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Abstract: Disordered pinning models deal with the (de)localization tran-
sition of a polymer in interaction with a heterogeneous interface. In this
paper, we focus on two models where the inhomogeneities at the interface
are not independent but given by an irreducible Markov chain on a finite
state space. In the first model, using Markov renewal tools, we give an
expression for the annealed critical curve in terms of a Perron-Frobenius
eigenvalue, and provide examples where exact computations are possible.
In the second model, the transition matrix vary with the size of the system
so that, roughly speaking, disorder is more and more correlated. In this case
we are able to give the limit of the averaged quenched free energy, therefore
providing the full phase diagram picture, and the number of critical points
is related to the number of states of the Markov chain. We also mention
that the question of pinning in correlated disorder appears in the context
of DNA denaturation.

Keywords and phrases: pinning models, statistical mechanics, polymers,
disordered systems, annealed system, Markov chains, Perron-Frobenius, re-
newal process, DNA denaturation.

1. Introduction

Among statistical mechanics systems, disordered pinning models have received
much attention in the last past years. This class of models deals with the localiza-
tion/delocalization transition of a polymer interacting with an inhomogeneous
interface, and whereas the homogeneous version is fully solvable, some questions
on the disordered case were answered only recently. This paper deals with two
pinning models with Markov disorder, and is organized as follows: in a first part
we will recall notations and general facts on the model, and give an overview of
results dealing with the critical curve of the phase diagram (for a more detailed
account on pinning models, the reader can refer to the monographs [10], [8, Ch.
7,11] and the survey papers [11], [18]). We then introduce the two models, which
will be developed in one section each.

1.1. General model and general facts

The model we use is the renewal pinning model, that we recall here. Suppose
that the interface is modelled by the half line [0,+∞) and the points of contact
between the polymer and the interface by a discrete renewal process τ = (τn)n≥0

where τ0 := 0 and K(n) := P (τ1 = n) = L(n)n−(1+α) (L : N 7→ (0,+∞) being
a slowly varying function and α ≥ 0) is the law of interarrival times. Without
loss of generality, we assume τ is recurrent (

∑

n≥1 K(n) = 1). We will denote
by δn the indicator function of the event {n ∈ τ} := ∪k≥0{τk = n}.
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Let now ω = (ωn)n≥0 be a sequence of centered random variables, indepen-
dent of τ , standing for the inhomogeneities on the interface. We will use the
notation E (resp. E) for integration with respect to P, the law of ω (resp. P ,
the law of τ).

For a typical realization of ω, and parameters h ∈ R, β ≥ 0, we define the
hamiltonian at size N as

HN,β,h,ω(τ) =

N
∑

n=1

(βωn + h)δn

and the corresponding polymer law by

dPN,β,h,ω

dP
(τ) =

1

ZN,β,h,ω
exp(HN,β,h,ω(τ))δN

where
ZN,β,h,ω = E(exp(HN,β,h,ω(τ))δN )

is called the partition function. We call free energy at size N , the (random)
function

FN (β, h) =
1

N
logZN,β,h,ω.

If the sequence ω is stationary, ergodic and integrable, then one can prove
by subadditive arguments that there exists a deterministic quantity F (β, h) ≥ 0
(the infinite size quenched free energy) such that for all parameters (β, h),
limN→+∞ FN (β, h) = F (β, h) in the L1(ω) and ω-almost surely (see [10, Theo-
rem 4.6]). Then let us define the localized phase L = {(β, h), F (β, h) > 0} and
the delocalized phase D = {(β, h), F (β, h) = 0}. One can see why by looking at
the partial derivative of F with respect to h: using convexity arguments, we can
write ∂hF (β, h) = limN→+∞ ∂hFN (β, h) = limN→+∞ EN,β,h((1/N)

∑N
n=1 δn)

which is the limiting contact density under the polymer law. Still using the con-
vexity of F (β, h), one can prove the existence of a concave curve (called critical
curve) β 7→ hc(β) ∈ [−∞, 0] such that for all β ≥ 0,

(β, h) ∈ L ⇐⇒ h > hc(β).

