property [resp. L $w^{*} w-$ property] with respect to $B^{(n)}$, then $Z_{A^{(n)}}\left(B^{(n)}\right)=B^{(n)}$.
Proof.
(1) Suppose that $A^{(n)}=a_{0}^{(n-2)} A^{(n)}$ for some $a_{0}^{(n-2)} \in A$ and $a_{0}^{(n-2)}$ has $R w^{*} w$ - property. Let $\left(b_{\alpha}^{(n)}\right)_{\alpha} \subseteq B^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)}$. Then for every $a^{(n-2)} \in A^{(n-2)}$ and $b^{(n-1)} \in B^{(n-1)}$, we have

$$
\begin{aligned}
\left\langle b_{\alpha}^{(n)} b^{(n-1)}, a^{(n-2)}\right\rangle= & \left\langle b_{\alpha}^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle \rightarrow\left\langle b^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle \\
& =\left\langle b^{(n)} b^{(n-1)}, a^{(n-2)}\right\rangle .
\end{aligned}
$$

It follows that $b_{\alpha}^{(n)} b^{(n-1)} \xrightarrow{w^{*}} b^{(n)} b^{(n-1)}$. Also it is clear that $\left(b_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)} \xrightarrow{w^{*}}\left(b^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}$. Since $a_{0}^{(n-2)}$ has $R w^{*} w-$ property, $\left(b_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)} \xrightarrow{w}\left(b^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}$. Now, let $a^{(n)} \in$ $A^{(n)}$. Since $A^{(n)}=a_{0}^{(n-2)} A^{(n)}$, there is $x^{(n)} \in A^{(n)}$ such that

$$
\begin{gathered}
a^{(n)}=a_{0}^{(n-2)} x^{(n)} \text {. Thus we have } \\
\left\langle a^{(n)} b_{\alpha}^{(n)}, b^{(n-1)}\right\rangle=\left\langle a^{(n)}, b_{\alpha}^{(n)} b^{(n-1)}\right\rangle=\left\langle a_{0}^{(n-2)} x^{(n)}, b_{\alpha}^{(n)} b^{(n-1)}\right\rangle \\
=\left\langle x^{(n)},\left(b_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}\right\rangle \rightarrow\left\langle x^{(n)},\left(b^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}\right\rangle \\
=\left\langle a^{(n)} b, b^{(n-1)}\right\rangle .
\end{gathered}
$$

It follows that $a^{(n)} \in Z_{A^{(n)}}\left(B^{(n)}\right)$.
Proof of the next part is similar to preceding proof.
(2) Let $B^{(n)}=a_{0}^{(n-2)} B^{(n)}$ for some $a_{0}^{(n-2)} \in A$ and $a_{0}^{(n-2)}$ has $R w^{*} w-$ property with respect to $B^{(n)}$. Assume that $\left(a_{\alpha}^{(n)}\right)_{\alpha} \subseteq$ $A^{(n)}$ such that $a_{\alpha}^{(n)} \xrightarrow{w^{*}} a^{(n)}$. Then for every $b^{(n-1)} \in B^{(n-1)}$, we have

$$
\begin{aligned}
\left\langle a_{\alpha}^{(n)} b^{(n-1)}, b^{(n-2)}\right\rangle= & \left\langle a_{\alpha}^{(n)}, b^{(n-1)} b^{(n-2)}\right\rangle \rightarrow\left\langle a^{(n)}, b^{(n-1)} b^{(n-2)}\right\rangle \\
& =\left\langle a^{(n)} b^{(n-1)}, b^{(n-2)}\right\rangle
\end{aligned}
$$

We conclude that $a_{\alpha}^{(n)} b^{(n-1)} \xrightarrow{w^{*}} a^{(n)} b^{(n-1)}$. It is clear that

$$
\left(a_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)} \xrightarrow{w^{*}}\left(a^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}
$$

Since $a_{0}^{(n-2)}$ has $R w^{*} w-$ property,

$$
\left(a_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)} \xrightarrow{w}\left(a^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}
$$

Suppose that $b^{(n)} \in B^{(n)}$. Since $B^{(n)}=a_{0}^{(n-2)} B^{(n)}$, there is $y^{(n)} \in B^{(n)}$ such that $b^{(n)}=a_{0}^{(n-2)} y^{(n)}$. Consequently, we have

$$
\begin{gathered}
\left\langle b^{(n)} a_{\alpha}^{(n)}, b^{(n-1)}\right\rangle=\left\langle b^{(n)}, a_{\alpha}^{(n)} b^{(n-1)}\right\rangle=\left\langle a_{0}^{(n-2)} y^{(n)}, a_{\alpha}^{(n)} b^{(n-1)}\right\rangle \\
=\left\langle y^{(n)},\left(a_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}\right\rangle \rightarrow\left\langle y^{(n)},\left(a^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}\right\rangle \\
=\left\langle a_{0}^{(n-2)} y^{(n)},\left(a^{(n)} b^{(n-1)}\right)\right\rangle=\left\langle b^{(n)} a^{(n)}, b^{(n-1)}\right\rangle
\end{gathered}
$$

Thus $b^{(n)} a_{\alpha}^{(n)} \xrightarrow{w} b^{(n)} a^{(n)}$. It follows that $b^{(n)} \in Z_{A^{(n)}}\left(B^{(n)}\right)$.
The proof of the next part similar to the preceding proof.

