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BEST ℓ1-APPROXIMATION OF NONNEGATIVE POLYNOMIALS

BY SUMS OF SQUARES

JEAN B. LASSERRE

Abstract. Given a nonnegative polynomial f , we provide an explicit expres-
sion for its best ℓ1-norm approximation by a sum of squares of given degree.

1. Introduction

This note is concerned with the cone of nonnegative polynomials and its sub-
cone of polynomials that are sums of squares (s.o.s.). Understanding the difference
between these two cones is of practical importance because if on the one hand
nonnegative polynomials are ubiquitous, on the other hand s.o.s. polynomials are
much easier to handle. For instance, and in contrast with nonnegative polynomials,
checking whether a given polynomial is s.o.s. can be done efficiently by solving a
semidefinite program, a powerful technique of convex optimization.

A negative result by Blekherman [3] states that when the degree is fixed, there
are much more nonnegative polynomials than sums of squares and the gap between
the two corresponding cones increases with the number of variables. On the other
hand, if the degree is allowed to vary, it has been known for some time that the
cone of s.o.s. polynomials is dense (for the ℓ1-norm of coefficients) in the cone of
polynomials nonnegative on the box [−1, 1]n. See e.g. Berg, Christensen and Ressel
[1] and Berg [2]. However, [1] was essentially an existence result and subsequently,
Lasserre and Netzer [5] have provided a very simple and explicit sequence of s.o.s.
polynomials converging for the ℓ1-norm to a given nonnegative polynomial f .

In this note we provide an explicit expression for the best ℓ1-norm approximation
of a given nonnegative polynomial f ∈ R[x] by a s.o.s. polynomial g of given degree
2d (≥ deg f). It turns out that

g = f + λ∗
0 +

n
∑

i=1

λ∗
i x

2d
i ,

for some nonnegative vector λ∗ ∈ R
n+1, very much like the approximation already

provided in [5] (where the λ∗
i ’s are equal). In addition, the vector λ∗ is an optimal

solution of an explicit semidefinite program, and so can be computed efficiently.

2. Main result

2.1. Notation and definitions. Let R[x] (resp. R[x]d) denote the ring of real
polynomials in the variables x = (x1, . . . , xn) (resp. polynomials of degree at
most d), whereas Σ[x] (resp. Σ[x]d) denotes its subset of sums of squares (s.o.s.)
polynomials (resp. of s.o.s. of degree at most 2d). For every α ∈ N

n the notation
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xα stands for the monomial xα1

1 · · ·xαn

n and for every i ∈ N, let N
p
d := {β ∈ N

n :
∑

j βj ≤ d} whose cardinal is s(d) =
(

n+d
n

)

. A polynomial f ∈ R[x] is written

x 7→ f(x) =
∑

α∈Nn

fα xα,

and f can be identified with its vector of coefficients f = (fα) in the canonical basis
(xα), α ∈ N

n. Hence, denote by ‖f‖1 the ℓ1-norm
∑

α |fα| of the coefficient vector
f which also defines a norm on R[x]d.

Let Sp ⊂ R
p×p denote the space of real p × p symmetric matrices. For any

two matrices A,B ∈ Sp, the notation A � 0 (resp. ≻ 0) stands for A is positive
semidefinite (resp. positive definite), and the notation 〈A,B〉 stands for traceAB.

Let vd(x) = (xα), α ∈ N
n
d , and let Bα ∈ R

s(d)×s(d) be real symmetric matrices
such that

(2.1) vd(x)vd(x)
T =

∑

α∈Nn

2d

xα Bα.

Recall that a polynomial g ∈ R[x]2d is a s.o.s. if and only if there exists a real
positive semidefinite matrix X ∈ R

s(d)×s(d) such that

gα = 〈X,Bα〉, ∀α ∈ N
n
2d.

d-moment matrix. With a sequence y = (yα), α ∈ N
n, let Ly : R[x] → R be the

linear functional

f (=
∑

α

fα xα) 7→ Ly(f) =
∑

α

fα yα, f ∈ R[x].

With d ∈ N, the d-moment matrix associated with y is the real symmetric matrix
Md(y) with rows and columns indexed in N

n
d , and defined by:

(2.2) Md(y)(α, β) := Ly(x
α+β) = yα+β , ∀α, β ∈ N

n
d .

It is straightforward to check that
{

Ly(g
2) ≥ 0 ∀g ∈ R[x]d

}

⇔ Md(y) � 0, d = 0, 1, . . . .

Semidefinite programming. A semidefinite program is a convex (more precisely
convex conic) optimization problem of the form minX {〈C,X〉 : AX = b; X � 0},
for some real symmetric matrices C,X ∈ Sp, vector b ∈ R

m, and some linear
mapping A : Sp → R

m. Semidefinite programming is a powerful technique of
convex optimization, ubiquitous in many areas. A semidefinite program can be
solved efficiently and even in time polynomial in the input size of the problem, for
fixed arbitrary precision. For more details the interested reader is referred to e.g.
[7].

2.2. The result. Consider the following optimization problem:

(2.3) ρd := min
g

{ ‖f − g‖1 : g ∈ Σ[x]d },

that is, one searches for the best ℓ1-approximation of f by a s.o.s. polynomial of
degree at most 2d (≥ deg f). Of course, and even though (2.3) is well defined for an
arbitrary f ∈ R[x], such a problem is of particular interest when f is nonnegative
but not a s.o.s.
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Theorem 2.1. Let f ∈ R[x] and let 2d ≥ deg f . The best ℓ1-norm approximation

of f by a s.o.s. polynomial of degree at most 2d is given by

(2.4) x 7→ g(x) = f(x) + (λ∗
0 +

n
∑

i=1

λ∗
i x

2d
i ),

for some nonnegative vector λ∗ ∈ R
n+1. Hence ρd =

n
∑

i=0

λ∗
i , and in addition, λ∗ is

an optimal solution of the semidefinite program:

(2.5) min
λ≥0

{

n
∑

i=0

λi : f + λ0 +

n
∑

i=1

λi x
2d
i ∈ Σ[x]d

}

.