1.2. The critical curve: State of the art

Let us look at the results available on the critical curve. We already know
from the homogeneous pinning model that hc(0) = 0 (see [10, Ch.2]). Then
one can prove that hc(β) ≤ 0, and with a little more work, provided disorder is
nondegenerate, that hc(β) < 0 if β > 0: this means that disorder has a localizing
effect (see [10, Proposition 5.1 and Theorem 5.2]).

Before giving a lower bound, we assume that ω = (ωn)n≥0 is a sequence of
independent and identically distributed random variables, such that the moment
generating function Λ(β) := E(eβω0) is finite at least on an open interval [0, c).
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This allows us to give the following lower bound on the critical curve: for all
β ∈ [0, c),

hc(β) ≥ ha
c (β) := − logΛ(β).

This a direct consequence of the following observation: by Jensen’s inequality,

EFN (β, h) ≤ F a
N (β, h) :=

1

N
logEZN,β,h,ω (1)

(note that this inequality is general: we do not require any independence as-
sumption at this point). The quantity Za

N,β,h := EZN,β,h,ω is called annealed
partition function. If we now use the fact that the ωn’s are i.i.d., one gets

Za
N,β,h = E

(

exp

(

(h+ logΛ(β))

N
∑

n=1

δn

)

δN

)

so that in this case the annealed free energy is nothing but the homogeneous
free energy (β = 0) with parameter h shifted by logΛ(β). Since the critical
point of the homogeneous model is 0, the critical point of the annealed model
is ha

c (β) = − logΛ(β).
The question of whether the annealed critical curve ha

c and the quenched
critical curve hc coincide (as well as the related question of equality of critical
exponents) has been the topic of many papers. Several authors ([1, 17, 14, 6])
proved consecutively, with different methods, that if α is in (0, 1

2 ), then the
equality hc(β) = ha

c (β) holds for small enough β. The same is true for α = 1
2

provided
∑

n≥1
1

nL(n)2 < +∞, and more recently the result has been proved for

α = 0, the equality being true for all values of β in this case (see [3]). If α > 1/2
or if α = 1/2 but under some conditions on L ( for instance, if L(∞) = 0, or L
is a constant) , then disorder is relevant for all β, meaning that hc(β) > ha

c (β)
(see [2],[9],[12]). The fact that the critical value of α is 1/2 is in accordance
with a heuristic called Harris criterion (see [18, p.145-146] or [10, p.116-118] for
example).

As pointed out earlier, these results hold in the case of i.i.d. disorder. In [16],
the author considered a model with locally correlated disorder. In this model
the ωn’s constitute a gaussian moving average of finite order (meaning that
Cov(ω0, ωn) = 0 as soon as |n| > q for some fixed q ∈ N

∗). The annealed system
is then related to a pinning model for a particular Markov renewal process, and
the annealed critical curve is given in terms of a Perron-Frobenius eigenvalue.
The following high-temperature behaviour is also proved:

ha
c (β)

βց0
∼ −C(ρ,K(·))

β2

2

where
C(ρ,K(·)) = 1 + 2

∑

n≥1

ρnP (n ∈ τ).

The question of disorder irrelevance is ongoing work.
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1.3. Two models with markov disorder

In this paper we continue to investigate the case of correlated disorder by study-
ing the case when ω is given by the functional of a homogeneous Markov chain
with finite state space. The question of a disordered pinning model with Markov
dependence was raised in [8, p.204] (in the context of copolymers near a linear
selective interface as well). We will look at two different models. Motivations
will be discussed in the next subsection.

1.3.1. Model A.

Let X = (Xn)n≥0 be a homogeneous irreducible Markov chain on a finite state
space Σ. Its transition matrix will be denoted by Q and its initial distribution is
its invariant distribution µ0. Note that in this case, X is ergodic. The disorder
sequence will be given by

ωn = f(Xn)

where f : Σ 7→ R is such that E(ω0)(= µ0(f(X0))) = 0. For this first model we
will show that the annealed free energy satisfies an implicit equation and that
the annealed critical curve can be expressed as the Perron-Frobenius eigenvalue
of a positive matrix which depends both on the kernel K and the matrix Q.
Moreover, we will see along the proof that the annealed system at the annealed
critical curve is equivalent to the pinning of a Markov renewal process. We men-
tion that such tools were previously used in the study of pinning with periodic
inhomogeneities (see [5]; indeed, our model includes periodic sequences). As no-
ticed in the previous subsection, the annealed critical curve provides a lower
bound on hc(β), but the issue of disorder (ir)relevance is open.

