
TUNNEL ONE, FIBERED LINKS

MATT RATHBUN

Abstract. Let K be a tunnel number one, fibered link in S3, with fiber F , and unknotting tunnel

τ . We show that τ can be isotoped to lie in F .

1. Introduction and Motivation

The study of fibered knots and links is as important today as ever. Giroux’s correspondence between
open book decompositions and contact structures [9] mingles classical fibered links with more modern
contact geometry. Sutured manifold theory continues to reveal information about fibrations (see, for
instance, [26] and [20]). And fibered links are related to the newest advances in Floer homology, as
Knot Floer homology detects fibered links ([19]) and Sutured Floer homology intersects both contact
geometry and sutured manifold theory.

Tunnel number one links are among the most-studied links. Much of the work on tunnel number one
links revolves around trying to isotope the tunnel to sit nicely with respect to some additional structure
in the 3-manifold, including a hyperbolic metric ([1], [2], [3], [6]), polyhedral decompositions ([24],
[11]), bridge decompositions ([16], [10]), Seifert surfaces ([25]), and fibrations ([23]). These studies,
and others, have led to the classification of tunnels for many classes of knots and links, including torus
knots ([5]), satellite knots ([18]), non-simple links ([7]), 2-bridge knots ([18], [15]), and 2-bridge links
([14], [17]).

Further, the Berge Conjecture states that if a knot admits a lens space Dehn surgery, then it is in one
of the families of knots classified by John Berge. Many are working on this long-standing conjecture,
with recent progress contributed by Ozsváth and Szabó [21], Hedden [12], Baker, Grigsby, and Hedden
[4], Saito [22], and Williams [27], among others. Yi Ni recently proved that if a knot admits a lens
space surgery, then it is a fibered knot [19]. Additionally, all Berge knots are both fibered and tunnel
number one, so further understanding tunnel one, fibered knots could have profound impacts on the
Conjecture.

Jesse Johnson investigated genus 2 Heegaard splittings of closed surface bundles over the circle [13].
This paper looks at the relationship between unknotting tunnels and fibrations for link complements.

Theorem 1.1. Let K be an oriented, fibered, tunnel number one link in S3, with fiber F , and unknot-
ting tunnel τ . Then τ can be isotoped to lie in F .
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2. Background and Definitions

2.1. 3-Manifolds.

Notation 1. Let A be subset of a 3-manifold M . We fix some notation. Let n(A) denote a small
open neighborhood of A in M . If F is a properly embedded surface in M, let M |F = M \ n(F ). If
S is the boundary of M , we will refer to S|∂F = S \ n(∂F ). For convenience, we will also sometimes
refer to this as S|F .
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Definition 2.1. Let F be a surface properly embedded in a 3-manifold M . F is said to be compressible
if there exists a disk D embedded in M with ∂D = D ∩ F an essential curve in F . Then D is called a
compressing disk for F . If F is not compressible, and is not a 2-sphere, then it is called incompressible.
F is said to be boundary compressible if there exists a disk D embedded in M with D ∩ F = α ⊂ ∂D,
D ∩ ∂M = β ⊂ ∂D, α is an essential arc in F , and α ∩ β = ∂α = ∂β, α ∪ β = ∂D. In this case,
D is called a boundary compression disk. If F is not boundary compressible, it is called boundary
incompressible.

Definition 2.2. A compression body V is the result of taking the product of a surface with [0, 1],
and attaching 2-handles along S × {0}, and then 3-handles along any resulting 2-sphere components.
S × {1} is called ∂+V , and ∂V \ ∂+V is called ∂−V . A handlebody is a compression body where
∂−V = ∅. A Heegaard splitting is a triple (S, V,W ), where S is a surface, V and W are compression
bodies, ∂+V = ∂+W = S, and M = V ∪S W .

Definition 2.3. Let K be a knot in a 3-manifold M , and let λ be an essential closed curve in ∂n(K).
Let M ′ be the manifold obtained from M by removing n(K), and attaching a solid torus S1 ×D2 to
M \ n(K) via a homeomorphism of the boundaries such that {pt.} × ∂D2 is identified with the curve
λ. Then M ′ is said to be the result of λ-sloped Dehn surgery on M .

2.2. Tunnels.

Definition 2.4. A link L in a S3 is called a tunnel number one link if there exists an arc τ properly
embedded in S3 \ n(L) such that S3 \ n(L ∪ τ) is a handlebody. Then τ is called a tunnel for L.

Observe that the complement of a tunnel number one link has a genus 2 Heegaard splitting. Also,
note that a tunnel one link has at most 2 components, and if it has two components, then any tunnel
must have one endpoint on each component.

More generally, a knot is tunnel number n if n is the smallest number such that there exists a
collection of arcs {τ1, . . . , τn} such that S3 \ n(L ∪ τ1 ∪ · · · ∪ τn) is a handlebody.

2.3. Fibered Links.

Definition 2.5. Let L ⊂ S3 be a link. A Seifert surface for L is a compact, connected, orientable
surface F embedded in S3 such that ∂F = L.