Proof. Consider f as an element of R[x]2d by setting fα = 0 whenever |α| > deg f
(where |α| =

∑

αi), and rewrite (2.3) as the semidefinite program:

(2.6)

ρd := min
λ≥0,X�0,g

∑

α∈Nn

2d

λα

s.t. λα + gα ≥ fα, ∀α ∈ N
n
2d

λα − gα ≥ −fα, ∀α ∈ N
n
2d

gα − 〈X,Bα〉 = 0, ∀α ∈ N
n
2d.

The dual semidefinite program of (2.6) reads:

(2.7)























max
uα,vα≥0,y

∑

α∈Nn

d

fα(uα − vα)

s.t. uα + vα ≤ 1 ∀α ∈ N
n
2d

uα − vα + yα = 0 ∀α ∈ N
n
2d,

Md(y) � 0,

or, equivalently,

(2.8)











max
y

−Ly(f)

s.t. Md(y) � 0
|yα| ≤ 1, ∀α ∈ N

n
2d.

The semidefinite program (2.8) has an optimal solution y∗ because the feasible set
is compact. In addition, let y = (yα) be the moment sequence of the measure

dµ = e−‖x‖2

dx, scaled so that |yα| < 1 for all α ∈ N
n
2d. Then (y,u,v) with

u = −min[y, 0] and v = max[y, 0], is strictly feasible in (2.7) because Md(y) ≻ 0,
and so Slater’s condition1 holds for (2.7). Therefore, by a standard duality result in
convex optimization, there is no duality gap between (2.6) and (2.7) (or (2.8)), and
(2.6) has an optimal solution (λ∗,X∗, g∗). Hence ρd = −Ly∗(f) for any optimal
solution y∗ of (2.8).

1Slater’s condition holds the conic optimization problem P : minx{c′x : Ax = b; x ∈ K},
where K ⊂ R

n is a convex cone, if there exists a strictly feasible solution x0 ∈ intK. In this case,
there is no duality gap between P and its dual P∗ : maxz{b′

z : c− A
′
z ∈ K

∗}. In addition, if
the optimal value is bounded then P

∗ has an optimal solution.



4 JEAN B. LASSERRE

Now by [6, Lemma 1], Md(y) � 0 implies that |yα| ≤ max[Ly(1),maxi Ly(x
2d
i )],

for every α ∈ N
n
2d. Therefore, (2.8) has the equivalent formulation

(2.9)















ρd = −min
y

Ly(f))

s.t. Md(y) � 0
Ly(1) ≤ 1

Ly(x
2d
i ) ≤ 1, i = 1, . . . , n,

whose dual is eaxctly (2.5). Again Slater’s condition holds for (2.9) and it has an
optimal solution y∗. Therefore (2.5) also has an optimal solution λ∗ ∈ R

n+1
+ with

ρd =
∑

i λ
∗
i , the desired result. �

So the best ℓ1-norm s.o.s. approximation g in Theorem (2.1) is very much
the same as the ℓ1-approximation provided in Lasserre and Netzer [5] where all
coefficients λ∗

j were identical.

Example 1. Consider the Motzkin-like polynomial2 x 7→ f(x) = x2
1x

2
2(x

2
1 + x2

2 −
1) + 1/27 of degree 6, which is nonnegative but not a s.o.s., and with a global
minimum f∗ = 0 attained at 4 global minimizers x∗ = (±(1/3)1/2,±(1/3)1/2). The
results are displayed in Table 1 for d = 3, 4, 5.

d λ∗ ρd

3 ≈ 10−3 (5.445, 5.367, 5.367) ≈ 1.6 10−2

4 ≈ 10−4 (2.4, 9.36, 9.36) ≈ 2. 10−3

5 ≈ 10−5 (0.04, 4.34, 4.34) ≈ 8. 10−5

Table 1. Best ℓ1-approximation for the Motzkin polynomial.

References

[1] C. Berg, J.P.R. Christensen and P. Ressel, Positive definite functions on Abelian semi-
groups. Math. Ann. 223, 253–274 (1976)

[2] C. Berg, The multidimensional moment problem and semigroups. Proc. Symp. Appl. Math.
37, 110–124 (1987).

[3] G. Blekherman, There are significantly more nonnegative polynomials than sums of squares,
Isr. J. Math. 153, 355-380 (2006)

[4] D. Henrion, J.B. Lasserre and J. Lofberg, Gloptipoly 3: moments, optimization and
semidefinite programming, Optim. Methods and Software 24, 761–779 (2009)

[5] J.B. Lasserre and T. Netzer, SOS approximations of nonnegative polynomials via simple
high degree perturbations, Math. Z. 256, 99–112 (2006)

[6] J.B. Lasserre, Sufficient conditions for a real polynomial to be a sum of squares, Arch.
Math. 89, 390–398 (2007)

[7] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev. 38, 49–95 (1996)

LAAS-CNRS and Institute of Mathematics, University of Toulouse, LAAS, 7 avenue

du Colonel Roche, 31077 Toulouse Cédex 4,France
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2Computation was made by running the GloptiPoly software [4] dedicated to solving the gen-
eralized problem of moments.
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