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Abstract

In this paper we present some inequalities for the order, the expo-

nent, and the number of generators of the c-nilpotent multiplier (the

Baer invariant with respect to the variety of nilpotent groups of class

at most c ≥ 1) of a powerful p-group. Our results extend some of

Lubotzky and Mann,s (Journal of Algebra, 105 (1987), 484-505.) to

nilpotent multipliers. Also, we give some explicit examples showing

the tightness of our results and improvement some of the previous

inequalities.
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1. Introduction and Motivation

Let G be a group with a free presentation F/R. The abelian group

M (c)(G) =
R ∩ γc+1(F )

[R, cF ]

is said to be the c-nilpotent multiplier of G (the Baer invariant of G, after

R. Baer [1], with respect to the variety of nilpotent groups of class at most

c ≥ 1). The group M(G) = M (1)(G) is more known as the Schur multiplier

of G. When G is finite, M(G) is isomorphic to the second cohomology group

H2(G,C∗) [8].

It was conjectured for some time that the exponent of the Schur multiplier

of a finite p-group is a divisor of the exponent of the group itself. I. D.

Macdonald, J. W. Wamsley, and others [2] have constructed an example of

a group of exponent 4, whereas its Schur multiplier has exponent 8, hence

the conjecture is not true in general. In 2007 P. Moravec [15] proved that

if G is a group of exponent 4, then exp(M(G)) divides 8. In 1973 Jones [7]

proved that the exponent of the Schur multiplier of a finite p-group of class

c ≥ 2 and exponent pe is at most pe(c−1). A result of G. Ellis [4] shows that if

G is a p-group of class k ≥ 2 and exponent pe, then exp(M (c)(G)) ≤ pe⌈k/2⌉,

where ⌈k/2⌉ denotes the smallest integer n such that n ≥ k/2. For c = 1

P. Moravec [15] showed that ⌈k/2⌉ can be replaced by 2⌊log2 k⌋ which is an

improvement if k ≥ 11. Also he proved that if G is a metabelian group of

exponent p, then exp(M(G)) divides p. S. Kayvanfar and M.A. Sanati [9]

proved that exp(M(G)) ≤ exp(G) when G is a finite p-group of class 3, 4

or 5 under some arithmetical conditions on p and the exponent of G. On

the other hand, the authors in a joint paper [13] proved that if G is a finite

p-group of class k with p > k, then exp(M (c)(G))| exp(G). In 1972 Jones

[6] showed that the order of the Schur multiplier of a finite p-group of order

pn with center of exponent pk is bounded by p(n−k)(n+k−1)/2. In particular,
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|G′||M(G)| ≤ p
n(n−1)

2 . In 1973 Jones [7] gave a bound for the number of

generators of the Schur multiplier of a finite p-group of class c and special

rank r. Recently the authors in a joint paper [13] have extended this result

to the c-nilpotent multipliers. In 1987 Lubotzky and Mann [10] presented

some inequalities for the Schur multiplier of a powerful p-group. They gave

a bound for the order, the exponent and the number of generators of the

Schur multiplier of a powerful p-group. Their results improve the previous

inequalities for powerful p-groups. In this paper we will extend some results

of Lubotzky and Mann [10] to the nilpotent multipliers and give some upper

bounds for the order, the exponent and the number of generators of the

c-nilpotent multiplier of a d-generator powerful p-group G as follows:

d(M (c)(G)) ≤ χc+1(d), exp(M (c)(G))| exp(G),

and |M (c)(G)| ≤ pχc+1(d) exp(G),

where χc+1(d) is the number of basic commutators of weight c+1 on d letters

[5]. Our method is similar to that of [10]. Finally, by giving some examples of

groups and computing the number of generators, the order and the exponent

of their c-nilpotent multipliers explicitly, we compare these numbers with the

bounds obtained and show that our results improve some of the previously

mentioned inequalities.

2. Notation and Preliminaries

Here we will give some definitions and theorems that will be used in

our work. Throughout this paper 0i(G) denotes the subgroup of G gener-

ated by all pith powers, Pi(G) is defined by: P1(G) = G, and Pi+1(G) =

[Pi(G), G]01(Pi(G)). Finally d(G), cl(G), l(G), sr(G) denote respectively,

the minimal number of generators, the nilpotency class, the derived length
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and the special rank of G, while e(G) is defined by exp(G) = pe(G).