1.3.2. Model B.

In model B, the disorder sequence will be a Markov chain taking values in
{−1,+1}, with transition matrix

Q(N) =

(

1−N−γ N−γ

N−γ 1−N−γ

)

,

where γ ∈ (0, 1), and starting at the invariant distribution µ = (1/2, 1/2). Its
law will be denoted by P

(N), the important difference with model A being that
this law now depends on the size N of the system. We will give a motivation for
introducing such a model at the end of the following section: at this point, we
only notice that the disorder sequence for a system of size N consists roughly
of strips of −1 and +1’s, the size of them being of order N1−γ . In this model
we will determine the limit as N tends to infinity of the (averaged) free energy
E
(N)(FN (β, h)), in terms of the free energy of the homogeneous model.
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1.4. Motivations. The link with DNA denaturation

One of the applications of pinning models is the study of DNA denaturation
(or melting), that is the process by which the two strands of a DNA molecule
separate as the temperature increases. The two strands are constituted of com-
plementary sequences of nucleotides (A with T, and C with G) and are pinned
together by hydrogen bonds, the strength of which depends on the pair of nu-
cleotides (AT bonds are weaker than CG ones). As the temperature increases,
entropy wins over energy, and the two strands separate by forming loops (first
at AT regions). In our context , the renewal points (τn)n≥0 stands for the sites
where the two strands are pinned together and K(·) is the law for the length
of loops, whereas ω stands for the nucleotide sequence (and therefore should
be a binary sequence). With this interpretation of the model, the phase tran-
sition corresponds to DNA denaturation. Furthermore, it has been shown that
DNA sequences display long-range correlations (see [15] and [7] for instance, and
[4],[13] for models where this fact is taken into account ). For the link between
the pinning model and the Poland-Scheraga model, see [10, Section 1.4] and
references therein.

2. Model A. The annealed critical curve

Before we state our result, we need further notations. Let M(t, β, h) be the Σ×Σ
nonnegative matrix defined by

M(t, β, h)(x, y) = K(t)Qt(x, y)eβf(y)+h (2)

and for all b ≥ 0,

A(b, β, h) :=
∑

t≥1

M(t, β, h) exp(−bt). (3)

Since Q is irreducible, for all x and y there exists t such that K(t)Qt(x, y) > 0,
so A(b, β, h) is a positive matrix, and its Perron-Frobenius eigenvalue will be
denoted by λ(b, β, h). Henceforth we will write λ(β) for λ(0, β, 0).

2.1. Statement of results

For model A our result is:

Theorem 2.1. For all h and nonnegative β,

1

N
logEZN,β,h

N→+∞
−→ F a(β, h) ≥ 0.

where F a(β, h) is solution of the implicit equation

λ(F a(β, h), β, h) = 1 (4)

if λ(0, β, h) > 1 and F a(β, h) = 0 otherwise. The annealed critical curve is

ha
c (β) := sup{h|F a(β, h) = 0} = − logλ(β)
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Notice that (4) is the analog of the implicit equation for the annealed free
energy in the i.i.d. case (which sums up to a homogeneous free energy):

∑

n≥1

K(n) exp(−F a(β, h)n) = exp(−h− log Λ(β)).

2.2. Proof

Proof. We start by decomposing the quenched partition function according to
the number of renewal points before N :

ZN,β,h,X =

N
∑

k=1

∑

0=:t0<t1<...
...<tk−1<tk:=N

ekh+β(f(Xt1
)+...+f(Xt

k
))

k
∏

i=1

K(ti − ti−1).

Averaging on X gives for the annealed partition function:

EZN,β,h =

N
∑

k=1

∑

0=:t0<t1<...
...<tk−1<tk:=N

∑

x0,x1,...,xk∈Σ

ekh+β(f(x1)+...+f(xk)) × . . .

