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Abstract

We consider the downlink of a multi-cell system with multi-antenna base stations and single-antenna

user terminals, arbitrary base station cooperation clusters, distance-dependent propagation pathloss, and

general “fairness” requirements. We focus on the joint transmission from the base stations in a cooperation

cluster based on linear zero-forcing beamforming, subject to sum or per-base station power constraints.

Analytic expressions for the system spectral efficiency are found in the large-system limit where both the

numbers of users and antennas per base station tend to infinity with a given ratio. In particular, for the per-

base station constraint, we find new results in random matrix theory, yielding the squared Frobenius norm

of submatrices of the Moore-Penrose pseudo-inverse for the structured non-i.i.d. channel matrix resulting

from the cooperation cluster, user distribution, and path-loss coefficients. The analysis is extended to the

case of non-ideal channel state information obtained through explicit downlink channel training, and it

is instrumental in providing insight in the joint operations of downlink multiuser beamforming, inter-cell

cooperation, and opportunistic “fair” scheduling. Specifically, our results illuminate the trade-off between

the benefit of a larger number of cooperating antennas and the cost of estimating higher-dimensional

channel vectors. Furthermore, our analysis lead to a new simplified downlink scheduling scheme that

pre-selects the users according to probabilities obtained from the large-system results. The proposed

scheme performs close to the optimal (finite-dimensional) opportunistic user selection while requiring

significantly less channel state feedback, since only a small fraction of pre-selected users must feed back

their channel state information.
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I. INTRODUCTION

The next generation of wireless communication systems (e.g., 802.16m [1], LTE-Advanced [2]) consider

multiuser MIMO (MU-MIMO) as one of the core technologies. A considerable research effort has been

dedicated to the performance evaluation of MU-MIMO systems under the realistic cellular environments

[3]–[5]. The downlink capacity in a single cell setting under perfect Channel State Information at the

Transmitter (CSIT) was thoroughly characterized with the full information theoretic understanding of

the underlying MIMO Gaussian broadcast channel [6]–[10]. However, in a multi-cell scenario, we are

in the presence of a MIMO broadcast and interference channel which is not yet fully understood in an

information theoretic sense.

A simple and practical approach consists of treating Inter-Cell Interference (ICI) as noise and, in this

case, the system capacity may be significantly limited by the ICI. A variety of inter-cell cooperation

schemes have been proposed to mitigate ICI, ranging from a fully cooperative network MIMO [11]–

[14] to a partially coordinated beamforming [15]–[17]. In this work, we focus on the network MIMO

approach, where clusters of cooperating base stations (BSs) act as a single distributed MIMO transmitter

and interference from other clusters of BSs is treated as noise.

In a cellular environment, the received signal power is a polynomially decreasing function of the

distance between the BS and the user terminals, with a dynamic range typically larger than 30 dB

[18]. Thus, users close to the cell (or cluster of cells) boundary experience strong inter-cell interference,

whereas the signal received from the intended BS is relatively weak. These “edge” users cannot be just

ignored by the system. For example, maximizing the system achievable sum-throughput leads in general

to a very unfair solution, where the system resources are concentrated on users close to a BS. In contrast,

fairness scheduling has been proposed and widely studied in order to achieve a good balance between

throughput efficiency and fairness (see for example [19]–[21] and references therein). Fairness scheduling

can be systematically implemented under the framework of stochastic network optimization [20], which

enforces that the system operates at a rate point of its ergodic achievable rate region that maximizes

some suitable concave and increasing network utility function [22]. For a given network MIMO scheme

(defined by the BS clusters and the joint MU-MIMO transmission scheme), the optimal operating point

can be provably approached as close as desired by applying a dynamic scheduling policy at each time

slot. While the analytical characterization of the optimal operating point is hopelessly complicated in

any realistic scenario, the system performance has been evaluated so far through computationally very

intensive Monte Carlo simulation [3]–[5], [13], [14], [23]–[26], where the actual scheduling algorithm
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evolves in time and the ergodic rates are computed by time-averaging.

The capacity of a multi-cell network MIMO system under fairness criteria was evaluated in the large-

system limit in [27], assuming ideal channel state knowledge and the Gaussian Dirty Paper Coding

(DPC) transmission strategy. In [27], the asymptotic analysis method based on large random matrix

results demonstrated its effectiveness by the comparison with finite-dimensional Monte Carlo simulation.

In this work, we apply a similar large-system analysis to Linear Zero-forcing Beamforming (LZFB).