Theorem 2.1 (M. Hall [5]). Let F be a free group on {x1, x2, ..., xd}. Then

for all 1 ≤ i ≤ n,
γn(F )

γn+i(F )

is a free abelian group freely generated by the basic commutators of weights

n, n + 1, ..., n + i − 1 on the letters {x1, x2, ..., xd} (for a definition of basic

commutators see [5]).

Lemma 2.2 (R. R. Struik [16]). Let α be a fixed integer and G be a nilpotent

group of class at most n. If bj ∈ G and r < n, then

[b1, .., bi−1, b
α
i , bi+1, ..., br] = [b1, ..., br]

αc
f1(α)
1 c

f2(α)
2 ...,

where the ck are commutators in b1, ..., br of weight strictly greater than r,

and every bj, 1 ≤ j ≤ r, appears in each commutator ck, the ck listed in

ascending order. The fi are of the following form:

fi(n) = a1

(

n

1

)

+ a2

(

n

2

)

+ ...+ awi

(

n

wi

)

,

with aj ∈ Z, and wi is the weight of ci ( in the bi ) minus (r − 1).

Powerful p-groups were formally introduced in [10]. They have played a

role in the proofs of many important results in p-groups. We will discuss

some of them in this section. A p-group G is called powerful if p is odd and

G′ ≤ 01(G) or p = 2, and G′ ≤ 02(G). There is a related notion that is

often used to find properties of powerful p-groups. If G is a p-group and

H ≤ G, then H is said to be powerfully embedded in G if [G,H ] ≤ 01(H)

([G,H ] ≤ 02(H) for p = 2). Any powerfully embedded subgroup is itself a

powerful p-group and must be normal in the whole group. Also a p-group is

powerful exactly when it is powerfully embedded in itself. While it is obvious

that factor groups and direct products of powerful p-groups are powerful, this

property is not subgroup-inherited [10].
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We will require some standard properties of powerful p-groups. For the

sake of convenience we collect them here.

Theorem 2.3 ([10]). The following statements hold for a powerful p-group

G.

i) γi(G), Gi,0i(G),Φ(G) are powerfully embedded in G.

ii) Pi+1(G) = 0i(G) and 0i(0j(G)) = 0i+j(G).

iii) Each element of 0i(G) can be written as ap
i

, for some a ∈ G and hence

0i(G) = {gp
i

: g ∈ G}.

iv) If G = 〈a1, a2, ..., ad〉, then 0i(G) = 〈ap
i

1 , a
pi

2 , ..., a
pi

d 〉.

v) If H ⊆ G, then d(H) ≤ d(G).

Proposition 2.4 ([10]). Let N be a powerfully embedded subgroup of G. If

N is the normal closure of some subset of G, then N is actually generated

by this subset.

Lemma 2.5. Let H,K be normal subgroups of G and H ≤ K[H,G]. Then

H ≤ K[H, l G] for any l ≥ 1. In particular, if G is nilpotent, then H ≤ K .

Proof. An easy exercise. 2

Lemma 2.6. Let G be a finite p-group and N�G. Then N is powerfully em-

bedded in G if and only if N/[N,G,G] is powerfully embedded in G/[N,G,G].

Proof. See a remark in the proof of Theorem 1.1 in [10]. 2

Remark 2.7. To prove that a normal subgroup N is powerfully embedded

in G we can assume that

i) [N,G,G] = 1 by the above lemma.

ii) 01(N) = 1 ( 02(N) = 1 for p = 2 ) and try to show that [N,G] = 1.

iii) [N,G]2 = 1 whenever p = 2, since if we assume that N/[N,G]2 is pow-

erfully embedded in G/[N,G]2, then N is powerfully embedded in G. This

follows from the proof of Theorem 4.1.1 in [10].

5



3. Main Results

In order to prove the main results we need the following theorem.

Theorem 3.1. Let F/R be a free presentation of a powerful d-generator

p-group G. Let Z = R/[R, cF ] and H = F/[R, cF ], so that G ∼= H/Z. Then

γc+1(H) is powerfully embedded in H and d(γc+1(H)) ≤ χc+1(d).