Definition 2.6. A map f : E → B is a fibration with fiber F if for every point p ∈ B, there is
a neighborhood U of p and a homeomorphism h : f−1(U) → U × F such that f = π1 ◦ h, where
π1 : U × F → U is projection to the first factor. E is called the total space, and B is called the base
space. Each set f−1(b) is called a fiber, and is homeomorphic to F .

Definition 2.7. A link L ⊂ S3 is said to be fibered if there is a fibration of S3 \ n(L) over S1, and
the fibration is well-behaved near L. That is, each component Li of L has a neighborhood S1 ×D2,
with Li

∼= S1 × {0} such that f |S1×(D2\{0}) is given by (x, y)→ y
|y| .

Each fiber of a fibered link is a Seifert surface for the link. The complement of a fibered link is
foliated by copies of this Seifert surface. Cutting along one of these Seifert surface produces a surface
cross the interval.

Definition 2.8. Let K be a fibered link in S3. Then S3 \ n(K) can be obtained from F × I, with F
a fiber, by identification (x, 0) ∼ (h(x), 1), for x ∈ F , where h : F → F is an orientation-preserving
homeomorphism which is the identity on ∂F . We call h a monodromy map.

2.4. Theorems. Our starting point is a theorem proven by Scharlemann and Thompson.

Theorem 2.9 ([25]). Suppose K is a knot in S3, and τ an unknotting tunnel for K. Then τ may be
slid and isotoped until it is disjoint from some minimal genus Seifert surface for K.

The proof consists of arranging K, τ , and a compressing disk for S3 \ n(K ∪ τ) in some minimal
fashion, and showing that if K ∩ τ 6= ∅, then this would be a contradiction to those minimality
assumptions. The result still holds for fibered links.
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Theorem 2.10. Suppose K is an oriented, fibered link, and τ is an unknotting tunnel for K. Then τ
may be slid and isotoped until it is disjoint from a fiber of K.

Our proof will largely mimic [25].

Proof. By 2.9, an unknotting tunnel can be isotoped and slid to be disjoint from a minimal genus
Seifert surface for a knot. But in a fibered knot complement, a fiber is the unique minimal genus
Seifert surface, so the result follows. Henceforth, let us assume that K is a two-component link, and
let the two components of K be K1 and K2. Observe that τ has one endpoint on each of the components
of K. Choose a fiber F , and slide and isotope τ , so as to minimize the number of intersections between
τ and F . Our goal will be to prove that τ ∩ F = ∅.

Suppose, to the contrary, that after the slides and isotopies above, τ ∩F is non-empty. Let E be an
essential disk in the handlebody S3 \n(K ∪ τ), chosen to minimize the number |E ∩F | of components
in E ∩ F . If |E ∩ F | = 0, then the incompressible F would lie in a solid torus, namely (a component
of) S3 \ n(K ∪ τ ∪ E), and so be an annulus. The only fibered link with fiber an annulus is the Hopf
link, in which case the result holds. So we may assume that |E ∩ F | > 0. Furthermore, since F is
incompressible, we may assume that E ∩ F consists entirely of arcs.

Let e be an outermost arc of E ∩ F in E, cutting off a subdisk E0 from E. The arc e is essential
in F \ τ , for otherwise we could find a different essential disk intersecting F in fewer components. Let
f = ∂(E0) \ e, an arc in ∂n(K ∪ τ) with each end either on a longitude ∂F ⊂ ∂n(K) or a meridian
disk of τ corresponding to a point of τ ∩ F .

If a meridian of τ is incident to exactly one end of f , then we can use E0 to describe a simple isotopy
of τ which reduces the number of intersections between τ and F .

If no meridian of τ is incident to an end of f , then both ends of f lie on ∂F ⊂ ∂n(K). If the
interior of f runs over τ , we have finished, for f is disjoint from F . If the interior of f lies entirely in
∂n(K), and e is essential in F , then E0 would be a boundary compression disk for F , contradicting
the minimality of the genus of F . If the interior of f lies entirely in ∂n(K) and e is inessential in F ,
then the disk D0 that it cuts off from F necessarily contains points of τ (since e is essential in F \ τ).
But then we could replace D0 by E0. If the loop formed by f and ∂D0 \ e form a trivial loop on the
torus of, say, ∂n(K1), then the new surface would, again, be a Seifert surface for K, consistent with
the orientation of K (and so be a fiber), but with fewer points of intersection F ∩ τ . If the loop formed
by f and ∂D0 \ e is essential in ∂n(K1), then the original disk E0 could be slid across D0 to show that
K1 is unknotted. But the interior of the disk D0 is disjoint from K2, so K must be a split link, but
split links do not fiber.

The only remaining possibility is that both ends of f lie on the same meridian of τ . In this case, e
forms a loop in F , and the ends of f adjacent to e both run along the same sub-arc τ0 of τ . Since f
is disjoint from F , τ0 terminates on, say, ∂n(K1).

