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Balanced realizations of discrete-time stable all-pass systems and

the tangential Schur algorithm

Bernard Hanzon∗ Martine Olivi† Ralf L.M. Peeters‡

Abstract

In this paper, the connections are investigated between two different approaches towards
the parametrization of multivariable stable all-pass systems in discrete-time. The first ap-
proach involves the tangential Schur algorithm, which employs linear fractional transforma-
tions. It stems from the theory of reproducing kernel Hilbert spaces and enables the direct
construction of overlapping local parametrizations using Schur parameters and interpolation
points. The second approach proceeds in terms of state-space realizations. In the scalar case,
a balanced canonical form exists that can also be parametrized by Schur parameters. This
canonical form can be constructed recursively, using unitary matrix operations. Here, this
procedure is generalized to the multivariable case by establishing the connections with the
first approach. It gives rise to balanced realizations and overlapping canonical forms directly
in terms of the parameters used in the tangential Schur algorithm.

1 Introduction

Stable all-pass systems of finite order have several applications in linear systems theory. Within
the fields of system identification, approximation and model reduction, they have been used
in connection with the Douglas-Shapiro-Shields factorization, see e.g., [7, 4, 19, 10], to obtain
effective algorithms for various purposes, such as H2−model order reduction of stable linear
systems. The class of stable all-pass transfer functions of finite order is bijectively related to
the class of rational inner functions, of which the differential structure has been studied in [1].
There, a parametrization for the multivariable case has been obtained by means of a recursive
procedure, the tangential Schur algorithm, which involves Schur parameter vectors, interpolation
points and normalized direction vectors. In the scalar case, a single coordinate chart suffices to
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entirely describe the manifold of stable all-pass (or lossless) systems of a fixed finite order. In
the multivariable case, the approach leads to atlases of generic charts covering these manifolds.

In another line of research, balanced state-space canonical forms have been constructed for
various classes of linear systems, with special properties of these classes (such as stability) built
in, see e.g., [21, 16]. Balanced realizations are well-known to have numerical advantages and are
useful for model reduction purposes in conjunction with balance-and-truncate type procedures.
A balanced canonical form for SISO stable all-pass systems in continuous time was presented
in [22]. In the constructions of [15], [16], the case of stable all-pass systems in continuous-
time plays a central role. In the scalar case, the resulting canonical form for lossless systems
is balanced with a positive upper triangular reachability matrix. In the multivariable case,
Kronecker indices and nice selections are used to arrive at balanced overlapping canonical forms
for lossless systems. For discrete-time stable all-pass systems, canonical forms can be obtained
from the results in continuous-time by application of a bilinear transformation. However, this
destroys certain nice properties of the canonical form; e.g., truncation of state components no
longer leads to reduced order systems that are balanced and in canonical form. Therefore, the
ideas of [15] and [16] are applied in [14] to the scalar discrete-time stable all-pass case directly.
This leads to a balanced canonical form with the desired properties, for which it turns out that
it can in fact be parametrized using Schur parameters.

In this paper, the connections between these two approaches are investigated and the results of
[14] are generalized to the multivariable case. Moreover, the atlases developed in [1] are supplied
with balanced state-space realizations in terms of the parameters used in the tangential Schur
algorithm. In Section 3, we introduce a mapping which acts on proper rational matrix functions
and which has a particularly simple expression on the level of realizations, see formula (34).
When specialized to the case of lossless functions, it allows for a recursive construction of bal-
anced realizations that can be implemented as a product of unitary matrices. This construction
has several advantages from a numerical point of view. In Section 4, we recall some basic results
on linear fractional transformations of lossless functions, which are at the heart of the tangential
Schur algorithm, described in Section 5. The results of these sections are mostly well-known,
except for the nice factorization of J-inner functions in Proposition 5.2, which we could not find
in the literature and which enables an elegant presentation of these results. The main technical
results are presented in Section 6 and they describe the complete connection between the con-
struction of Section 3 and the tangential Schur algorithm in its more general form. In Section 7
the results are used to construct atlases for the manifold of lossless systems of a fixed McMillan
degree and for the manifold of stable linear systems of a fixed McMillan degree.

2 Preliminaries

In this section a brief overview of results from the literature is presented to provide the necessary
background for the main constructions of this paper. They concern realization theory, balancing
and the basic theory of lossless and J-inner functions.
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Realization theory and balancing.

Consider a linear time-invariant state-space system in discrete time with m inputs and p outputs:

xt+1 = Axt +But, (1)

yt = Cxt +Dut, (2)

with t ∈ Z, xt ∈ C
n for some nonnegative integer n, ut ∈ C

m, yt ∈ C
p. Furthermore, the

matrices A, B, C and D with complex-valued entries are of compatible sizes: n × n, n × m,
p × n and p × m, respectively. The corresponding transfer matrix of this system is given by
G(z) = D+C(zIn−A)−1B, which is a p×m matrix with rational functions as its entries. Two
state-space systems are called input-output equivalent if they have the same transfer matrix.
Here, two rational (matrix) functions are identified if they agree almost everywhere, i.e., common
factors are always canceled. Note that a transfer matrix in this set-up is always proper (i.e.,
analytic at infinity), D being the value at infinity.

From realization theory it follows that, conversely, any p × m rational matrix function G(z)
analytic at infinity can be written in the form

G(z) = D + C(zIn −A)−1B (3)

where (A,B,C,D) is an appropriate quadruple of matrices and n a suitable state space dimen-
sion. Such a quadruple with the associated expression (3) is called a state-space realization of
G(z). To such a realization we associate the block-partitioned matrix

R =

[
D C
B A

]
(4)

which we call the realization matrix as in [14]. It will play an important role in the sequel.

If all possible realizations of G(z) have state-space dimension at least as big as the state-space
dimension n of (A,B,C,D) then the latter realization is said to be minimal, and n is called the
order or the McMillan degree of the transfer function. Two minimal realizations (A,B,C,D)
and (A′, B′, C ′,D′) of a given function G(z) are always similar: there exists a unique invertible
matrix T such that

[
D′ C ′

B′ A′

]
=

[
Ip 0
0 T

] [
D C
B A

] [
Im 0
0 T−1

]
. (5)

As is well-known, an output pair (C,A) is observable if the observability matrix




C
CA
...

CAn−1


 (6)

has full column rank. An input pair (A,B) is reachable if the associated reachability matrix

[
B AB . . . An−1B

]
(7)
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has full row rank. It is well-known that a realization (A,B,C,D) is minimal if and only if (C,A)
is observable and (A,B) is reachable; cf., e.g., [17]. In this case, the poles of the function G(z)
are the eigenvalues of A, and its McMillan degree is equal to the sum of the degrees (see [17, Sect.
6.5]) of all the poles of G(z). This provides an alternative definition for the McMillan degree,
which generalizes to the larger class of proper and non-proper rational functions by including a
possible pole at infinity with its appropriate degree.

Let (A,B,C,D) be some realization of a transfer function. If the eigenvalues of A all belong
to the open unit disk, then the matrix A is called (discrete-time) asymptotically stable, and
(A,B,C,D) an asymptotically stable realization. If (A,B,C,D) is an asymptotically stable
realization, then the controllability Gramian Wc and the observability Gramian Wo are well
defined as the exponentially convergent series

Wc =

∞∑

k=0

AkBB∗(A∗)k, Wo =

∞∑

k=0

(A∗)kC∗CAk, (8)

where the notation ∗ is used to denote Hermitian transposition of a matrix (i.e., the joint action
of matrix transposition and complex conjugation of the matrix entries). The Gramians are
characterized as the unique (and positive semi-definite) solutions of the respective Lyapunov-
Stein equations

Wc −AWcA
∗ = BB∗, (9)

Wo −A∗WoA = C∗C. (10)

Moreover, under asymptotic stability of A it holds that Wc is positive definite if and only if the
pair (A,B) is reachable, and Wo is positive definite if and only if the pair (C,A) is observable.
A minimal and asymptotically stable realization (A,B,C,D) of a transfer function is called
balanced if its observability and controllability Gramians are both diagonal and equal. Any
minimal and asymptotically stable realization (A,B,C,D) is similar to a balanced realization.
The concept of balanced realizations was first introduced in [20] in the continuous time case
and used for model reduction. In [25] the same was done for the discrete time case. Balanced
realizations are now a well-established tool which often exhibit good numerical properties.

J-inner, J-unitary and lossless functions.

For any matrix function R(z), we define the matrix functions R∗(z) and R♯(z) by

R∗(z) := R(z)∗, and R♯(z) := R∗(z−1). (11)

Note that if z lies on the unit circle, then R♯(z) = R(z)∗. For (square) Hermitian matrices P
and Q, either of the notations P ≤ Q and Q ≥ P will be used to express that Q−P is a positive
semi-definite matrix. As is well-known this introduces a partial ordering on the set of square
Hermitian matrices.

Now let Σ be a constant k × k matrix which is both Hermitian and unitary. Note that Σ is
unitarily similar to a signature matrix, i.e., there exists a unitary k × k matrix U for which

UΣU∗ attains the form

[
Iq 0
0 −Ir

]
for some non-negative integers q and r with q + r = k.
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A square rational matrix function Θ(z) of size k × k is called Σ-inner (in the unit disk), if at
every point of analyticity z of Θ(z) it satisfies

Θ(z)∗ΣΘ(z) ≤ Σ, |z| < 1, (12)

Θ(z)∗ΣΘ(z) = Σ, |z| = 1, (13)

Θ(z)∗ΣΘ(z) ≥ Σ, |z| > 1. (14)

It can be shown that this definition contains redundancy in the sense that either one of these
three defining properties (12)-(14) is implied by the other two; cf., e.g., [23, 8, 12].