× µ0(x0)Q
t1(x0, x1)Q

t2−t1(x1, x2) . . . Q
tk−tk−1(xk−1, xk)

×K(t1)K(t2 − t1) . . .K(tk − tk−1).

Recall notation (2) and notice that:

EZN,β,h =

N
∑

k=1

∑

0=:t0<t1<...
...<tk−1<tk:=N

∑

x0,x1

...,xk∈Σ

µ0(x0)

k
∏

i=1

M(ti − ti−1, β, h)(xi−1, xi).

We will denote by ξ(b, β, h) an eigenvector (defined up to a scalar, with positive
entries) associated to λ(b, β, h), the Perron-Frobenius eigenvalue of the positive
matrix A(b, β, h) defined in (3). The dependence on h of these quantities is
simple: we have λ(b, β, h) = ehλ(b, β, 0) and since ξ is defined up to a scalar, the
h in ξ(b, β, h) is irrelevant, so we will simply write ξ(b, β). From the definition
of λ and ξ, we have for all b ≥ 0 and all x ∈ Σ,

∑

y∈E

A(b, β, h)(x, y)ξ(b, β)(y)

λ(b, β, h)ξ(b, β)(x)
= 1,

which also writes

∑

t≥1

∑

y∈E

M(t, β, h)(x, y)e−btξ(b, β)(y)

λ(b, β, h)ξ(b, β)(x)
= 1. (5)

Suppose first that λ(0, β, h) > 1. Since λ(F, β, h) is a continuous (in fact,
smooth), strictly decreasing function of F , such that λ(F, β, h) tends to 0 as F
tends to +∞, there exists F a = F a(β, h) > 0 such that λ(F a, β, h) = 1. Let

p(x, y, t) := M(t)(x, y)e−Fat ξ(y)

ξ(x)
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(we omit β and h for a moment) so that for all x ∈ Σ,

∑

t≥1

∑

y∈Σ

p(x, y, t) = 1. (6)

What equation (6) means is precisely that p is the kernel of a Markov renewal
process (also called semi-Markov kernel): let τ be a process on the integers,
defined by

τn =

n
∑

k=1

T k (7)

where the interarrival times are given by the following Markov chain in Σ × N

(the value of T 0 is not important):

P((X0, T 0) = (x0, t)) = µ0(x0)δ0(t),

P((Xn+1, Tn+1) = (y, t)|(Xn, Tn) = (x, s)) = p(x, y, t).

The process X is called the modulating chain of the Markov renewal process τ .
From (6) and (5), one obtains

EZN,β,h = eF
aN

N
∑

k=1

∑

0=:t0<t1<...
...<tk−1<tk:=N

∑

x0,x1,...,xk∈Σ

ξ(x0)

ξ(xk)
µ0(x0)

×

k
∏

i=1

p(xi−1, xi, ti − ti−1).

Notice that

P(N ∈ τ) =

N
∑

k=1

∑

0=:t0<t1<...
...<tk−1<tk:=N

∑

x0,x1,...,xk∈Σ

µ0(x0)

k
∏

i=1

p(xi−1, xi, ti − ti−1),

so we have

0 < c := min
x,y∈Σ

ξ(x)

ξ(y)
≤

EZN,β,h

eFaNP(N ∈ τ)
≤ max

x,y∈Σ

ξ(x)

ξ(y)
=: C.

Since P(N ∈ τ ) ≤ 1, it is sufficient to prove that lim infN→+∞ P (N ∈ τ ) >
0. Let x be an element of Σ and (τxn)n≥0 the successive return times of the
Markov renewal process τ where the underlying Markov chain is in the state
x. Then τx is a (delayed) renewal process with finite mean inter-arrival time

mx =
∑

y∈Σmy
µ0(y)
µ0(x)

where my := E(T1|X0 = y). Thus we have by the renewal

theorem:

P (N ∈ τ ) ≥ P (N ∈ τx) →
1

mx
> 0.