It turns out that the analysis in this case is significantly more complicated, in particular, in order to

take into account per-BS power constraint. In addition, we extend our analysis to the case where the

channel state information is obtained through explicit downlink training and MMSE estimation. In these

conditions, we obtain a lower bound on the achievable ergodic rates (referred to as “throughput” in

the following), that takes into account the overhead due to training-based channel estimation. Several

novel and important aspects are illuminated in this paper. Specifically: 1) As in [27], our analysis allows

precise performance evaluation of systems for which brute-force Monte Carlo simulation would be very

demanding. 2) By including the effect of downlink training, we can investigate the tradeoff between ICI

reduction owing to BS cooperation and the cost of estimating higher and higher dimensional channels.

Unlike previous results which assumed ideal CSIT at no cost [24], [25], [27], we observe that there

exist an optimal cooperation cluster size that depends on the channel coherence time and bandwidth,

beyond which cooperative network MIMO is not convenient, consistently with the finite-dimensional

simulation findings of [26], [28]. 3) We provide novel results in random matrix theory, in particular,

related to the evaluation of the coefficients appearing in the per-BS power constraint. 4) We make use

of our asymptotic analysis in order to design a random scheduling algorithm that pre-selects the users

with assigned probabilities obtained from the large-system results, and therefore requires much less CSIT

feedback than the standard opportunistic scheduling scheme.

This last point deserves some remarks, since for the first time (to the authors’ knowledge) asymptotic

results are used not only for performance analysis but also for system design in network MIMO. 1 The

standard approach to scheduling for downlink beamforming consists of having a large number of users

feeding back their CSIT and selecting a subset of users with cardinality not larger than the number of

jointly coordinated transmit antennas, such that the channel vectors of the selected users have both large

1In the unrelated context of multiuser detection, asymptotic large-system results were used to design low-complexity linear

multiuser detectors based on the polynomial approximations, where the polynomial coefficients were obtained from large random

matrix theory [29], [30].
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norm and are mutually approximately orthogonal [31], [32]. This multiuser diversity selection, combined

with LZFB precoding, is shown to attain the same performance as Gaussian DPC in the limit of a large

number of users and fixed number of transmit antennas. However, in this limit, the throughput per user

vanishes as O( log logn
n ) where n is the number of users. Therefore, a more meaningful regime is one

in which the number of users is proportional to the number of antennas, yielding constant throughput

per user. This is in fact the large-system regime investigated in this paper. Comparing the results of

our asymptotic analysis with the Monte Carlo simulation of finite dimensional systems, including user

selection as said before, we notice that multiuser diversity yields larger throughput per user for low-

dimensional systems, but this gain reduces as the system dimension grows. This is a manifestation of the

“channel hardening effect” noticed in [33], and agrees with the theoretical findings in [34] that show that

the probability of finding a subset of approximately orthogonal users vanishes as the system dimension

increases. It follows that for large systems there is diminishing return in selecting users from a large

set. In contrast, the cost of CSIT feedback grows at least linearly with the number of users feeding

back their estimated CSIT. Therefore, we advocate a probabilistic scheduling algorithm for which users

are pre-selected at random using the probabilities derived from our large-system analysis, and only the

selected users are required to feed back their CSIT. The performance of this scheme are shown to be

close to the much more costly full user selection scheme, and become closer and closer as the system

dimension increases (again, by the large-system limit and channel hardening effect).

In comparison with concurrent existing literature, we notice that the LZFB MU-MIMO performance

analysis with non-ideal CSIT was extensively studied in the finite-dimensional case (see for example

[35]–[37]) and in the large-system limit (see for example [38]–[40]). Unlike concurrent works, our paper

focuses explicitly on the system optimization under the fairness criteria in the multi-cell downlink with

inter-cell cooperation. This particular angle, allows us to illuminate aspects that are not present in other

works, such as the distribution of the per-user throughput under fairness and, as a consequence, the design

of the random scheduling scheme said before.

The remainder of this paper is organized as follows. In Section II, we describe the general finite-

dimensional system model including the arbitrary clustering of cooperative BSs, formulate the system

optimization problem, and provide its numerical solutions for a given channel realization. In Section

III, we take the large system limit and present the large-system regime of the LZFB precoder and

the optimization algorithm for user selection and power allocation. The opportunistic fairness scheduling

scheme is also described in this section. The impact of non-perfect CSIT and training overhead is analyzed

in Section IV. Numerical results and the low-complexity randomized scheduling scheme are presented
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in Section V and some concluding remarks are given in Section VI. The most lengthy and technical

derivations are relegated into the appendices.