Any rational matrix function Θ(z) which satisfies the property (13) is called Σ-unitary. For such
functions, replacing z by z−1 on the unit circle, the identity (13) extends almost everywhere by
analytic continuation, so that a rational Σ-unitary function is invertible and its inverse is given
by

Θ(z)−1 = ΣΘ♯(z)Σ. (15)

This applies a fortiori to Σ-inner functions. A function is called Σ-lossless if it is (−Σ)-inner. If
Θ(z) is Σ-inner, then Θ∗(z) is also Σ-inner whereas both Θ♯(z) and Θ(z)−1 are Σ-lossless. The
class of Σ-inner functions is closed under multiplication.

As usual, an Ik-lossless function is just called (discrete-time) lossless, or (discrete-time) stable
all-pass and an Ik-inner function is simply called inner. Throughout this paper we will be
much concerned with lossless and inner functions of size p× p, and with J-unitary and J-inner
functions of size 2p× 2p, where J denotes the following signature matrix:

J =

[
Ip 0
0 −Ip

]
. (16)

Note that J-inner and J-lossless functions in general may have poles everywhere in the complex
plane, but inner functions are analytic inside the unit disk and lossless functions are analytic
outside the unit disk (including at the point at infinity). Therefore a rational lossless function
G(z) is proper, having an inverse which is inner and given by

G(z)−1 = G♯(z). (17)

A scalar rational function is a Blaschke product if it maps the unit circle into the unit circle. It
can be shown that such a function can be written as the product of a finite number of Blaschke
factors, which are rational functions of first order that map the unit circle into the unit circle.

Lemma 2.1 Let G(z) be a p× p lossless function of McMillan degree n. Then its determinant
detG(z) is a Blaschke product. If one writes it in the form detG(z) = e(z)/d(z) with e and d
co-prime polynomials, then the degree of d(z) is equal to n.

Proof. See e.g. [5]. 2
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We finally describe some particular J-inner functions that will be intensively used in the sequel,
namely the constant J-unitary matrices and the J-inner functions of McMillan degree one.
Details and proofs can be found in [8].

Every constant J-unitary matrix can be represented in a unique way (see [8, Thm. 1.2]) as
follows:

M = H(E)

[
P 0
0 Q

]
, (18)

where P and Q are p× p unitary matrices and H(E) denotes the Halmos extension of a strictly
contractive p×p matrix E (i.e., such that I−E∗E > 0). This Halmos extension H(E) is defined
by

H(E) =

[
(I −EE∗)−1/2 E(I − E∗E)−1/2

E∗(I − EE∗)−1/2 (I − E∗E)−1/2

]
=

[
(I − EE∗)−1/2 (I − EE∗)−1/2E

(I − E∗E)−1/2E∗ (I − E∗E)−1/2

]
.

(19)
It holds that H(E) is Hermitian, J-unitary and invertible with inverse H(E)−1 = H(−E). Also,

KH(E)K = H(E∗) for K =

[
0 Ip
Ip 0

]
.

Two other important forms of J-unitary matrices are described in the following lemma ( see [8,
Thm.1.3]).

Lemma 2.2 If x is a 2p-vector such that x∗Jx 6= 0, then the set of 2p×2p matrices of the form

Xx(α) = I2p + (α− 1)x(x∗Jx)−1x∗J, α ∈ C, (20)

is closed under multiplication. We have that

Xx(α)Xx(β) = Xx(αβ), detXx(α) = α, Xx(α)
−1 = Xx(α

−1), for α 6= 0, (21)

J −Xx(α)JXx(β)
∗ = (1− αβ∗)x(x∗Jx)−1x∗J, (22)

and Xx(α) is J-unitary if and only if |α| = 1.

If x is a 2p-vector such that x∗Jx = 0, then the set of matrices of the form

Yx(α) = I2p + αxx∗J, α ∈ C, (23)

is closed under multiplication. We have that

Yx(α)Yx(β) = Yx(α + β), detYx(α) = 1, Yx(α)
−1 = Yx(−α), (24)

J − Yx(α)JYx(β)
∗ = (α+ β∗)xx∗, (25)

and Yx(α) is J-unitary if and only if α is pure imaginary.
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We now come to the description of J-inner matrix functions of McMillan degree 1. We shall call
these functions ‘elementary J-inner functions’ or ‘elementary J-inner factors’, since it has been
shown by Potapov (see [23]) that every J-inner matrix function of McMillan degree n can be
decomposed into a product of n such elementary J-inner factors. Elementary J-inner functions
are obtained by applying the functions Xx and Yx to appropriate scalar functions of degree one,
namely the Blaschke factor bw(z) defined by

bw(z) :=
z − w

1− wz
, w /∈ T (26)

and the Carathéodory function,

cw(z) :=
z + w

z − w
, w ∈ T, (27)

where T denotes the unit circle.

Theorem 2.3 Let Φ(z) be an elementary J-inner factor with a pole at z = 1/w. Then, apart
from a constant J-unitary multiplier on the right, Φ(z) must be in one of the following three
forms:

(1) If w ∈ C, w /∈ T,

Φ(z) = Xx(bw(z)) = I2p + (bw(z)− 1)
xx∗J

x∗Jx
, (28)

(see Eqn. (20)) for some x ∈ C
2p such that :

x∗Jx

1− |w|2 > 0. (29)

(2) If w ∈ T,
Φ(z) = Yx(−δ cw(z)) = I2p − δ cw(z) xx

∗J, (30)

(see Eqn. (23)) for some nonzero x ∈ C
2p such that x∗Jx = 0, and for some real δ > 0.

(3) If w = ∞, then

Φ(z) = Xx

(
1

z

)
= I2p +

(
1

z
− 1

)
xx∗J

x∗Jx
, (31)

for some x ∈ C
2p such that x∗Jx < 0.

3 Recursive construction of balanced realizations of lossless sys-

tems

In this section we will present a number of results that will be used in the proposed recursive
construction of balanced state-space realizations of lossless functions.
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With each pair (U, V ) of (p+1)× (p+1) matrices we associate a mapping FU,V which is defined
to act on proper rational p× p matrix functions G(z) as follows.

FU,V : G(z) 7→ F1(z) +
F2(z)F3(z)

z − F4(z)
, (32)

with F1(z) of size p× p, F2(z) of size p× 1, F3(z) of size 1× p and F4(z) scalar, defined by:

F (z) =

[
F1(z) F2(z)
F3(z) F4(z)

]
= V

[
1 0
0 G(z)

]
U∗. (33)

A state-space realization of G̃(z) = FU,V (G(z)) can be obtained by working directly on any
realization matrix R of G(z). This is the content of the following proposition.

Proposition 3.1 Let G(z) be a p × p proper rational transfer function and (U, V ) a pair of
(p + 1) × (p + 1) matrices, then G̃(z) = FU,V (G(z)) is well-defined. Let (A,B,C,D) be a
state-space realization of G(z) with n-dimensional state-space. Then a state-space realization
(Ã, B̃, C̃, D̃) of G̃(z) with (n+ 1)-dimensional state-space is given by:

[
D̃ C̃

B̃ Ã

]
=

[
V 0
0 In

]


1 0 0
0 D C
0 B A



[
U∗ 0
0 In

]
. (34)

Proof. Since G(z) is proper, F4(z) is proper too and therefore z − F4(z) does not vanish identi-
cally so that FU,V (G(z)) is well-defined.

Now observe that the right-hand side of Eqn. (34) provides a realization matrix with n-dimensional
state-space for the transfer function F (z) given by Eqn. (33):

[
DF CF

BF AF

]
=

[
V 0
0 In

]


1 0 0
0 D C
0 B A



[
U∗ 0
0 In

]
.

Here DF is (p+1)× (p+1), CF is (p+1)×n, BF is n× (p+1) and AF = A is n×n. We shall
prove that changing the partitioning of this matrix to the one in (34)

[
DF CF

BF AF

]
=

[
D̃ C̃

B̃ Ã

]
,

where D̃ is p×p, C̃ is p× (n+1), B̃ is (n+1)×p and Ã is (n+1)× (n+1), gives a realization of
G̃(z) with n+1-dimensional state-space. To see this, let the matrices C̃, B̃ and Ã be partitioned
as follows:

[
D̃ C̃

B̃ Ã

]
=




D̃ C̃1 C̃2

B̃1 Ã1 Ã2

B̃2 Ã3 AF


 =




D̃ C̃1 C̃2

B̃1 Ã1 Ã2

B̃2 Ã3 AF


 =

[
DF CF

BF AF

]
,
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where C̃1 is p× 1, C̃2 is p× n, B̃1 is 1× p, B̃2 is n× p, Ã2 is 1×n, Ã3 is n× 1 and Ã1 is scalar.
Note that it follows that F4(z) has the realization (AF , Ã3, Ã2, Ã1) and therefore

z − Ã1 − Ã2(zIn −AF )
−1Ã3 = z − F4(z).

Using this together with the well-known formula for the inverse of a partitioned matrix (see [8]
or [17]) we compute

(zIn+1 − Ã)−1 =

[
(z − F4(z))

−1 −(z − F4(z))
−1Ã2(zIn −AF )

−1

−(zIn −AF )
−1Ã3(z − F4(z))

−1 ∆(z)

]

with
∆(z) = (zIn −AF )

−1 + (zIn −AF )
−1Ã3(z − F4(z))

−1Ã2(zIn −AF )
−1.