We are left with the case λ(0, β, h) ≤ 1. Note that in any case,

ZN,β,h,X ≥ exp(h+ βf(XN ))K(N)
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so lim infN→∞
1
N logEZN,β,h ≥ 0. Suppose that λ(0, β, h) = 1. Then one can

repeat the same arguments as in the case λ(0, β, h) > 1, except F a = 0, and one
finds EZN,β,h ≤ C × P(N ∈ τ ), so limN→

1
N logEZN,β,h = 0. If λ(0, β, h) < 1,

we also take F a = 0 in (6) and p is now a sub-probability. Again, we have
EZN,β,h ≤ C × P(N ∈ τ ), where τ is a transient Markov renewal process, and
limN→+∞

1
N logEZN,β,h = 0.

We have now proven the first point of the theorem. The second point is an
immediate consequence:

Fa = Fa(β, h) > 0 ⇔ λ(0, β, h) > 1

⇔ ehλ(0, β, 0) > 1

⇔ h > − logλ(0, β, 0) = − logλ(β)

which means that
ha
c (β) = − logλ(β).

2.3. Examples

2.3.1. Moving averages

Let ε = (εn)n∈Z be a sequence of i.i.d. random variables with values in a fi-
nite state space A. Let (a0, · · · , aq) be in R

q+1 and define ω a q-th order
moving average by ωn = a0εn + a1εn−1 + · · · + aqεn−q. These locally de-
pendent variables are in the scope of this paper since ωn = f(Xn) where
Xn = (εn−q, · · · , εn) is indeed a Markov chain on Σ := Aq+1 and f is a function
on Σ: f(x0, x1, · · · , xq) = a0xq + a1xq−1 + · · ·+ aqx0.

Take for instance q = 1, A = {−1,+1}, and P(ǫn = 1) = P(ǫn = −1) = 1/2.
Then we have to consider a markov chain in

A2 = {(−1,−1), (−1,+1), (+1,−1), (+1,+1)}

with transition matrix

Q =









1/2 1/2 0 0
0 0 1/2 1/2
1/2 1/2 0 0
0 0 1/2 1/2









.

Since for all t ≥ 2,

Qt =









1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4









,
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the matrix A(0, β, 0) can be easily computed, and its Perron-Frobenius eigen-
value turns out to be

λ(β) = cosh(a0β) cosh(a1β)

(

1 +K(1)(
cosh((a0 + a1)β)

cosh(a0β) cosh(a1β)
− 1)

)

.

One can check that we find the same result by using the method suggested in
[16] for q = 1.

2.3.2. A chain in {−1,+1}

We consider a particular case where the annealed critical curve can be computed.
Suppose that ω is a Markov chain consisting of +1 and −1’s, with transition
matrix (0 ≤ ǫ < 1)

Q =

(

ǫ 1− ǫ
1− ǫ ǫ

)

and invariant probability measure µ = δ
−1+δ+1

2 . If ǫ = 0, then the sequence is
periodic (see [5]) whereas ǫ = 1/2 is the i.i.d. setting. The eigenvalues of Q are
1 and 2ǫ− 1 with respective eigenvectors (1, 1) and (1,−1), so for all t ≥ 1,

Qt =
1

2

(

1 + (2ǫ− 1)t 1− (2ǫ− 1)t

1− (2ǫ− 1)t 1 + (2ǫ− 1)t

)

(8)

and

A(0, β, 0) =

(

e−βp(ǫ) eβ(1− p(ǫ))
e−β(1− p(ǫ)) eβp(ǫ)

)

where p(ǫ) :=
∑

t≥1 K(t)1+(2ǫ−1)t

2 . Then, we find by computing the Perron-
Frobenius eigenvalue of A:

ha
c (β) = − log

(

p(ǫ) cosh(β) +

√

p(ǫ)2 cosh2(β)− 2p(ǫ) + 1

)

and one can check the consistency with the periodic and i.i.d. cases.