II. FINITE DIMENSIONAL SYSTEM

A. System setup

Consider a cellular system formed by M BSs, with γN antennas each, and KN single-antenna user

terminals spatially distributed in the coverage area. We assume that the users are divided into K co-

located “user groups” with N users each. Users in the same group are statistically equivalent: they see

the same pathloss coefficients from all BSs and their small-scale fading channel coefficients are i.i.d..

The received signal vector yk = [yk,1 · · · yk,N ]T ∈ CN for the k-th user group is given by

yk =

M∑
m=1

αm,kH
H
m,kxm + nk (1)

where αm,k and Hm,k denote the distance dependent pathloss coefficient and γN×N small-scale channel

fading matrix from the m-th BS to the k-th user group, respectively, xm = [xm,1 · · ·xm,γN ]T ∈ CγN is

the transmitted signal vector of the m-th BS, subject to the power constraint tr (Cov(xm)) ≤ Pm, and

nk = [nk,1 · · ·nk,N ]T ∈ CN denotes the additive white Gaussian noise (AWGN) at the user receivers.

The elements of nk and of Hm,k are i.i.d. CN (0, 1).

A cooperative cell arrangement with L cooperation clusters is defined by the BS partition {M1, · · · ,ML}

of the BS set {1, · · · ,M} and the corresponding user group partition {K1, · · · ,KL} of the user group

set {1, · · · ,K}. We assume that the BSs in each cluster M` act as a single distributed multi-antenna

transmitter with γ|M`|N antennas, perfectly coordinated by a central cluster controller, and serve users

in groups k ∈ K`. The clusters do not cooperate and treat ICI from other clusters as noise. Assuming

that each BS operates at its maximum individual transmit power, the ICI plus noise power at any user

terminal in group k ∈ K` is given by

σ2
k = 1 +

∑
m/∈M`

α2
m,kPm. (2)

Each cluster seeks to maximize its own objective function defined by the fairness scheduling. It is easy

to show that, under the above system assumptions, the selfish optimal strategy that operates at maximum

per-BS power is a Nash equilibrium of the system. At this Nash equilibrium, the clusters are effectively

decoupled since the effect that other clusters have on each cluster ` is captured by the ICI terms in (2)

that do not depend on the actual BS transmit covariances Cov(xm).
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From the viewpoint of cluster `, the system is equivalent to a single-cell MIMO downlink channel

with a modified channel matrix and noise levels and a per-BS power constraint. Therefore, from now on

we focus on a given reference cluster ` = 1 and, without loss of generality, we indicate the user groups

in the reference cluster as k = 1, . . . , A, with A = |K1|, and the BSs in M1 as m = 1, . . . , B with

B = |M1|. After a convenient re-normalization of the channel coefficients, we arrive at the equivalent

channel model for the reference cluster given by

y = HHx + z (3)

with y ∈ CAN , x ∈ CγBN , z ∼ CN (0, IAN ) and the channel matrix H ∈ CγBN×AN is given by

H =


β1,1H1,1 · · · β1,AH1,A

...
...

βB,1HB,1 · · · βB,AHB,A

 , (4)

where we define βm,k = αm,k/σk. The pathloss coefficients are fixed constant, that depend only on the

geometry of the system, and the small-scale fading coefficients are assumed to change independently

from time slot to time slot according to a classical block-fading model. This is representative of a typical

situation where the distance between BSs and users changes significantly over a time-scale of the order

of the tens of seconds, while the small-scale fading decorrelates completely within a few milliseconds

[41]. Here, a “time slot” indicates the number of channel uses over which the small-scale coefficients

can be considered constant. This is approximately equal to the product of the channel coherence time

and the channel coherence bandwidth [41].

B. Downlink scheduling optimization problem

Each cluster controller operates according to a downlink scheduling scheme that allocates instanta-

neously the transmission resource (signal dimensions and transmit power) to the users. Following [22],

the scheduling problem is formulated as the maximization of a suitable strictly increasing and concave

network utility function g(·) over the region of achievable ergodic rates (throughput region). For users

in group k, we denote the normalized sum of individual user throughputs by Rk = 1
N

∑N
i=1R

(i)
k . By

symmetry, the users in the same group achieve the same throughput, therefore, the throughput vector with

R
(i)
k = Rk for all users i in group k is achievable. We assume that g(·) is symmetric in the throughput

of users belonging to the same group. Therefore, letting R = (R1, · · · , RA), the fairness scheduling
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problem is formulated as

maximize g(R)

subject to R ∈ R (5)

In this work, we consider LZFB downlink precoding, such that R indicates the throughput region

achievable by LZFB for the channel model (3), under the assumption of operating at the Nash equilibrium

said above. Notice that R includes all rates obtained by long-term (ergodic) average over the time-varying

fading channels and by time-sharing of all possible LZFB policies (including user selection and power

allocation). A scheduling policy achieving the optimum throughput point R
? solution of (5) consists of

a rule that, at each scheduling time slot, maps the available channel information H into a set of users

and transmit powers, such that the resulting rates, averaged over time, converge to R
?.