We then have

D̃ + C̃(zIn+1 − Ã)−1B̃ = D̃ +
[
C̃1 C̃2

]
(zIn+1 − Ã)−1

[
B̃1

B̃2

]

= D̃ + C̃1(z − F4(z))
−1B̃1 + C̃1(z − F4(z))

−1Ã2(zIn −AF )
−1B̃2 +

+C̃2(zIn −AF )
−1Ã3(z − F4(z))

−1B̃1 + C̃2(zIn −AF )
−1B̃2 +

+C̃2(zIn −AF )
−1Ã3(z − F4(z))

−1Ã2(zIn −AF )
−1B̃2

= F1(z) + F2(z)(z − F4(z))
−1F3(z),

which finally proves that (Ã, B̃, C̃, D̃) is a state-space realization of G̃(z) with (n+1)-dimensional
state-space. 2

The following proposition characterizes the nature of minimal balanced state-space realizations,
in discrete time, of rational lossless functions. The fact that a lossless function admits a minimal
balanced realization for which the realization matrix is unitary is well-known from the literature;
see, e.g., [12]. However, the converse result, which asserts that unitary realization matrices
correspond to possibly non-minimal realizations of lossless functions, appears to be novel and
generalizes [14, Prop. 2.4] to the multivariable case.

Proposition 3.2 (i) For any minimal balanced realization of a p×p rational lossless function the
observability and controllability Gramians are both equal to the identity matrix and the associated
realization matrix is unitary.
(ii) Conversely, if the realization matrix associated with a realization (A,B,C,D) of order n
of some p × p rational function G is unitary, then G is lossless of McMillan degree ≤ n. The
realization is minimal if and only if A is asymptotically stable and then it is balanced.

Proof. (i) As is well known, any minimal realization (A,B,C,D) of a lossless function G is
asymptotically stable and satisfies (see [12])

[
D C
B A

] [
Ip 0
0 P

] [
D∗ B∗

C∗ A∗

]
=

[
Ip 0
0 P

]
, (35)

9



for some unique positive definite n× n matrix P which is precisely the controllability Gramian.
Since P is positive definite, it can be reduced to identity by using any state space trans-
formation matrix T such that P = TT ∗, producing a new minimal state space realization
(Ã, B̃, C̃, D̃) = (T−1AT, T−1B,CT,D). Then Eqn. (35) asserts that the associated new real-
ization matrix is unitary. Upon changing the order of multiplication of this unitary realization
matrix and its Hermitian transpose it follows that the new observability Gramian is also equal
to identity. Hence, (Ã, B̃, C̃, D̃) is balanced. Any other minimal balanced realization of G(z)
can be obtained from (Ã, B̃, C̃, D̃) by means of a unitary change of basis of the state space,
which leaves the associated realization matrix unitary.
(ii) Conversely, if a realization (A,B,C,D) has unitary realization matrix, a standard straight-
forward calculation shows that

Ip −G(z)G(w)∗ = (zw − 1)C(zIn −A)−1(wIn −A∗)−1C∗, (36)

for every choice of z and w̄ outside the spectrum of A. Setting w = z, it follows that G is lossless.
Therefore, G has all its poles inside the open unit disk, which makes asymptotic stability of A
a necessary condition for minimality of (A,B,C,D). On the other hand asymptotic stability
of A implies that minimality of (A,B,C,D) is equivalent to the existence of positive definite
solutions to the Lyapunov-Stein equations (9)-(10). Unitarity of the realization matrix, however,
implies that In is always a positive definite solution to both these equations, showing asymptotic
stability of A to be a sufficient condition for minimality of (A,B,C,D) as well. Clearly in such
a case (A,B,C,D) is also balanced. 2

Remark. Let G1 and G2 be two lossless functions of McMillan degree n1 and n2, respectively,
with minimal realizations (A1, B1, C1,D1) and (A2, B2, C2,D2) both having unitary associated
realization matrices. Then the cascade realization (A,B,C,D) of the lossless function G = G1G2

is obtained as

[
D C

B A

]
=




D1 0 C1

0 In2
0

B1 0 A1






D2 C2 0

B2 A2 0
0 0 In1


 =




D1D2 D1C2 C1

B2 A2 0
B1D2 B1C2 A1




which yields again a unitary realization matrix which is minimal.

Three properties of the class of mappings FU,V are collected in the following lemma for later
use. These properties follow straightforwardly from the definition of the mapping FU,V with U ,
V arbitrary (p+ 1)× (p+ 1) matrices.

Lemma 3.3 Let U and V be arbitrary (p + 1) × (p + 1) matrices and P and Q both p × p
matrices. Then we have:

(i) F
U



 1 0
0 P



,V



 1 0
0 Q




(G(z)) = FU,V (QG(z)P ∗),

(ii) G̃(z) = FU,V (G(z)) ⇔ G̃∗(z) = FV,U (G
∗(z)),

10



(iii) F

 Ip 0
0 ξ



U,



 Ip 0
0 ξ



V
(G(z)) = FU,V (G(z)), for all ξ ∈ C with |ξ| = 1.

The next property shows some of the importance of the FU,V mappings in relation to lossless
systems: if U and V are unitary matrices then lossless systems are mapped into lossless systems.
The McMillan degree increases by at most one under this mapping.

Proposition 3.4 Let U and V be unitary (p+ 1)× (p+ 1) matrices.
The mapping FU,V sends a lossless function of order n to a lossless function of order ≤ n+ 1.

Proof. Since G(z) is lossless of order n it has a minimal realization with a unitary realization
matrix of size n + p. Formula (34) gives a realization of G̃ = FU,V (G) which is unitary of size

n+ p+ 1. Therefore, G̃(z) is a lossless function of order at most n+ 1. 2

Starting with a p × p unitary matrix G0, interpreted as a lossless transfer matrix of order
zero, and applying the previous proposition repeatedly, one obtains a class of lossless transfer
matrices and corresponding realizations. The class that is obtained after n such recursion steps
is parametrized by the finite sequence of unitary matrices U1, V1, U2, V2, . . . , Un, Vn, together
with the unitary matrix G0. It consists of lossless systems of order ≤ n + 1. In Section 6 the
question which lossless transfer matrix functions can be obtained in this way will be treated.
This generalizes the results of [14] for the SISO case, where Uk = I2 and Vk is a 2×2 Householder
reflection matrix, for k = 1, . . . , n.

4 Linear fractional transformations

Linear fractional transformations occur extensively in representation formulas for the solution
of various interpolation problems [3]. They are at the heart of the parametrization of lossless
functions through the tangential Schur algorithm. The properties of a linear fractional trans-
formation of matrices were studied in a form adapted to the needs of J-theory in [24] and in an
algebraic setting in [26]. For more details on and certain proofs of the basic results presented in
this section, we refer to these papers.

Let Θ ∈ C
2p×2p(z) be an invertible rational matrix in the variable z, block partitioned as

Θ =

[
Θ1 Θ2

Θ3 Θ4

]
with blocks Θi (i = 1, . . . , 4) of size p× p.

Associated with Θ, let the linear fractional transformations TΘ and T̂Θ be defined to act on
rational matrices G ∈ C

p×p(z) in the following way:

TΘ : G 7→ (Θ4G+Θ3)(Θ2G+Θ1)
−1, (37)

T̂Θ : G 7→ (GΘ2 +Θ4)
−1(GΘ1 +Θ3). (38)
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The domains of these mappings are denoted by MΘ and M̂Θ, respectively. They consist of those
G for which the expressions Θ2G + Θ1 and GΘ2 + Θ4, respectively, have full rank p. Due to
the invertibility assumption on Θ, it follows that these domains are residual subsets (countable
intersections of open dense subsets) of Cp×p(z). Note that a linear fractional transformation is
fully determined if it is specified on such a residual set.

It is easily established that the following group properties hold for the LFTs associated with
two invertible matrices Φ and Ψ:

TΦ ◦ TΨ = TΦΨ, (39)

T̂Φ ◦ T̂Ψ = T̂ΨΦ. (40)

Here it may be noted that the compositions of mappings on the left hand sides of these equations
may formally have domains which are strict subsets of the domains of the mappings on the right
hand sides. However, since the domains of the compositions of mappings on the left-hand sides
are residual sets too, this issue is resolved by identifying (compositions of) LFTs if they agree
on the intersection of their domains, which will be our policy throughout this paper.

It then holds that the LFTs TΘ and T̂Θ are bijections from their domains MΘ and M̂Θ to their
co-domains MΘ−1 and M̂Θ−1 , and that every LFT can be represented in each of the two forms
described above. We have the following lemma.

Lemma 4.1 Let Θ ∈ C
2p×2p(z) be an invertible rational matrix. Then:

(i) TΘ and T̂Θ are bijections. Their inverses are given by

T −1
Θ = TΘ−1 = T̂JΘJ ,

T̂ −1
Θ = T̂Θ−1 = TJΘJ .

(ii) TΘ = T̂JΘ−1J and T̂Θ = TJΘ−1J .

We now proceed to study the conditions under which two LFTs coincide. From the literature,
the following result is well known [26].

Lemma 4.2 Let Φ,Ψ ∈ C
2p×2p(z) be two invertible rational matrices. It holds that TΦ = TΨ if

and only if there exists a scalar function λ ∈ C(z) for which Φ = λΨ.

For our purposes, however, it will be convenient to develop a slightly specialized version of this
lemma, which states that the same result remains to hold true if two LFTs TΦ and TΨ are merely
required to coincide on the subset of p× p lossless functions.

Lemma 4.3 Let Φ,Ψ ∈ C
2p×2p(z) be two invertible rational matrices. If the p × p lossless

functions are all contained in MΦ ∩MΨ, and if for all lossless G it holds that TΦ(G) = TΨ(G),
then there exists a scalar function λ ∈ C(z) for which Φ = λΨ.