3. Model B. The phase diagram

Consider the example of the Markov chain in {−1,+1} given above, and notice
that ha

c (β) is increasing in ǫ if ǫ is in [1/2, 1]. By making ǫ tend to 1 (i.e. increasing
correlations of disorder), we make ha

c (β) tend to −β, which is the minimum of all
possible values for the critical curve (simply because βω ≤ β). Of course we do
not want to make ǫ equal to 1, which would lead to a homogeneous model with
reward equal to −1 or 1 with probability one half. That is why we introduce
model B, where ǫ tends to 1 (while staying positive, so that asymptotically there
is the same number of −1 and +1’s) as the size of the system goes to +∞, as a
caricature of a disordered model with strong correlations.
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F (β, h)

−β β

h

0

1

Fig 1. A picture of the phase diagram at β fixed, for model B: β and −β are the points where
F (β, ·) is not analytic (this is a direct consequence of the non-analiticity of the homogeneous
free energy at h = 0, see [10]).

3.1. Statement of the result

In the following, we will denote by F (h) := F (0, h) the free energy associated
to a polymer pinned at a homogeneous interface with reward h. In this section
we will prove the following convergence:

Theorem 3.1. For all β ≥ 0, h ∈ R,

E
(N)FN (β, h)

N→+∞
−→ F (β, h) :=







0 if h ≤ −β
F (h+β)

2 if −β < h < β
F (h+β)+F (h−β)

2 if h ≥ β

.

In this model, we therefore have the full phase diagram picture (see figure
3.1). What the previous statement says is that there is one delocalized phase
and two localized phases. For h ≤ −β, the whole interface is repulsive and it is
clear that the free energy is zero. If h > −β but h ≤ β, then half of the strips are
attractive (with reward h+ β), the other half being repulsive (h− β). Since the
strips are large enough, the polymer can be pinned at those attractive strips, so
the resulting free energy is half of the free energy associated to the homogeneous
reward h + β. If h > β, the whole interface is attractive, and the free energy
should be the mean of the free energy received on (+1)-strips (F (β + h)) and
the one received on (−1)-strips (F (β − h)). Hence it is a phase diagram with
two phase transitions, in the sense that there are two points, −β and β, where
the free energy function is not analytic.
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Before we give the sketch of the proof, we define the following random vari-
ables, related to disorder:

L0 := 0
L1 = inf{n ≥ 1, ωn 6= ω0} − 1
...
Lk+1 = inf{n > Lk, ωn 6= ωLk+1} − 1

which are the endpoints of the ±1 strips,

ln := Ln − Ln−1,

the lengths of the strips, and

BN := sup{k ≥ 0, Lk ≤ N}

the number of complete strips between 0 and N .
First we will prove that the theorem is true for a modified version of the

model, where the polymer is constrained to visit the endpoints of each strip: its
partition function writes

Zc
N,β,h = E

(

exp(

N
∑

n=1

(βωn + h)δn)(

BN
∏

i=1

δLi
)δN

)

,

and its free energy,

F c
N (β, h) =

1

N
logZc

N,β,h.

Then we will show that one can safely pin the polymer at those endpoints: for
each endpoint, the cost is at most polynomial in N , and what make things work
is that the number of endpoints is of order N1−γ ≪ N .

3.2. Proof

In this section, Zc
N,h is the partition function of a polymer pinned at 0 and N ,

in a homogeneous environment with reward h. First we prove:

Lemma 3.1. E
(N)F c

N (β, h)
N→+∞
−→ F (β, h).

Proof. By Markov property we may write:

Zc
N,β,h =

(

BN
∏

i=1

Zc
li,βωLi−1+1+h

)

Zc
N−LBN

,βωLBN
+1+h (9)

We will use the following estimates of the partition function for the homogeneous
pinning (see [10], we do not give the sharpest versions, but these will be enough
for our purpose). If ǫ > 0, there exists c(ǫ) > 0 such that for all l ≥ 1,

c(ǫ)eF (ǫ)l ≤ Zc
l,ǫ ≤ eF (ǫ)l.
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If ǫ < 0, there exists c2(ǫ) > 0 such that for all l ≥ 1,

c2(ǫ)K(l) ≤ Zc
l,ǫ ≤ 1

and for ǫ = 0,

1 ≥ P (l ∈ τ) = Zc
l,0 ≥

{

c3 > 0 if α > 1
clα−1−ς if α ∈ (0, 1]