As a first step towards the solution of (5), we focus on the weighted instantaneous sum-rate maxi-

mization problem:

maximize
A∑
k=1

N∑
i=1

W
(i)
k R

(i)
k

subject to R ∈ Rlzfb(H) (6)

where W (i)
k denotes the rate weight for user i in group k, and Rlzfb(H) is the achievable instantaneous

rate region of LZFB for given channel matrix H. By “instantaneous”, we mean that this rate region

depends on the given channel realization H, in contrast with the throughput region R, that depends on

the statistics of H. Realistically, we assume that A ≥ γB (i.e., the number of users in the cluster is

larger than or equal to the total number of BS antennas in the cluster) and that all coefficients βm,k are

strictly positive. Therefore, rank(H) = γBN is almost surely satisfied. In this case, LZFB cannot serve

simultaneously all users in the cluster, and the scheduler must select a subset of users not larger than

γBN , to be served at each time slot.

The solution of (6) is generally difficult, since it requires a search over all user subsets of cardinality

less or equal to γBN . Well-known approaches (see [31], [32]) consider the selection of a user subset

in some greedy fashion, by adding users to the active user set one by one, till the objective function

in (6) cannot be improved further. Finally, even for a fixed set of active users, the problem of optimal

LZFB precoding subject to a per-BS power constraint is non-trivial and has been recently addressed in

[42]–[44] through fairly involved numerical algorithms. Because of these difficulties, problem (6) has

so far escaped a clean analytical solution and most studies resort to extensive and costly Monte Carlo

simulation.
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In order to overcome the above difficulties, we make the following simplifying assumptions: 1) The

scheduler picks a fraction µk of users in group k by random selection inside the group. User selection is

random and independent on each scheduling time slot; 2) The LZFB precoder is obtained by normalizing

the columns of the Moore-Penrose pseudo-inverse of the channel matrix, although this choice is not

necessarily optimal under the per-BS power constraint [42].

Under these assumptions, let µ = (µ1, . . . , µA) denote the fractions of active users in groups 1, . . . , A,

respectively. For given µ, the corresponding effective channel matrix is given by

Hµ =


β1,1H1,1(µ1) · · · β1,AH1,A(µA)

...
...

βB,1HB,1(µ1) · · · βB,AHB,A(µA)

 , (7)

where the blocks Hm,k(µk) is a γN × µkN dimensional submatrix of Hm,k. The user fractions must

satisfy µk ∈ [0, 1] for each k = 1, . . . , A and µ ∆
= µ1:A ≤ γB where we introduce the notation

µ1:k =

k∑
j=1

µj . (8)

Hence, rank(Hµ) = µN is almost surely satisfied.

The LZFB precoding scheme yields the transmitted signal for active users, xµ in the form

xµ = VµQ1/2u (9)

where u is the independently coded unit-power user symbol vector of length µN , Vµ is the precoding

matrix with unit-norm columns and Q is the diagonal matrix which contains user powers on the diagonal.

In particular, here we assume that Vµ is obtained from the Moore-Penrose pseudo-inverse as follows:

define the pseudo-inverse of HH
µ as

H+
µ = Hµ(HH

µHµ)−1, (10)

and then we let Vµ = H+
µΛ

1/2
µ where the column-normalizing diagonal matrix Λµ contains the

reciprocal of the squared norm of columns of H+
µ on the diagonal. Letting Λ

(i)
k (µ) denote the diagonal

element of Λµ in position µ1:k−1N + i, for i = 1, . . . , µkN , we have

Λ
(i)
k (µ) =

1[(
HH
µHµ

)−1
](i)

k

(11)

where
[(

HH
µHµ

)−1
](i)

k

denotes the element in the corresponding position µ1:k−1N + i of the main

diagonal of the matrix
(
HH
µHµ

)−1
. Rewriting (3) with (7) and (9) and noticing that HH

µVµ = Λ
1/2
µ ,



8

we arrive at the “parallel” channel model for all users selected simultaneously by the LZFB precoder in

the form

yµ = Λ
1/2
µ Q1/2u + zµ. (12)

The optimization of (6) for the channel model (12) is still involved, since the channel coefficients

Λ
(i)
k (µ) depend on the active user fractions µ in a complicated and non-convex way. Nevertheless,

as an intermediate step, we consider here the solution of (6) for fixed user fractions µ.