12



Proof. Note that upon application of the bijection TΨ−1 , we have that the identity TΦ(G) = TΨ(G)
becomes equivalent to TΨ−1Φ(G) = G. Denoting Θ = Ψ−1Φ, this can be rewritten equivalently
as Θ4G + Θ3 = GΘ2G + GΘ1, since (Θ2G + Θ1)

−1 exists (for all lossless G). If G is lossless,
then also −G is lossless. Comparing the two expressions which follow from substitution of these
values for G, it is found that for all lossless G

Θ4G = GΘ1,

Θ3 = GΘ2G.

Substitution of G = Ip yields Θ1 = Θ4 and Θ2 = Θ3. Setting G = z−1Ip, which is again lossless,
yields Θ3 = z−2Θ2. In combination with Θ2 = Θ3 it follows that Θ2 = Θ3 = 0.

We are left with the identity Θ1G = GΘ1 for all lossless G. Note that every unitary matrix is
lossless, so that G can be varied over all the products of signature matrices and permutation
matrices. From this it easily follows that Θ1 is a scalar multiple of the identity matrix. So there
exists a scalar function λ such that Θ1 = Θ4 = λIp. (Rationality of λ is obvious from rationality
of Θ, which is a consequence of rationality of Φ and Ψ.) Hence Θ = λI2p, and therefore Φ = λΨ.
2

Remark. The proof of Lemma 4.3 is such that it also applies to a setting in which all the rational
matrix functions are restricted to be real. In the complex case, one could replace the choice
G = z−1Ip (which is lossless of McMillan degree p) by the choice G = iIp, so that the whole
proof involves values for G from the set of unitary matrices only (i.e., G lossless of McMillan
degree 0). In the real case with p > 1 a more careful analysis shows that a proof can also be
designed using orthogonal matrices only. However, in the real case with p = 1, the only lossless
functions of McMillan degree 0 are G = ±1. Here, lossless functions of McMillan degree ≥ 1 are
needed to obtain the desired result.

For our purposes, it is important to study in some more detail the situation where the 2p × 2p
rational matrix Θ is J-inner and the p × p rational matrices G on which the LFT TΘ acts are
lossless.

Proposition 4.4 Let Θ be J-inner of size 2p × 2p and of McMillan degree m. If G is p × p
lossless and of McMillan degree n, then G ∈ MΘ and the matrix function Ĝ = TΘ(G) is also
lossless and of McMillan degree ≤ n+m.

Proof. The proof can be easily adapted from [3, sect.18.2.]. A realization of Ĝ with (n + m)-
dimensional state-space can be easily computed (see formula (4.85) in [18]), which proves that
the McMillan degree of Ĝ is at most n+m. 2

Also, if the LFT corresponds to a J-inner matrix, we have the following elementary results.

Lemma 4.5 Let Θ(z) be J-inner of size 2p × 2p.
(a) The mappings TΘ and T̂Θ♯ coincide.
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(b) If P and Q are p × p unitary matrices, then ΘP,Q(z) := Θ(z)

[
P 0
0 Q

]
is again J-inner,

and for all G ∈ MΘP,Q
:

TΘP,Q(z)(G(z)) = TΘ(z)(QG(z)P ∗).

(c) Let K =

[
0 Ip
Ip 0

]
. Then the function defined by

Θo(z) := KΘ(z−1)K (41)

is again J-inner, and for all G ∈ MΘ it holds that TΘ(G)∗ = TΘo(G∗).

Proof. (a) Since Θ is J-inner, it holds that T̂Θ♯ = T̂JΘ−1J = TΘ.
(b) The proof that ΘP,Q(z) is again J-inner is elementary. The rest of this statement follows
from the group property of LFTs and from the simple action of an LFT associated with a block-
diagonal matrix.
(c) Note that TΘ(G)∗ = (G∗Θ∗

2 + Θ∗
1)

−1(G∗Θ∗
4 + Θ∗

3) = T̂KΘ∗K(G∗) = TJK(Θ∗)−1KJ(G
∗) =

TK(Θ∗)♯K(G∗) = TΘo(G∗). The proof that Θo(z) is again J-inner is elementary upon observing
that KJ = −JK. 2

A particular situation of interest occurs when the J-inner matrix function Θ(z) happens to be of
McMillan degree 0. In this case Θ(z) = M is a constant J-unitary matrix and the associated class
of LFTs is the one of generalized Möbius transformations TM . The following theorem indicates
how the action of such transformations TM on lossless functions G(z) can be represented entirely
in terms of balanced state-space realizations.

Theorem 4.6 The linear fractional transformation TM associated with a constant J-unitary
matrix M is a bijection on the set of lossless functions which preserves the McMillan degree.

Let M =

[
M1 M2

M3 M4

]
be the block decomposition of M and let G(z) be a lossless function with

minimal state-space realization (A,B,C,D). Then, a minimal state-space realization (Ã, B̃, C̃, D̃)
for G̃(z) = TM(G(z)) is given by:





Ã = A−B(M2D +M1)
−1M2C,

B̃ = B(M2D +M1)
−1,

C̃ = [M4 − (M4D +M3)(M2D +M1)
−1M2]C,

D̃ = (M4D +M3)(M2D +M1)
−1.

(42)

If in addition (A,B,C,D) is balanced, then this realization (Ã, B̃, C̃, D̃) is also balanced.

Proof. A J-unitary constant matrix M is in particular J-inner and its inverse is also J-inner, so
that TM is clearly, by Prop. 4.4, a bijection on the set of lossless functions.
The computation on the realization is just a particular case of formula (4.85) in [18]. This shows
that the McMillan degree does not increase under the action of TM . It cannot decrease either,
because the inverse mapping TM−1 = T −1

M can be treated likewise, and also does not increase
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the McMillan degree. Hence, the McMillan degree is preserved by TM .
Finally, recall that a minimal realization of a lossless function is balanced if and only if the asso-
ciated realization matrix is unitary. Starting from a minimal balanced realization (A,B,C,D) it
now can be verified by direct computation that the realization matrix associated with (Ã, B̃, C̃, D̃)
is also unitary and thus the realization is balanced. 2

5 The tangential Schur algorithm

In this section we outline the use of the tangential Schur algorithm for the recursive construction
of a parametrization of the space of stable all-pass systems of fixed finite order. It is derived from
the method of [1, 10], where the tangential Schur algorithm is used to construct an infinite atlas
of generic overlapping parametrizations for the space of p×p inner functions of McMillan degree
n. The relationship between these two situations is constituted by the map R(z) 7→ R(z)−1,
or equivalently R(z) 7→ R♯(z) (see also Eqns. (11) and (17)), which is used to relate the space
of p × p inner functions of McMillan degree n to the space of p × p stable all-pass systems of
McMillan degree n.

In the context of inner functions, the tangential Schur algorithm consists of an iterative procedure
by which a given p× p inner function of McMillan degree n is reduced in n iteration steps to a
p× p inner function of McMillan degree 0 (i.e., to a constant unitary matrix). In each iteration
step the McMillan degree of the inner function at hand is reduced by 1, by application of
a suitable linear fractional transformation which is chosen to meet a particular interpolation
condition, and which involves an associated J-inner matrix function of McMillan degree 1 (or
elementary J-inner factor, see Section 2). The actual parametrization procedure consists of
the reverse process, by which a chart of inner functions of McMillan degree n is constructed
in n iteration steps, starting from an initial unitary matrix. The choice of interpolation points
and (normalized) direction vectors may serve to index such a chart, while the local coordinates
correspond to the n Schur vectors.

In the Schur algorithm, the elementary J-inner factors involved are of the form (28) and it
suffices to consider those which are analytic on the closed unit disk (see the remark at the end
of the section). Such an elementary J-inner factor Θ(z), having its pole outside the closed unit
disk at z = 1/w, can be represented as:

Θ(u, v, w, ξ,H)(z) =


I2p +

(
bw(z)

bw(ξ)
− 1

)
[
u
v

] [
u
v

]∗
J

(1− ‖v‖2)


 H, (43)

where
(1) w ∈ C, |w| < 1,
(2) u ∈ C

p×1, ‖u‖ = 1,
(3) v ∈ C

p×1, ‖v‖ < 1,
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(4) ξ ∈ C, |ξ| = 1,
(5) H is a 2p× 2p constant J-unitary matrix.

This representation is obtained from (28) in which some normalizing conditions have been im-
posed:

(i) the vector x has been rewritten x = σ

[
u
v

]
, where σ is a nonzero scalar, ‖u‖ = 1 and

thus ‖v‖ < 1, since (29) must be satisfied.

(ii) an arbitrary complex number ξ on the unit circle has been introduced which allows to
write the right J-unitary factor H as H = Θ(ξ).

Since any nonzero scaling of the vector x does not affect the expression (28), we have that

Θ(u, v, w, ξ,H)(z) = Xx

(
bw(z)bw(ξ)

−1
)
H = Xx (bw(z))Xx (bw(ξ))

−1H, (44)

and Θ(u, v, w, ξ,H)(z) is of the form (28) up to a right constant J-unitary factor. The constant
matrix Xx(bw(ξ)

−1) = Xx(bw(ξ))
−1 is indeed J-unitary, since |ξ| = 1 yields |bw(ξ)| = 1 (see

Lemma 2.2).

Once ξ is chosen arbitrarily on the unit circle, the representation (43) is unique up to a uni-
modular complex number, which corresponds to the remaining freedom in the scaling of the
vector x. It will turn out that for several of our purposes, the additional freedom to choose ξ
and H is of rather limited use. In the literature on the parametrization of inner functions it
therefore often happens that fixed choices are made, in particular ξ = 1 and H = I2p (see, e.g.,
[1, 10]). However, especially the role played by H cannot be ignored in establishing the precise
connection between the tangential Schur algorithm and the state-space approach involving the
mappings FU,V in Section 6. Also, for the construction of atlases of overlapping parametriza-
tions, the additional freedom to choose H leads to useful new alternatives, as will be discussed
in Section 7. Therefore, we will not fix a choice yet and present our results for general ξ and H.