Example. Let G be a locally compact group. Since $M(G)$ is a Banach $L^{1}(G)$-bimodule and the unit element of $M(G)^{(n)}$ has not $L w^{*} w-$ property or $R w^{*} w$ - property, by Theorem $2.9, Z_{L^{1}(G)^{(n)}}\left(M(G)^{(n)}\right) \neq$ $M(G)^{(n)}$.
ii) If G is finite, then by Theorem 2.9 , we have $Z_{M(G)^{(n)}}\left(L^{1}(G)^{(n)}\right)=$
$L^{1}(G)^{(n)}$ and $Z_{L^{1}(G)^{(n)}}\left(M(G)^{(n)}\right)=M(G)^{(n)}$.

Acknowledgments

We would like to thank the referee for his/her careful reading of our paper and many valuable suggestions.

References

[1] R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
[2] N. Arikan, A simple condition ensuring the Arens regularity of bilinear mappings, Proc. Amer. Math. Soc. 84 (4) (1982), 525-532.
[3] J. Baker, A.T. Lau, J.S. Pym Module homomorphism and topological centers associated with weakly sequentially compact Banach algebras, Journal of Functional Analysis. 158 (1998), 186-208.
[4] F. F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, Berlin 1973.
[5] H. G. Dales, A. Rodrigues-Palacios, M.V. Velasco, The second transpose of a derivation, J. London. Math. Soc. 264 (2001) 707-721.
[6] H. G. Dales, Banach algebra and automatic continuity, Oxford 2000.
[7] N. Dunford, J. T. Schwartz, Linear operators.I, Wiley, New york 1958.
[8] M. Eshaghi Gordji, M. Filali, Arens regularity of module actions, Studia Math. 1813 (2007), 237-254.
[9] M. Eshaghi Gordji, M. Filali, Weak amenability of the second dual of a Banach algebra, Studia Math. 1823 (2007), 205-213.
[10] K. Haghnejad Azar, A. Riazi, Arens regularity of bilinear forms and unital Banach module space, arXiv. math (Submitted).
[11] E. Hewitt, K. A. Ross, Abstract harmonic analysis, Springer, Berlin, Vol I 1963.
[12] E. Hewitt, K. A. Ross, Abstract harmonic analysis, Springer, Berlin, Vol II 1970.
[13] A. T. Lau, V. Losert, On the second Conjugate Algebra of locally compact groups, J. London Math. Soc. 37 (2)(1988), 464-480.
[14] A. T. Lau, A. Ülger, Topological center of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212.
[15] S. Mohamadzadih, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bulletin of the Australian Mathematical Society 77 (2008), 465-476.
[16] M. Neufang, Solution to a conjecture by Hofmeier-Wittstock, Journal of Functional Analysis. 217 (2004), 171-180.
[17] M. Neufang, On a conjecture by Ghahramani-Lau and related problem concerning topological center, Journal of Functional Analysis. 224 (2005), 217-229.
[18] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math Soc. 15 (1965), 84-104.
[19] A. Ülger, Arens regularity of the algebra $A \hat{\otimes} B$, Trans. Amer. Math. Soc. 305 (2) (1988) 623-639.
[20] A. Ülger, Arens regularity sometimes implies the RNP, Pacific Journal of Math. 143 (1990), 377-399.
[21] A. Ülger, Some stability properties of Arens regular bilinear operators, Proc. Amer. Math. Soc. (1991) 34, 443-454.
[22] A. Ülger, Arens regularity of weakly sequentialy compact Banach algebras, Proc. Amer. Math. Soc. 127 (11) (1999), 3221-3227.
[23] P. K. Wong, The second conjugate algebras of Banach algebras, J. Math. Sci. 17 (1) (1994), 15-18.
[24] N. J. Young The irregularity of multiplication in group algebra, Quart. J. Math. Oxford 24 (2) (1973), 59-62.
[25] Y. Zhang, Weak amenability of module extentions of Banach algebras Trans. Amer. Math. Soc. 354 (10) (2002), 4131-4151.

K. Haghnejad Azar

Department of Mathematics, Amirkabir University of Technology, P.O.Box 15914, Tehran, Iran.
Email: haghnejad@aut.ac.ir

A. Riazi

Department of Mathematics, Amirkabir University of Technology, P.O.Box 15914, Tehran, Iran.
Email: riazi@aut.ac.ir

[^0]: MSC(2000): Primary: 46L06, 46L07, 46L10; Secondary:47L25 11Y50
 Keywords: Arens regularity, bilinear mappings, Topological center, n-th dual, Module action Received: January 26, 2010, Accepted: 17 August 2010
 *Corresponding author: Abdolhamid Riazi
 (C) 2008 Iranian Mathematical Society.