Proof. First let p an odd prime. We may assume that 01(γc+1(H)) = 1 and

try to show that [(γc+1(H)), H ] = 1 by Remark 2.7(ii). Also we may assume

that γc+3(H) = 1 by Remark 2.7(i). Let a, b1, b2, ..., bc ∈ H . Then by Lemma

2.2,

[ap, b1, ..., bc] = [a, b1, ..., bc]
pc

f1(p)
1 c

f2(p)
2 ... .

Since γc+3(H) = 1 and 01(γc+1(H)) = 1 we have [a, b1, ..., bc]
p = 1, c

fi(p)
i = 1,

for all i ≥ 2. Also p > 2 implies that p|f1(p), and hence c
f1(p)
1 = 1 so ap ∈

Zc(H) and 01(H) ⊆ Zc(H). The powerfulness of G yields H ′ ≤ 01(H)Z ≤

Zc(H). Therefore [H ′, cH ] = 1, as desired. Since H/Z is generated by d

elements and Z ≤ Zc(H), γc+1(H) is the normal closure of the commutators

of weight c + 1 on d elements. Hence Proposition 2.4 completes the proof,

for p > 2.

If p = 2, then the proof is similar, so we leave out the details, but note

that in this case

[a4, b1, ..., bc] = [a, b1, ..., bc]
4c

f1(4)
1 c

f2(4)
2 ... .

By Remark 2.7 we can assume γc+3(H) = 02(γc+1(H)) = ([γc+1(H), H ])2 =

1. Hence we have [a4, b1, ..., bc] = 1 (c
f1(4)
1 = 1, since 2|f1(4)) so 02(H) ⊆

Zc(H). 2

An interesting corollary of this theorem is as follows.

Corollary 3.2. Let G be powerful p-group with d(G) = d. Then d(M (c)(G)) ≤

χc+1(d).
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Proof. Let F/R be a free presentation of G with Z = R/[R,cF ], so that

G ∼= H/Z, where H = F/[R, cF ]. Then the above result and Theorem 2.3(v)

implies that

d(
R ∩ γc+1(F )

[R, cF ]
) ≤ d(

γc+1(F )

[R, cF ]
) ≤ χc+1(d).

Hence the result follows. 2

Note that by a similar method we can prove Corollary 2.2 of [10] without

using the concept of covering group for G.

The authors in a joint paper [12] have proved that if G is a finite d-

generator p-group of special rank r and nilpotency class t, then d(M (c)(G)) ≤

χc+1(d)+rc+1(t−1). Clearly Corollary 3.2 improves this bound for nonabelian

powerful p-groups.

Theorem 3.3. Let G be powerful p-group. Then e(M (c)(G)) ≤ e(G).

Proof. Let p > 2 and F/R be a free presentation of G with Z = R/[R,cF ] and

H = F/[R,cF ], so that G ∼= H/Z. Since e(R∩γc+1(F )/[R,cF ]) ≤ e(γc+1(H))

and e(H/Zc(H)) ≤ e(G) it is enough to show that e(γc+1(H)) = e(H/Zc(H)).

We will establish by induction on k the equality

0k(γc+1(H)) = [0k(H), cH ], (1)

which implies the above claim.

If k = 0, then (1) holds. Now Assume that (1) holds for some k. Since

γc+1(H) is powerfully embedded inH by Theorem 3.1, we have 0k+1(γc+1(H)) =

01(0k(γc+1(H))), by Theorem 2.3(ii). Similarly 0k+1(G)) = 01(0k(G))).

Since G ∼= H/Z we have 0k+1(H)Z/Z = 01(0k(H)Z)Z/Z. Therefore

[0k+1(H), cH ] = [0k+1(H)Z, cH ] = [01(0k(H)Z)Z, cH ]

= [01(0k(H)Z), cH ].

This implies that

[0k+1(H), cH ] = [01(0k(H)Z), cH ]. (2)
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Thus (1) for k + 1 is equivalent to 01(0k(γc+1(H))) = [01(0k(H)Z), cH ].

Since 0k(γc+1(H)) is powerfully embedded in H by Theorem 2.3(i), this

implies, by (1) and Lemma 2.2,

[01(0k(H)Z), cH ] ≤ 01([0k(H)Z, cH ])[0k(H)Z, cH,H ]

≤ 01([0k(H), cH ])[0k(H), cH,H ]

≤ 01(0k(γc+1(H)))[0k(γc+1(H)), H ]

≤ 01(0k(γc+1(H))).