The following lemma establishes a useful new factorization result for the class of J-unitary
matrices Xx(α) with x∗Jx > 0.

Lemma 5.1 Let x ∈ C
2p×1 be such that x∗Jx > 0. Let x be written as x = σ

[
u
v

]
, where σ is

any nonzero scalar such that u, v ∈ C
p×1 satisfy ‖u‖ = 1 and ‖v‖ < 1. It then holds that

Xx(α) = H(uv∗)X

 u
0




(α)H(uv∗)−1, (45)

where H(uv∗) denotes the Halmos extension of the strictly contractive matrix uv∗.

Proof. Note that σ, u and v with the required properties always exist, making uv∗ into a strictly
contractive matrix. The Halmos extension H(uv∗) is not difficult to compute explicitly as the
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Hermitian J-unitary matrix

H(uv∗) =




Ip − (1− 1√
1−‖v‖2

)uu∗ 1√
1−‖v‖2

uv∗

1√
1−‖v‖2

vu∗ Ip − (1− 1√
1−‖v‖2

) vv∗

‖v‖2


 , (46)

and it satisfies

H(uv∗)

[
u

−v

]
=
√

1− ‖v‖2
[
u
0

]
.

It then follows that Xx(α)H(uv∗) = H(uv∗) +
(α− 1)

(1− ‖v‖2)

[
u
v

] [
u
v

]∗
JH(uv∗) = H(uv∗) +

(α− 1)√
1− ‖v‖2

[
u
v

] [
u
0

]∗
= H(uv∗)+(α−1)H(uv∗)

[
u
0

] [
u
0

]∗
J = H(uv∗)X

 u
0




(α), which

proves the lemma. 2

The following proposition plays a central role in our construction of balanced parametrizations
for discrete-time lossless transfer functions.

Proposition 5.2 The J-inner matrix function Θ(u, v, w, ξ,H)(z) can be factorized as:

Θ(u, v, w, ξ,H)(z) = H(uv∗)Su,w(z)Su,w(bw(ξ))
−1H(uv∗)−1H, (47)

where H(uv∗) denotes the Halmos extension of the strictly contractive matrix uv∗, and where

Su,w(z) := X

 u
0




(bw(z)) =

[
Ip − (1− bw(z)) uu

∗ 0
0 Ip

]
. (48)

Proof. This is an immediate consequence of the expression (44) of Θ(u, v, w, ξ,H)(z), in combi-
nation with Lemma 5.1, in which α is replaced by the Blaschke factor bw(z). 2

The next proposition establishes that application of the linear fractional transformation associ-
ated with the elementary J-inner function Θ(u, v, w, ξ,H)(z) to a lossless function of McMillan
degree n, results in a lossless function of McMillan degree n+ 1 which satisfies an interpolation
condition involving only u, v and w.

Proposition 5.3 Let Θ(z) = Θ(u, v, w, ξ,H)(z) be the elementary J-inner function defined in
Eqn. (43), with u, v, w, ξ and H satisfying the accompanying properties. Let G(z) be a lossless
function of McMillan degree n. Then

Ĝ(z) = TΘ(z)(G(z)) = T̂Θ♯(z)(G(z)) (49)

is lossless of McMillan degree n+ 1 and satisfies the interpolation condition

Ĝ(1/w)u = v. (50)
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Proof. Proposition 4.4 asserts that Ĝ(z) is lossless. From Proposition 5.2 we have that

TΘ(z) = TH(uv∗) ◦ TSu,w(z) ◦ TM ,

where M = Su,w(ξ)
−1H(uv∗)−1H. The linear fractional transformations associated with the

J-unitary matrices M and H(uv∗) are both generalized Möbius transformations which leave
the McMillan degree unchanged, see Theorem 4.6. Only the linear fractional transformation
associated with the matrix Su,w(z) can change the McMillan degree, but it has a simple form:
for the lossless function R(z) := TM (G(z)) of McMillan degree n it holds that

R̂(z) := TSu,w(z)(R(z)) = R(z)(Ip − (1− b♯w(z))uu
∗).

Because Ip − (1− b♯w(z))uu∗ is the transfer matrix of a lossless system and, by (21), det R̂(z) =

b♯w(z) detR(z), it follows from Lemma 2.1 and from the fact that stability ensures that no com-
mon factors can occur, that R̂(z) has McMillan degree n+ 1. Then also Ĝ(z) := TH(uv∗)(R̂(z))
has McMillan degree n+ 1.

For the matrix Xx(α) it holds that x
∗JXx(α) = αx∗J . Setting x =

[
u
v

]
, α = bw(z) and z = w

this results in the following identity, in view of Eqn. (44):

[
u∗ −v∗

]
Θ(w) = 0. (51)

Application of the operator ♯ yields the equivalent relationship

Θ♯(1/w)

[
u

−v

]
= 0. (52)

Note that Ĝ(z) = T̂Θ♯(z)(G(z)) satisfies the relation

[
Ĝ(z) Ip

]
= (G(z)Θ♯

3(z) + Θ♯
4(z))

−1
[
G(z) Ip

]
Θ♯(z). (53)

The matrix G(z)Θ♯
3(z)+Θ♯

4(z) is analytic and invertible everywhere outside the open unit disk,
which follows in a manner entirely analogous to the proof of invertibility of Θ2(z)G(z) + Θ1(z)
at points of analyticity outside the unit disk, see the proof of Proposition 4.4. Setting z = 1/w
the interpolation condition (50) now follows. 2

Remark. Using relation (51) and the fact that Ĝ(z) = TΘ(z)(G(z)) can be rewritten in the form

[
Ip
Ĝ

]
= Θ

[
Ip
G

]
(Θ2G+Θ1)

−1, (54)

yield an alternative form of the interpolation condition (50):

u∗ = v∗Ĝ(w) (55)

provided that the matrix Θ2(w)G(w) + Θ1(w) is invertible. Equivalently, this requires that w
does not show up as a pole of Ĝ. Only then the form (55) is valid, while the form (50) applies
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always. This illustrates the usefulness of the identity T̂Θ♯ = TΘ when dealing with analyticity.
In a similar vein, note that for w = 0 the function Θ(u, v, w, ξ,H) is not proper and does not
admit a state-space realization. However, the matrix function Θ(u, v, w, ξ,H)♯ does admit a
state-space realization, and formula (4.85) in [18] can be used to compute the action of the
associated LFT entirely in terms of realizations.

The following proposition addresses the reverse process and constructs from a lossless matrix
function G(z) of McMillan degree n+1, a new lossless matrix function of reduced degree n. To
achieve this, it proceeds from an interpolation condition of the form (50). Though this result is
well-known (see, e.g. [3], [1]), we find it of interest to give a more constructive proof of it.

Proposition 5.4 Let Ĝ be a p× p lossless function of McMillan degree n+1 which satisfies an
interpolation condition of the form

Ĝ(1/w)u = v, (56)

in which w ∈ C is an interpolation point with |w| < 1, u ∈ C
p×1 is a direction vector with

‖u‖ = 1 and v ∈ C
p×1 is a Schur vector satisfying ‖v‖ < 1.

Let ξ ∈ C be an arbitrary number of modulus 1, and let H be an arbitrary constant J-unitary
matrix. Then Ĝ admits the representation

Ĝ = TΘ(u,v,w,ξ,H)(G), (57)

for some p× p lossless function G of McMillan degree n.

Proof. The interpolation condition (56) can be rewritten as follows:

Ĝ(1/w)u = v ⇔ 0 =
[
Ĝ(1/w) Ip

] [ u
−v

]

⇔ 0 =
[
Ĝ(1/w) Ip

]
H(uv∗)−1H(uv∗)

[
u

−v

]

⇔ 0 =
[
Ĝ(1/w) Ip

]
H(uv∗)−1

[
u
0

]

⇔ 0 = T̂H(uv∗)−1(Ĝ)(1/w)u.

The lossless function R̂ := T̂H(uv∗)−1(Ĝ) = TH(uv∗)−1(Ĝ) has the same McMillan degree n+1 as

Ĝ and satisfies the interpolation condition

R̂(1/w)u = 0.

This means that R̂(z) has a zero at z = 1/w, or equivalently a pole at z = w. Now let Bw(z)
be defined as

Bw(z) := Ip − (1− b♯w(z))uu
∗ = (Ip − (1− bw(z))uu

∗)−1, (58)

which is p× p lossless of McMillan degree 1, satisfying detBw(z) = b♯w(z) and having its pole at
z = w. Then R̂(z) can be factored as

R̂(z) = R(z)Bw(z), (59)
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where by construction R(z) is p × p lossless of McMillan degree n. (This is a matrix version of
the Schwartz lemma on which the Potapov factorization of lossless and inner functions is based;
see [23].) The identity (59) can be rewritten as

R̂ = TSu,w(R)

so that finally
Ĝ = TΘ(u,v,w,ξ,H)(G),

where G = TM−1(R), with M = Su,w(ξ)
−1H(uv∗)−1H, is also lossless and of McMillan degree

n. 2

Remark. In the standard case with w = 0 the value of Ĝ(∞) corresponds to the direct feedthrough
term D̂ of any state-space realization (Â, B̂, Ĉ, D̂) of Ĝ(z), so that the interpolation condition
then takes the form D̂u = v.

The tangential Schur algorithm can now be described. It is used in Section 7 to construct atlases
of generic charts for the manifold of p× p lossless systems of degree n.