Then since the interior of f is disjoint from F , f must intersect ∂n(K1) either in an inessential
arc in the torus or in a longitudinal arc. The former case is impossible, because the inessential disk
cannot contain the other end of τ (since the other end of τ is on ∂n(K2)), and so the disk can be
isotoped away, reducing |E ∩ F |. It follows that f intersects the torus ∂n(K1) in a longitudinal arc.
Then, n(τ0 ∪ E0) is a thickened annulus A, defining a parallelism in S3 between K1 and the loop e
on F . Now, the boundary component of A on ∂n(K1) can be slid across ∂n(K1), away from e, onto
F , parallel to ∂F in F . Since K is a fibered link, the image of A, call it A′, is a product annulus
in S3 \ n(K ∪ F ) ∼= F × I. But then this demonstrates that e itself is, in fact, parallel to ∂F in F .
Then, substituting A for the annulus between e and ∂F in F would create a Seifert surface of the same
genus, still consistent with the orientation of K, thus a fiber, but with fewer intersections with τ , a
contradiction.

�

Another theorem that we will find useful is also given by Scharlemann and Thompson. Yi Ni proves
a more general result in [20], though we will not need it here.
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Figure 1. D̂

Theorem 2.11 ([26]). Suppose F is a compact orientable surface, L is a knot in F×I, and (F×I)surg
is the 3-manifold obtained by some non-trivial surgery on L. If F × {0} compresses in (F × I)surg,
then L is parallel to an essential simple closed curve in F ×{0}. Moreover, the annulus that describes
the parallelism determines the slope of the surgery.

The proof relies on sutured manifold theory, and a theorem of Gabai [8]. Gabai proves the result for
an annulus cross the interval. The idea of Scharlemann and Thompson’s proof is to find product disks
or annuli in (F×I) disjoint from the knot, and cut along these product pieces to reduce the complexity
of the surface in question. This, with some additional work, allows them to apply the results of Gabai.

3. Pushing a Tunnel into a Fiber

Proof of Theorem 1.1. By Proposition 2.10, τ can be isotoped and slid to be disjoint from a fiber. Let
F = F ′ \ n(K). Cut S3 \ n(K) along F , to obtain N ∼= F × I, a handlebody. Then τ ⊂ N .

Now, as τ is an unknotting tunnel, there exists a compressing disk for ∂n(K ∪ τ) in S3 \ n(K ∪ τ),
say D′. Note that D′ ∩ F 6= ∅, for otherwise F would be an essential surface in the solid torus
(S3 \ n(K ∪ τ))|D′, and thus a disk.

Consider D′ ∩ F . Since F is incompressible and N is irreducible, by standard innermost disk
arguments we may assume there are no simple closed curves of intersection. Let α be an arc of
intersection which is outermost in D′, cutting off a subdisk D. Then, D is a disk in N with boundary
consisting of three types of arcs: a single essential arc in F = F ×{0}, α; (several) arcs in ∂n(K), call
them νi; and (several) arcs in ∂n(τ), λj . We may assume that every arc of D ∩ ∂n(τ) is an essential
spanning arc of the annulus ∂n(τ), for trivial arcs can be removed by isotopy.

Now, consider the double of N , along ∂n(K)|F . In other words, let N̂ be the result of gluing two
copies of N together by the identity along ∂F × I. Similarly, let τ̂ be the result of gluing two copies

of τ , one in each copy of N , along the boundary points; let D̂ come from two copies of D, one in each
copy of N , glued along the νi; and let α̂ come from two copies of α in the same way.

Then D̂ is a planar surface with one boundary component corresponding to α̂, and several compo-

nents coming from λ̂j , the doubles of λj (see Figure 1).

Then, ∪j λ̂j is a collection of (parallel) simple closed curves on the torus ∂n(τ̂). Call the slope

determined by these curves λ. If we perform λ-surgery on τ̂ , the result is to cap off D̂ with disks.

Since α was essential in F , α̂ is essential in F̂ , so our capped off surface is a compression disk for F̂ in

N̂ ∼= F̂ × I.
By Theorem 2.11, τ̂ is parallel to an essential closed curve in F̂ × {0}. That is, there exists an

annulus A properly embedded in F̂ × I with one boundary component on F̂ × {0}, say ψ, and the
other boundary component on ∂n(τ̂), parallel to τ̂ , say φ.

Since φ is parallel to τ̂ , it must be a longitude of ∂n(τ̂), and in particular, |φ ∩ (∂F × I)| = 2. So
there are only two possibilities for arcs of intersection between A and ∂F × I incident to φ. Either,
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Figure 2. Arcs of A ∩ ∂F × I incident to φ.

there is one arc of intersection which is trivial in A, or there are two arcs of intersection, both of
which are essential in A (see Figure 2). The former case is impossible, because then the subdisk of A
cut off by the arc would show that τ was parallel into ∂n(K), which would imply that K was trivial.
Therefore, there are exactly two arcs of A ∩ (∂F × I), both of which are essential in A.

If there were trivial arcs incident to ψ, then an outermost such arc in A would give rise to a boundary
compression for F × {0} in S3 \ n(K). This is impossible as well, so ∂F × I intersects A in precisely
two essential arcs, with no trivial arcs. Cutting A along these arcs provides a parallelism between τ

and the arc ψ ∩ (F × {0}) ⊂ F̂ × {0}. Thus, τ can be isotoped to lie in the fiber.
�
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