For the reverse inclusion note that since 01(0k(γc+1(H))) = 01([0k(H), cH ])

it is enough to show that

01([0k(H), cH ]) ≡ 1 (mod [01(0k(H)Z), cH ]).

By Theorem 2.3(i), 0k(H/Z) is powerfully embedded in H/Z so that

[
0k(H)Z

Z
,
H

Z
] ≤

01(0k(H)Z)Z

Z
. (3)

Also (2) implies that 01(0k(H)Z) ≤ Zc(H) (mod [0k+1(H), cH ]). Now

(2), (3) and the last inequality imply that

[0k(H)Z,H ] ≤ 01(0k(H)Z)Z ≤ Zc(H) (mod [0k+1(H), cH ]).

Hence by Lemma 2.2

01([0k(H), cH ]) ≡ 01([0k(H)Z, cH ])

≡ [01(0k(H)Z), cH ]

≡ 1 (mod [01(0k(H)Z), cH ]),

as desired.

If p = 2, then the proof is similar to the previous case. This completes

the proof. 2
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Note that G. Ellis [4], using the nonabelian tensor products of groups,

showed that exp(M (c)(G)) divides exp(G) for all c ≥ 1 and all p-groups

satisfying [[Gpi−1, G], G] ⊆ Gpi for 1 ≤ i ≤ e, where exp(G) = pe. Note that

the results of [10] imply that every powerful p-group G satisfies the latter

commutator condition.

Lubotzky and Mann [10] found bounds for cl(G), l(G), |G| and |M(G)| of

a powerful d-generator p-group G of exponent pe as follows:

cl(G) ≤ e, l(G) ≤ log2 e+ 1, |G| ≤ pde and |M(G)| ≤ p(d(d−1)/2)e.

In the following proposition we find an upper bound for the order of c-

nilpotent multiplier of G.

Proposition 3.4. Let G be a powerful p-group, with d(G) = d and e(G) = e.

Then |M (c)(G)| ≤ pχc+1(d)e.

Proof. It is obtained by combining Corollary 3.2 and Theorem 3.3. 2

4. Some Examples

In this final section we are going to give some explicit examples of p-

groups and calculate their c-nilpotent multipliers in order to compare our

new bounds with the exact values. This will show tightness of our results

and improvement some of the previously mentioned inequalities.

Example 4.1. Let G be a finite abelian p-group. Clearly G is a powerful

p-group and by the fundamental theorem of finitely generated abelian groups

G has the following structure

G ∼= Zpα1 ⊕ Zpα2 ⊕ . . .⊕ Zpαd

for some positive integers α1, α2, . . . , αd, where α1 ≥ α2 ≥ . . . ≥ αd. By [11]

the c-nilpotent multiplier of G can be calculated explicitly as follows:

M (c)(G) ∼= Z
(b2)
pα2 ⊕ Z

(b3−b2)
pα3 ⊕ . . .⊕ Z

(bd−bd−1)
pαd

,
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where bi = χc+1(i) and Z(m)
n denotes the direct sum of m copies of the cyclic

group Zn. Now it is easy to see that

(i) d(M (c)(G)) = χc+1(d), where d = d(G). Hence the bound of Corollary

3.2 is attained and the best one in the abelian case.

(ii) e(M (c)(G)) = α2, whereas e(G) = α1. Hence the bound of Theorem 3.3

is attained when α1 = α2 and it is the best one in the abelian case.

(iii) |M (c)(G)| = pα2b2+
∑

d

i=3
αi(bi−bi−1) ≤ pα1χc+1(d). Hence the bound of

Proposition 3.4 is attained if and only if α1 = α2 = . . . = αd.

Example 4.2. Let p be any odd prime number and s, t be positive integers

with s ≥ t. Consider the following finite d-generator p-group with nilpotency

class 2:

Ps,t = 〈y1, . . . , yd : y
ps

i = [yj , yk]
pt = [[yj , yk], yi] = 1, 1 ≤ i, j, k ≤ d, j 6= k〉.