Theorem 5.5 (Tangential Schur algorithm) Let G(n) be a p× p lossless transfer matrix of
McMillan degree n. For k = n, . . . , 1, let interpolation points wk ∈ C be given with |wk| < 1,
let constants ξk ∈ C be given with |ξk| = 1, and let mappings Hk : (u, v, w, ξ) 7→ Hk(u, v, w, ξ)
be given which assign a constant 2p × 2p J-unitary matrix Hk(u, v, w, ξ) to each quadruple
(u, v, w, ξ) ∈ C

p × C
p × C× C with ‖u‖ = 1, ‖v‖ < 1, |w| < 1 and |ξ| = 1.

Then for k = n, . . . , 1, there exist vectors uk ∈ C
p with ‖uk‖ = 1, such that the vectors vk ∈ C

p

constructed recursively by the following formulas, all have length ‖vk‖ < 1:

vk := G(k)(1/wk)uk, (60)

Θk := Θ(uk, vk, wk, ξk,Hk(uk, vk, wk, ξk)), (61)

G(k−1) := T −1
Θk

(G(k)). (62)

With such a choice of the unit vectors uk (k = n, . . . , 1) each of the functions G(k) is lossless of
McMillan degree k and one can write

G(n) = TΘn(TΘn−1
(. . . (TΘ1

(G(0))) . . .)) = TΘnΘn−1···Θ1
(G(0)), (63)

where G(0) is a constant unitary matrix.

Proof. In view of Proposition 5.4, which is applied repeatedly, it only remains to show that if G
is a lossless function of degree n > 0, then for every choice of interpolation point w with |w| < 1,
a direction vector u with ‖u‖ = 1 exists for which the Schur vector v := G(1/w)u satisfies
‖v‖ < 1. A function theoretic proof of this fact is given in [10, Lemma 6]. An alternative
state-space argument runs as follows.
For |w| < 1, the mapping z 7→ b−w(z) constitutes an automorphism of the unit disk. Thus,
the function G̃(z) := G(b−w(z)) is again lossless (and also of McMillan degree n > 0). This
shows that G(1/w) = G̃(∞) appears as the direct feedthrough matrix D̃ of any state-space
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realization (Ã, B̃, C̃, D̃) of the lossless function G̃. If such a realization is chosen to be minimal
and balanced, then D̃ is a proper submatrix of the associated unitary realization matrix; see
Proposition 3.2. Clearly, some column of D̃ must have length < 1, since otherwise all columns
of B̃ would be zero, contradicting minimality with order n > 0. Thus, a suitable vector u can
always be found among the set of standard basis vectors {e1, . . . , ep}. As a matter of fact, any
normalized basis will do. 2

Remark. Similar results can be proved in which the interpolation condition (50), which involves
a relationship among the columns of Ĝ, is replaced by an interpolation condition involving its
rows. This can be done by applying Proposition 5.4 to the lossless function Ĝ∗(z) and using
part (c) of Lemma 4.5. The interpolation condition then takes the form

u∗Ĝ(1/w) = v∗, (64)

and should not be confused with the alternative form (55) for the interpolation condition (50).
As a counterpart to the result of Proposition 5.4, one also obtains an alternative linear fractional
representation

Ĝ = TΘ(u,v,w,ξ,H)o(G̃)

for some p×p lossless function G̃ of degree n. Observe that the J-inner function Θ(u, v, w, ξ,H)o

is now analytic outside the open unit disk. Thus, the theory of this section admits a dual theory
in which elementary J-inner factors analytic outside the disk and interpolation conditions on
the rows are used.
Note that the tangential Schur algorithm described above proceeds from a set of n interpolation
conditions on the columns of a sequence of intermediate lossless functions. Obviously, a set
of n interpolation conditions on the rows of a sequence of intermediate lossless functions can
also be imposed. But since each iteration step involves a single interpolation condition only,
mixed situations can also be treated in which n interpolation conditions are prescribed involving
columns and rows.

6 Connection between the classes of mappings TΘ(z) and FU,V

In the scalar case, mappings of the form FU,V with U = I2 have been used in [14] to recursively
construct a balanced canonical form for the space of discrete-time lossless systems of finite
McMillan degree. The parameters that occur in this recursion have the interpretation of Schur
parameters, corresponding to the situation with interpolation points w at zero. With this
connection in mind, it is the purpose of the present section to clarify the relationship between
the two classes of mappings TΘ(z) and FU,V , with Θ(z) a J-inner matrix function of McMillan
degree 1 and U and V unitary. We are interested in investigating the possibilities for representing
a mapping TΘ(z) in terms of a corresponding mapping FU,V . This will give us balanced state-
space parametrizations directly in terms of the set of parameters u, v, w, ξ and H used in the
tangential Schur algorithm. Moreover, unitary matrices will be involved in the computation of
these realizations, and these are known to be numerically well-conditioned.
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Let Lp
n denote the set of rational p × p lossless transfer matrices of McMillan degree n and let

Lp =
⋃∞

n=0 L
p
n.

Theorem 6.1 Let U and V be unitary (p+ 1)× (p+ 1) matrices, block-partitioned as

U =

[
αU MU

kU β∗
U

]
, V =

[
αV MV

kV β∗
V

]
, (65)

with kU and kV scalar and the other blocks of compatible sizes.
The mapping FU,V : Lp → Lp can be expressed as a linear fractional transformation TΦ : Lp →
Lp for some J-inner function Φ if and only if (kU , kV ) 6= (0, 0).
(i) If |kU | = |kV | = 1, then MU and MV are unitary matrices and FU,V is the generalized Möbius
transform FU,V (G) = MV GM∗

U which can be represented as TΦ(G) with a constant J-unitary
matrix Φ.
(ii) If (kU , kV ) 6= (0, 0) and |kU | < 1 or |kV | < 1, then FU,V can be represented as TΦ with an
elementary J-inner function Φ having a pole at kV /kU , located at infinity for kU = 0.

Proof. Because U and V are unitary, according to Proposition 3.4 the mapping FU,V maps Lp

into Lp. If Φ is J-inner, then the mapping TΦ also maps Lp into Lp but in addition it is bijective,
see Lemma 4.1 and Proposition 4.4. Thus, a necessary requirement for FU,V to be representable
as a linear fractional transformation TΦ with a J-inner function Φ, is injectivity.
First consider the scalar case p = 1 with (kU , kV ) = (0, 0). Then U and V are 2 × 2 diagonal
matrices and all losslessG are mapped to the unimodular constant αV α

∗
U . Therefore the mapping

FU,V obviously is not injective.
In the multivariable case p > 1 with (kU , kV ) = (0, 0), it also holds that FU,V is not injective
and thus cannot be represented as an LFT associated with a J-inner function. Indeed, let
P (ξ) = Ip + (ξ − 1)βUβ

∗
U , and Q(ξ) = Ip + (ξ − 1)βV β

∗
V where ξ 6= 1 is a unimodular number.

Then P (ξ) and Q(ξ) are unitary and we have

U

[
1 0
0 P (ξ)

]
=

[
Ip 0
0 ξ

]
U, V

[
1 0
0 Q(ξ)

]
=

[
Ip 0
0 ξ

]
V,

so that by Lemma 3.3 (i), (iii), for every lossless function G,

FU,V (Q(ξ)G(z)P (ξ)∗) = F

 Ip 0
0 ξ



U,



 Ip 0
0 ξ



V
(G(z)) = FU,V (G(z)).

Therefore injectivity of FU,V requires that Q(ξ)GP (ξ)∗ = G for every lossless function G. How-
ever if this is the case, then βV β

∗
V G = GβUβ

∗
U for all lossless G. Choosing G = Ip this implies

βV β
∗
V = βUβ

∗
U . Choosing G = Ip − 2γγ∗, where γ ∈ C

p is a vector of length one which is
independent of βV and not orthogonal to βV , it follows that βV β

∗
V γγ

∗ = γγ∗βUβ
∗
U , which yields

a contradiction. Therefore FU,V is not injective.
Next, assume that (kU , kV ) 6= (0, 0). Let

J1 =

[
Ip 0
0 0

]
and J2 =

[
0 0
0 1

]
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and consider the linear fractional transformation L defined by

L(H(z)) = (J1H(z) + J2)(J2H(z) + J1)
−1.

This linear fractional transformation is well-defined for every H(z) such that, in the block
decomposition of H(z)

H(z) =

[
H1(z) H2(z)
H3(z) H4(z)

]
,

with H4(z) scalar, H4(z) is not identically zero. It can be computed as

L(H) =

[
H1 −H2H

−1
4 H3 H2H

−1
4

−H−1
4 H3 H−1

4

]
.

The mapping FU,V can now be written using this transformation as:

FU,V (G(z)) =
[
Ip 0

]
L
(
V

[
1 0
0 G(z)

]
U∗ − z

[
0 0
0 1

])[
Ip
0

]
.

Now,

L
(
V

[
1 0
0 G(z)

]
U∗ − z

[
0 0
0 1

])
=

=

[
J1

(
V

[
1 0
0 G(z)

]
− z

[
0 0
0 1

]
U

)
+ J2U

] [
J2

(
V

[
1 0
0 G(z)

]
− z

[
0 0
0 1

]
U

)
+ J1U

]−1

=

=

[
αV MV G
kU β∗

U

] [
αU MU

kV − z kU β∗
V G− z β∗

U

]−1

.