C. Power allocation under sum-power or per-BS power constraints

We divide all channel matrix coefficients by
√
N and multiply the BS input power constraints Pm by

N , thus obtaining an equivalent system where the channel coefficients have variance that scales as 1/N .

This is useful when we consider the large-system limit for N →∞ in Section III.

Let q(i)
k denote the diagonal element in position µ1:k−1N+i of Q, corresponding to the power allocated

to the i-th user of group k. The sum-power constraint is given by

1

N
tr(Q) =

1

N

A∑
k=1

µkN∑
i=1

q
(i)
k ≤ Psum (13)

where Psum =
∑B

m=1 Pm. In order to express the per-BS power constraint, let Φm denote a diagonal

matrix with all zeros, but for γN consecutive ones, corresponding to positions from (m− 1)γN + 1 to

mγN on the main diagonal. Then, the per-BS power constraint is expressed in terms of the partial trace

of the transmitted signal covariance matrix as

1

N
tr
(
ΦmVµQVH

µ

)
≤ Pm, m = 1, . . . , B (14)

More explicitly, (14) can be written in terms of the powers q(i)
k as

A∑
k=1

µkN∑
i=1

q
(i)
k θ

(i)
m,k ≤ Pm, m = 1, . . . , B (15)

where we define the coefficients

θ
(i)
m,k(µ) =

1

N

mγN∑
`=(m−1)γN+1

∣∣∣[Vµ
](i)
`,k

∣∣∣2 (16)

and where
[
Vµ

](i)
`,k

denotes the element of Vµ corresponding to the `-th row and the (µ1:k−1N + i)-th

column. Since Vµ has unit-norm columns, then
∑B

m=1 θ
(i)
m,k = 1/N for all k, i.

The power optimization problem that solves (6) for fixed user fractions is given by

maximize
A∑
k=1

µkN∑
i=1

W
(i)
k log(1 + Λ

(i)
k (µ)q

(i)
k ) (17)



9

subject to (13) in the case of sum-power constraint, or to (15) for the case of per-BS power constraint.

The solution of (17) subject to the sum-power constraint is immediately given by the water-filling

formula

q
(i)
k =

[
W

(i)
k

λ
− 1

Λ
(i)
k (µ)

]
+

(18)

where λ ≥ 0 is the Lagrange multiplier corresponding to the sum-power constraint.

In the case of per-BS power constraint, we can use Lagrange duality and sub-gradient iteration method

as given in the following. The Lagrangian for (17) is given by (dependency on µ is dropped for notation

simplicity)

L(q,λ) =

A∑
k=1

µkN∑
i=1

W
(i)
k log(1 + Λ

(i)
k q

(i)
k )− λT [Θq−P] (19)

where λ ≥ 0 is a vector of dual variables corresponding to the B BS power constraints, Θ is the B×µN

matrix containing the coefficients θ(i)
m,k and P = (P1, . . . , PB)T. The KKT conditions are given by

∂L
∂q

(i)
k

= W
(i)
k

Λ
(i)
k

1 + Λ
(i)
k q

(i)
k

− λTθ
(i)
k ≤ 0 (20)

where θ
(i)
k is the column of Θ containing the coefficients θ(i)

m,k for m = 1, . . . , B. Solving for q(i)
k , we

find

q
(i)
k (λ) =

[
W

(i)
k

λTθ
(i)
k

− 1

Λ
(i)
k

]
+

(21)

Then, replacing this solution into L(q,λ), we solve the dual problem by minimizing L(q(λ),λ) with

respect to λ ≥ 0. It is immediate to check that for any λ′ ≥ 0,

L(q(λ′),λ′) ≥ L(q(λ),λ′)

= (λ′ − λ)T(P−Θq(λ)) + L(q(λ),λ) (22)

Therefore, (P−Θq(λ)) is a subgradient for L(q(λ),ν). It follows that the dual problem can be solved

by a simple B-dimensional subgradient iteration over the vector of dual variables λ.