One can see that Ps,t is not a powerful p-group (clearly 01(P1,1) = 1). By

[14] the c-nilpotent multiplier of Ps,t is as follows:

M (c)(Ps,t) ∼= Z
(χc+1(d))
ps ⊕ Z

(χc+2(d))
pt .

Therefore we have

(i) d(M (c)(Ps,t)) = χc+1(d)+χc+2(d) > χc+1(d). Hence the condition of being

powerful cannot be omitted from Corollary 3.2.

(ii) |M (c)(Ps,t))| = psχc+1(d)+tχc+2(d) > psχc+1(d). Hence powerfulness is also a

necessary condition for the bound of Proposition 3.4. Note that here we have

e(M (c)(Ps,t)) = se(Ps,t).

The authors in a joint paper [13] have proved that exp(M (c)(G))| exp(G),

when G is a nilpotent p-group of class k, and k < p. In the following exam-

ple we find a powerful p-group of class k ≥ p such that exp(M (c)(G)) divides

exp(G).

Example 4.3 ([17]). We work in GL(Zpl+2), the 2 × 2 invertible matrices
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over the ring of integers modulo pl+2. In this ring any integer not divisible

by p is invertible. Consider the matrices

X =





1 0

0 1− p



 , Y =





1/(1− p) p/(1− p)

0 1



 , Z =





1 p

0 1



 .

One quickly calculates that [X, Y ] = Zp, [X,Z] = Zp, [Y, Z] = Zp and

[Zp, kX ] =





1 (−1)k+2pk+2

0 1



 . (4)

Notice also that Xpl+1
= Y pl+1

= Zpl+1
= 1. We claim that P = 〈X, Y, Z〉 is

a powerful p-group. By the above relations we can express every word in P

as a product XaY bZc for some 0 ≤ a, b, c < pl+1. Also

XaY bZc =





1
(1−p)b

1+pc−(1−p)b

(1−p)b

0 (1− p)a





and hence all of these elements are distinct. Therefore the order of P is p3(l+1)

and hence P is a p-group and the relations imply that P ′ ≤ 01(P ). Therefore

P is a powerful p-group. The exponent of P is pl+1, and (4) implies that P

has nilpotency class l + 1. By Theorem 3.3 exp(M (c)(P )) divides exp(P ).

Note that the nilpotency class of P is l+ 1 which is greater than or equal to

p.

Let G be a finite d-generator p-group of order pn where p is any prime.

By [11] we have

pχc+1(d) ≤ |M (c)(G)||γc+1(G)| ≤ pχc+1(n).

Now if we put l = 2 in the above example, then P is 3-generator powerful

p-group of order p9 with nilpotency class 3. Thus by the above bounds we

have

p18 = pχ4(3) ≤ |M (3)(P )||γ4(P )| = |M (3)(P )| ≤ pχ4(9) = p1620.
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But by Proposition 3.4 |M (3)(P )| ≤ p3χ4(3) = p54. Hence this example and

also Example 4.1 show that Proposition 3.4 improves the above bound for

powerful p-groups.

Example 4.4. Using the list of nonabelian groups of order at most 30 with

their c-nilpotent multipliers for c = 1, 2 in the table of Fig.2 in [3], we are go-

ing to give two nonabelian powerful p-groups in order to compute explicitly

the number of generators, the order and the exponent of their 2-nilpotent

multipliers and then compare these numbers with bounds obtained.

(i) Consider the finite 2-group G = 〈a, b : a2 = 1, aba = b−3〉. It is easy to

see that G is a powerful 2-group and |G| = 16, d(G) = 2, exp(G) = 8. By

[3, Fig.2, ♯ 13] M (2)(G) ∼= Z
(2)
2 and hence |M (2)(G)| = 4, d(M (2)(G)) = 2,

exp(M (2)(G)) = 2. It is seen that the bound of Corollary 3.2 is attained.

(ii) Consider the finite 3-group G = 〈a, b : a3 = 1, a−1ba = b−2〉. It is easy

to see that G is a powerful 3-group and |G| = 27, d(G) = 2, exp(G) = 9. By

[3, Fig.2, ♯ 40] M (2)(G) ∼= Z
(2)
3 and hence |M (2)(G)| = 9, d(M (2)(G)) = 2,

exp(M (2)(G)) = 3. It is also seen that the bound of Corollary 3.2 is attained.
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