Using the following expression for the inverse of a partitioned matrix

[
M1 M2

M3 M4

]
=

[
0 M−1

3

0 0

]
+

[
−M−1

3 M4

Ip

]
(M2 −M1M

−1
3 M4)

−1
[
Ip −M1M

−1
3

]
,

in which M2 and M3 are square submatrices, and M−1
3 is assumed to exist (which holds by

assumption in our case), we obtain

FU,V (G) =
[
αV MV G

]
[

−β∗
V G−z β∗

U

kV −z kU
Ip

][
MU − αU (β∗

V G− z β∗
U )

kV − z kU

]−1

=

=

[
MV G− αV (β∗

V G− z β∗
U )

kV − z kU

] [
MU − αU (β∗

V G− z β∗
U )

kV − z kU

]−1

=

=

[(
MV − αV β∗

V

kV − z kU

)
G+

z αV β∗
U

kV − z kU

] [
− αU β∗

V

kV − z kU
G+

(
MU +

z αU β∗
U

kV − z kU

)]−1

.

And finally, FU,V (G) = TΦ(G) for Φ given by

Φ(z) =




MU +
zαUβ

∗
U

kV − zkU
− αUβ

∗
V

kV − zkU
zαV β

∗
U

kV − zkU
MV − αV β

∗
V

kV − zkU


 . (66)
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Exploiting unitarity of U and V , it then is straightforward to establish that

J − Φ(z)JΦ(λ)∗ =
(1− λ z)

(kV − z kU )(kV − λkU )

[
αU

αV

] [
αU

αV

]∗
,

from which it follows that Φ(z) is J-inner. The expression (66) for Φ(z) is of McMillan degree
1 having a pole at kV /kU (located at infinity if kU = 0), except if |kU | = |kV | = 1, in which case

Φ(z) is of McMillan degree 0 since αU = αV = 0 and Φ(z) =

[
MU 0
0 MV

]
becomes constant.

2

The previous theorem makes clear under which conditions a mapping FU,V with unitary matrices
U and V admits a representation as an LFT associated with an elementary J-inner factor Φ.
Depending on the location of the pole kV /kU , this factor takes the different forms described in
Theorem 2.3. In the cases where such a representation exists the proof is constructive, yielding
the possible expression (66) for Φ. Using Lemma 4.3 all the possibilities for Φ can be computed.

Lemma 6.2 Let Φ(z) and Ψ(z) be elementary J-inner factors for which TΦ and TΨ agree on
Lp. If p > 1 then there exists a unimodular constant ρ such that

Φ(z) = ρΨ(z).

If p = 1, then either there exists a unimodular constant ρ such that Φ(z) = ρΨ(z), or Φ(z) has
a pole at z = w with |w| 6= 1, Ψ(z) has a pole at z = 1/w and there exists a unimodular constant
ρ such that

Φ(z) = ρb♯w(z)Ψ(z).

Proof. By Lemma 4.3,
Φ(z) = b(z)Ψ(z), (67)

for some scalar function b(z), and since Φ and Ψ are J-inner, b(z) must be a Blaschke factor.
Computing the determinants gives

detΦ(z) = b(z)2p detΨ(z).

But the determinant of an elementary J-inner function is either equal to a unimodular number
(if the pole is located on the unit circle) or to a Blaschke factor, having McMillan degree 1. If
p > 1 it therefore follows that that b(z) must be a unimodular constant. If p = 1 an alternative
possibility occurs if Φ has a pole at z = w with |w| 6= 1. In that case Ψ may have a pole at

z = 1/w and b(z) may also be chosen equal to ρb♯w(z) for some complex number ρ of modulus
one. If Ψ is of the form

Ψ(z) =
(
I2 − (1− bw(z))x(x

∗Jx)−1x∗J
)
H,

then
Φ(z) = ρ

(
I2 − (1− bw

♯(z))y(y∗Jy)−1y∗J
)
H,

where y is a solution to y∗Jx = 0. 2

As a consequence of Theorem 6.1 and Lemma 6.2 we have the following result.
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Corollary 6.3 Let U and V be unitary matrices of size (p+1)× (p+1), partitioned as in (65).
If p > 1, then the mapping FU,V can be represented in the form of a mapping TΘ(u,v,w,ξ,H) if and
only if |kU | < |kV |. Likewise it can be represented in the form of a mapping TΘ(u,v,w,ξ,H)o if and
only if |kU | > |kV |.
If p = 1, a representation of FU,V in the form of a mapping TΘ(u,v,w,ξ,H) exists if and only
if a representation in the form of a mapping TΘ(u,v,w,ξ,H)o exists, which holds if and only if
|kU | 6= |kV |.

Proof. The statements for the case p > 1 follow from the earlier results as indicated. For p = 1,
note that FU,V = FV ,U which follows from Lemma 3.3 (ii) upon complex conjugation and noting
that transposition has no effect on a matrix of size 1× 1. 2

To complete the picture it remains to characterize the elementary J-inner factor Φ analytic
inside the disk in case |kU | < |kV |. As we have seen, if a mapping FU,V is given, the expression
(66) together with Lemma 6.2 provide all the possible alternatives for Φ. Conversely, if an
elementary J-inner factor Φ analytic inside the disk is given, one may wonder whether TΦ
admits a representation as a mapping of the form FU,V . Here it will prove to be essential to

introduce the J-inner matrix function Θ̂(u, v, w)(z) defined by

Θ̂(u, v, w)(z) = H(uv∗)Su,w(z)H(wuv∗). (68)

The main result of this section can now be stated as follows.

Theorem 6.4 Let Θ(z) be an elementary J-inner factor analytic inside the unit disk. If TΘ(z)

coincides with a mapping FU,V with U and V unitary, then Θ(z) can be written as

Θ(z) = Θ̂(u, v, w)(z)

[
P 0
0 Q

]
, (69)

for some u, v ∈ C
p with ‖u‖ = 1, ‖v‖ < 1, some w ∈ C with |w| < 1, and some p × p unitary

matrices P and Q.

In that case one can take U = Û

[
1 0
0 P

]
and V = V̂

[
1 0
0 Q

]
, where

Û =




√
1−|w|2√

1−|w|2‖v‖2
u Ip − (1 +

w
√

1−‖v‖2√
1−|w|2‖v‖2

)uu∗

w
√

1−‖v‖2√
1−|w|2‖v‖2

√
1−|w|2√

1−|w|2‖v‖2
u∗


 , (70)

V̂ =




√
1−|w|2√

1−|w|2‖v‖2
v Ip − (1−

√
1−‖v‖2√

1−|w|2‖v‖2
) vv∗

‖v‖2√
1−‖v‖2√

1−|w|2‖v‖2
−

√
1−|w|2√

1−|w|2‖v‖2
v∗


 . (71)

Proof. Theorem 6.1 ensures that a mapping FU,V can be represented by a linear fractional
transformation for the J-inner elementary factor Φ(z) given by (66). If p > 1, it follows from
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Lemma 6.2 that |kU | < |kV |. If p = 1, since the mappings FU,V and FV ,U coincide, we still may
assume |kU | < |kV |, and in both cases we have that

Φ(z) = ρΘ(z),

for some unimodular number ρ.
Since |kU | < |kV |, kV 6= 0 and kU 6= 1, so that ‖αU‖ 6= 0. Let

w =
kU

kV
, u =

αU

‖αU‖
, v =

αV

‖αU‖
, (72)

which satisfy |w| < 1, ‖u‖ = 1 and ‖v‖ < 1. The function Θ(z) is, by Proposition 5.2, of the
form

Θ(z) = H(uv∗)Su,w(z)H(E)

[
P 0
0 Q

]
,

for some strictly contractive matrix E and some unitary matrices P and Q, depending on the
matrices U and V . To see this, note that if Θ(z) is an elementary J-inner factor written in the
form Θ(u, v, w, ξ,H)(z) having its only zero at z = w, then the matrix Θ(w) has a nontrivial
left kernel of dimension one, which is characterized by Eqn. (51). For the matrix function Φ(z)
given by (66) it is easily shown that

[
u∗ −v∗

]
Φ(w) = 0 for w, u and v defined by Eqn. (72).

Note that, the matrices U and V being unitary,

‖αU‖2 + |w|2|kV |2 = 1

‖αU‖2‖v‖2 + |kV |2 = 1,

so that

‖αU‖ =

√
1− |w|2√

1− |w|2‖v‖2
, |kV | =

√
1− ‖v‖2√

1− |w|2‖v‖2
. (73)

Now, the quickest way to proceed is to compare the realizations of Φ♯ and Θ♯ (note that Θ will
fail to have a realization if w = 0). Using (66) we get

Φ♯(z) =

[
M∗

U 0

−βV α∗
U

kV
M∗

V − βV α∗
V

kV

]
+

[
βU

− kU
kV

βV

]
(z − kU

kV
)−1

[
α∗
U

kV

α∗
V

kV

]
,

while a state-space realization of S♯
u,w(z) is easily computed to yield that

Θ♯(z) = D + C(z − w)−1B,

where

D =

[
P ∗ 0
0 Q∗

]
H(E)

[
Ip − (1 + w)uu∗ 0

0 Ip

]
H(uv∗),

C =

[
P ∗ 0
0 Q∗

]
H(E)

[ √
1− |w|2u

0

]
and B =

[ √
1− |w|2u∗ 0

]
H(uv∗).

Comparing the (1,2)-block-entries of the expressions for the direct feedthrough yields, using
(19),

P ∗(Ip − EE∗)−1/2(E − wuv∗)(Ip − vv∗)−1/2 = 0
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and thus E = wuv∗ or equivalently

Θ(z) = Θ̂(u, v, w)(z)

[
P 0
0 Q

]
,

as claimed. Replacing E by its value gives

D =

[
P ∗ 0
0 Q∗

]



Ip −
(
1 +

w
√

1−‖v‖2√
1−|w|2‖v‖2

)
uu∗ 0

1−|w|2√
1−‖v‖2

√
1−|w|2‖v‖2

vu∗ Ip −
(
1−

√
1−|w|2‖v‖2√
1−‖v‖2

)
vv∗

‖v‖2


 ,

C =

√
1− |w|2√

1− |w|2‖v‖2

[
P ∗ 0
0 Q∗

] [
u
wv

]
and B =

√
1− |w|2√
1− ‖v‖2

[
u∗ v∗

]
.