(with ς > 0 but arbitrarily small).
Let’s begin with the case h ∈ (−β, β). If we apply the estimates above to the

decomposition in (9), we get: (we write h = −β + ǫ)

Zc
N,β,h ≤ exp(F (ǫ)

N
∑

n=1

1{ωn=1})

and

Zc
N,β,h ≥ c(ǫ)BN/2 exp(F (ǫ)

N
∑

n=1

1{ωn=1})× c2(ǫ)
BN/2(

BN
∏

i=1,ωLi−1
=−1

l−θ
i )

with some power θ > 0. In the last product, each factor is larger than N−θ.
Taking the log and dividing by N , we obtain:

BN (log(c(ǫ)c2(ǫ))− θ logN)

2N
≤

1

N
logZc

N,β,h −
F (ǫ)

N

N
∑

n=1

1{ωn=1}) ≤ 0

The result follows by taking the expectation with respect to P
(N) and letting N

go to infinity, since

E
(N)BN =

N
∑

n=1

P
(N)(ωn 6= ωn+1) = N ×N−γ ≪ N.

The proof is the same for h ≥ β.

We now want to prove that E
(N)FN (β, h) and E

(N)F c
N (β, h) have the same

limit. Since, obviously,
ZN,β,h ≥ Zc

N,β,h

we have
lim inf E(N)FN (β, h) ≥ limE

(N)F c
N (β, h) = F (β, h)

so the only thing we need to prove is

Lemma 3.2. lim supE(N)FN (β, h) ≤ limE
(N)F c

N (β, h)(= F (β, h))
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Proof. In this proof we use the following notation:

K(n) =
∑

l>n

K(l)

with the fact that K(n) ∼ nK(n). First we prove that the cost of pinning the
polymer at one arbitrary point n ∈ {1, . . . , N}, for β and h fixed, is at most
polynomial inN . If n is not a contact point, then we can decompose the partition
on the last point visited before n (say n− a) and the first point visited after n
(say n+ b). One obtains

E(exp(HN )δN (1− δn))

=

n
∑

a=1

N−n
∑

b=1

Zn−a,β,h,ωe
βωn+b+hK(a+ b)ZN−n−b,β,h,θn+hω

=

n
∑

a=1

N−n
∑

b=1

Zn−a,β,hK(a)eβωn+h,ωK(b)eβωn+b+hZN−n−b,β,h,θn+hωC(a, b, n)

where (θω)n = ωn+1 and

C(a, b, n) := e−(βωn+h) K(a+ b)

K(a)K(b)
≤ eβ+|h| K(b)

K(a)K(b)
≤ Cba1+α+ς

≤ CN2+α+ς .

with some positive ς . Therefore, we have

ZN,β,h ≤ (1 + CN2+α+ς)E(exp(HN )δNδn).

Repeating the operation BN times, we get

ZN,β,h ≤ (1 + CN2+α+ς)BN × Zc
N,β,h.

taking the log, dividing by N , and averaging over ω (again, we use E
(N)BN =

N1−γ), we get the result.

3.3. A remark on the general case

The result can actually be generalized to an arbitrary finite number of states.
We give it here for completeness. However, the generalization of the proof given
for two-state Markov chains is quite straightforward, so we have chosen not to
reproduce it here.

Theorem 3.2. Suppose that P(N) is the law of a finite state stationary (real)
Markov chain with transition matrix

Q(N) = Id+N−γ(Q − Id),
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where Q is another irreducible transition matrix on the same state space. If µ is
the invariant distribution of Q, then it also the invariant distribution of Q(N),
and

E
(N)FN (β, h)

N→+∞
−→ F (β, h) = Eµ (F (h+ βω0))

Suppose that the states of ω are x1 < x2 < . . . < xn. What the last result
tells us is that for β > 0 fixed, there is a phase transition (in the sense that
the free energy is not analytic) at the points −βxn < −βxn−1 < . . . < −βx1.
If h ≤ −βxn then F (β, h) = 0 and if −βxi < h ≤ −βxi−1 then F (β, h) =
µnF (h+ βxn) + . . .+µi+1F (h+ βxi+1) +µiF (h+ βxi). Therefore, one obtains
a phase diagram with a multistep depinning transition.
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