The matrix MU is therefore given by

MU = ρ

(
Ip −

(
1 +

w
√

1− ‖v‖2√
1− |w|2‖v‖2

)
uu∗

)
P.

From (72) and (73) we have that

[
α∗
U

kV

α∗
V

kV

]
=

|kV |
kV

B,

which determines the transformation between the two realizations, so that

[
β∗
U − kU

kV
β∗
V

]
= ρ

kV
|kV |

C∗ = ρ
kV
|kV |

√
1− |w|2√

1− |w|2‖v‖2
[
u∗ w v∗

] [ P 0
0 Q

]
.

Finally it is obtained that the matrices U and V are of the form

U =

[
Ip 0

0 kV
|kV |

]
Û

[
1 0
0 ρP

]
and V =

[
Ip 0

0 kV
|kV |

]
V̂

[
1 0
0 ρQ

]
,

with Û and V̂ specified by (70) and (71). Since a pre-multiplication by

[
Ip 0

0 kV
|kV |

]
and a

post-multiplication by

[
1 0
0 ρIp

]
do not change the mapping FU,V according to Lemma 3.3,

the values of U and V given in the theorem are obtained. 2

7 Overlapping canonical forms for lossless and stable systems

In the tangential Schur algorithm as presented in Theorem 5.5, a lossless function G = G(n) of
McMillan degree n is broken down to a constant unitary matrix G(0) using a sequence of inter-
polation points wk, direction vectors uk, Schur vectors vk, unimodular constants ξk and constant
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J−unitary matrices Hk(uk, vk, wk, ξk), for k = 1, . . . , n. The set of values for wk, uk, ξk and the
set of mappings Hk at the n recursion steps can serve to index a generic chart for the differen-
tiable manifold of lossless functions of degree n, if the mappings Hk are sufficiently smooth. The
Schur parameter vectors vk together with the unitary matrix G(0) that we finally reach, then
provide the local coordinates for this chart. An infinite atlas of overlapping generic charts is
obtained by varying the choices for the uk, wk, ξk and Hk. Sub-atlases can be extracted from it,
as the one built in [1] which employs elementary J-inner matrices of the form Θ(uk, vk, wk, 1, Ip).
Such a choice implies that G(0) is the value of the lossless function G at 1. We may even take
a finite atlas by fixing all the interpolation points at zero and letting the values of the uk vary
among a canonical basis of Cp (cf. the proof of Theorem 5.5). However it is interesting to keep
in mind the richness of the possibilities, including the one to mix interpolation conditions on the
columns (50) with interpolation conditions on the rows (64). This could be of interest in order
to describe lossless transfer functions with a particular structure.

Now let constants ξk be chosen with |ξk| = 1 for all k = 1, . . . , n, and let the mappings

Hk(u, v, w, ξ) = H(uv∗)Su,w(ξ)H(w̄uv∗)

be chosen so that Θ(u, v, w, ξk ,Hk(u, v, w, ξk)) = Θ̂(u, v, w) for all u ∈ C
p, ‖u‖ = 1, v ∈ C

p,
‖v‖ < 1, w ∈ C, |w| < 1. Then one obtains an atlas for the manifold of lossless systems that
can be described directly in terms of state-space realizations using the FU,V mappings.

Let us now describe such an atlas for the manifold Lp
n of p × p lossless functions of McMillan

degree n in more detail. Choose ξk = 1 for all k = 1, . . . , n. For a set of interpolation points
w1, w2, . . . , wn in the open unit disk, a set of direction vectors u1, u2, . . . , un ∈ C

p of length one,
and a coordinate chart (W, ϑ) for the set Up of unitary p× p matrices, we define a chart (V, ϕ)
by its domain

V(w1, w2, . . . , wn, u1, u2, . . . , un,W) = {G ∈ Lp
n | ‖G(k)(1/wk)uk‖ < 1, G(0) ∈ W},

and its coordinate map

ϕ : G → (v1, v2, . . . , vn, ϑ(G
(0)))

where, for k = 1, . . . , n, the lossless functions G(k) and the Schur parameter vectors vk are
recursively defined in Theorem 5.5, in which we choose

Θk = Θ̂(uk, vk, wk).

Theorem 7.1 The family (V, ϕ) defines a C∞-atlas on Lp
n.

The proof is left to the reader; see also [1] and [10].

In approximation problems, the Douglas-Shapiro-Shields factorization is often used to represent
a transfer function. Since in such problems the lossless factor is only determined up to a unitary
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constant matrix, we are interested in a parametrization of the quotient space of lossless functions
by unitary matrices. To be precise, two lossless functions G1(z) and G2(z) in this quotient are
equivalent if there exists a unitary matrix X such that G1(z) = XG2(z). To deal with such an
equivalence relation, we have the identity

TΘ̂(w,u,X v)(X G) = X TΘ̂(w,u,v)(G),

which is satisfied for every lossless G and every unitary X. Therefore, if G(z) has a set of Schur
parameters (v1, . . . , vn) and a unitary matrix G(0) = D0 in a chart defined by given sequences
(w1, . . . , wn) of interpolation points and (u1, . . . , un) of direction vectors, then XG(z) has the
Schur parameters (X v1, . . . ,X vn) and the unitary matrix G(0) = XD0 in the same chart. An
atlas of the quotient space can therefore be obtained by fixing the unitary matrix G(0) in each
chart instead of letting it vary. For w1, w2, . . . , wn in the open unit disk, u1, u2, . . . , un ∈ C

p of
unit length and D0, a fixed p× p unitary matrix, we define the chart (Ṽ, ϕ̃) by its domain

Ṽ(w1, w2, . . . , wn, u1, u2, . . . , un,D0) = {G ∈ Lp
n | ‖G(k)(1/wk)uk‖ < 1, G(0) = D0},

and its coordinate map
ϕ̃ : G → (v1, v2, . . . , vn)

where the lossless functions G(k) and the Schur parameter vectors vk are again those of Theorem
5.5, in which Θk = Θ̂(uk, vk, wk).

Theorem 7.2 The family (Ṽ , ϕ̃) defines a C∞-atlas on the quotient space Lp
n/Up.

Moreover, a unique balanced realization computed from the Schur parameters corresponds to
every lossless function in the domain Ṽ of a chart, by iterating formula (34) in which U and V
are the unitary matrices given in Theorem 6.4. These ‘Schur balanced realizations’ are really
in a (local) canonical form. With each (A,B,C,D) this method associates (for a given choice
of interpolation points and direction vectors) a unique realization (Ã, B̃, C̃, D̃). Attaching a
canonical form with each chart, we obtain a set of overlapping canonical forms. This generalizes
the results of [14] to the multivariable case and opens up possibilities for multivariable stable
all-pass model reduction and approximation methods.

Note that, except for particular choices of the interpolation points and direction vectors, these
overlapping canonical forms in general cannot be characterized in a simple way, and cannot be
computed directly from a given realization. However, if the interpolation points wk are the poles
of G(z) with the direction vectors uk spanning the associated kernels of the singular matrices
G(1/wk), then the Schur vectors vk are all zero and the Schur balanced realization is in Schur
form (i.e., the matrix A is triangular). If the interpolation points wk are all equal to zero and
the vectors uk are all equal to e1 = [1, 0, . . . , 0]∗, then the Schur balanced realization is positive
upper Hessenberg.

The overlapping balanced canonical forms for stable all-pass systems obtained in the way de-
scribed above, also give rise to output-normal canonical forms, resp. input-normal canonical
forms, as follows. Consider an arbitrary (asymptotically) stable system in minimal state-space
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form, given by (A,B,C,D). It is not hard to show that one can find a pair (B̃, D̃) such that
(A, B̃, C, D̃) is stable all-pass. One can then choose a state-space transformation that brings
this system into one of the balanced canonical forms presented in this paper, which we de-
note by (Ab, Bb, Cb,Db). The resulting state-space transformation T and the resulting pair
(Ab, Cb) = (TAT−1, CT−1) are independent of the choice of B̃, D̃.

Therefore applying the same state-space transformation to (A,B,C,D) one obtains a canonical
form (An, Bn, Cn,Dn), where An = Ab, Cn = Cb, Bn = TB, Dn = D. Obviously the ob-
servability Gramian of this canonical form is the identity matrix, hence it is an output-normal
canonical form. By duality one can also construct input-normal canonical forms in the same
fashion. These output-normal and input-normal canonical forms are of importance in model
order reduction and system identification problems. An analogous canonical form in continuous
time was used in [13] to construct an algorithm to find the stable system of order k, k < n,
which is closest in the H2-norm to a given stable system of order n. In system identification
output-normal canonical forms are used in the context of the so-called separable least squares
approach (cf., e.g., [6]).

The parametrizations described in this paper have been implemented in a software program
named RARL2, dedicated to the rational approximation of multivariable discrete-time transfer
functions in L2 norm. Just as the software program Hyperion, it is based on the algorithm
described in [10]. However, in contrast to Hyperion it has the particularity to deal with state-
space formulations. This state-space approach is of great interest due to the good numerical
behavior of the recursive construction of balanced realizations presented in this paper. Presently
the main domain of application of RARL2 is the synthesis and identification of filters from partial
frequency data.
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30



[4] L. Baratchart, On the topological structure of inner functions and its use in identification,
in: Analysis of Controlled Dynamical Systems, Lyon, France, 1990, Progress in Systems
and Control Theory, Vol. 8, Birkhäuser, 51–59, 1990.
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