III. LARGE SYSTEM LIMIT

In this section, we consider the limit of the above instantaneous rate maximization problems in the

limit N →∞, when γ,A,B, and µ are fixed. While the coefficients of the limiting optimization problem

are obtained in general through the solution of fixed-point equations, under certain system symmetries,

a closed-form explicit expression can be found. Then, we consider the simultaneous optimization of the

user fractions and powers in the large system limit. Finally, we consider the solution of the downlink

scheduling optimization problem (5) in the large system regime.
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A. Asymptotic analysis

We start by finding the large system limit expression for the coefficients Λ
(i)
k (µ). This is provided by:

Theorem 1: For all i = 1, . . . , µkN , the following limit holds almost surely:

lim
N→∞

Λ
(i)
k (µ) = Λk(µ) = γ

B∑
m=1

β2
m,kηm(µ) (23)

where (η1(µ), . . . , ηB(µ)) is the unique solution in [0, 1]B of the fixed point equations

ηm = 1−
A∑
q=1

µq
ηmβ

2
m,q

γ
∑B

`=1 η`β
2
`,q

, m = 1, . . . , B (24)

with respect to the variables η = {ηm}.

Proof: See Appendix A.

Notice that the limit (23) depends only on k (user group index) and not on i (user index within the

group), consistently with the fact that, in our model, users in the same co-located group are statistically

equivalent.

Next, we consider the per-BS power constraint given in (15). Since the users in group k have identical

Λk(µ), independent of i, and that we can assume without loss of generality that they are all given positive

powers q(i)
k > 0 (notice: if a user were given zero power we could decrease the corresponding fraction

µk and take it out of the active user set), also in this case we arrive at the conclusions that in the large

system limit the allocated powers to users in group k must be identical, i.e., q(i)
k = qk, independent of i.

Using this in the constraint (15), we obtain
A∑
k=1

qkθm,k(µ) ≤ Pm, m = 1, . . . , B, (25)

where

θm,k(µ) =

µkN∑
i=1

θ
(i)
m,k(µ) =

1

N

µkN∑
i=1

mγN∑
`=1+(m−1)γN

∣∣∣[Vµ
](i)
`,k

∣∣∣2 . (26)

It is interesting to notice that θm,k(µ) is the squared Frobenius norm (normalized by N ) of the submatrix

of Vµ corresponding to the users in group k (columns from µ1:k−1N + 1 to µ1:kN ) and the antennas

of BS m (rows from (m − 1)γN + 1 to mγN ). The next result yields an analytical expression for the

large-system limits of the coefficients θm,k(µ):

Theorem 2: For all m, k, the following limit holds almost surely:

lim
N→∞

θm,k(µ) =
µkη

2
m(µ)

(
β2
m,k + ξm,k

)
∑B

`=1 η`(µ)β2
`,k

(27)



11

BS 1

user
group 2

user
group 4

user
group 1

. . . . .

BS 2

. . . . .
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cell 1 cell 2

user
group 8

user
group 5

user
group 6

. . . . .

Fig. 1. A linear cellular layout with 2 BSs and 8 user groups

where ξm = (ξm,1, . . . , ξm,A)T is the solution to the linear system

[I− γM] ξm = γMbm (28)

where M is the A×A matrix

M =

[
B∑
`=1

η2
` (µ)b`b

T
`

]
diag

(
µ1

Λ2
1(µ)

, . . . ,
µA

Λ2
A(µ)

)
(29)

and b` = (β2
`,1, . . . , β

2
`,A)T, and the coefficients {ηm(µ)} and {Λk(µ)} are provided by Theorem 1.

Proof: See Appendix B.

Under some special symmetry conditions, the general problem simplifies significantly. In particular,

assume that B divides A, let A′ = A/B, and assume that the B×A matrix of channel gains β = [β2
m,k]

can be partitioned into A′ submatrices of size B ×B such that each submatrix has the property that all

rows are permutations of the first row, and all columns are permutations of the first column. In analogy

with “strongly symmetric” discrete memoryless channels, we shall refer to these submatrices as “strongly

symmetric blocks.” Also, we define a set of user groups whose corresponding columns in matrix β form a

strongly symmetric block, as a user equivalence class. Then, we have A′ user equivalence classes, where

each class corresponding to the user groups whose columns in the gain matrix β belong to the same

strongly symmetric block. We re-index the user groups such that groups {(j − 1)A′ + i : j = 1, . . . , B}

form the i-th equivalence class, for i = 1, . . . , A′. To fix ideas, consider Figure 1 where a linear cellular

layout with 2 cells and 8 user groups is considered, and assume that the gain coefficients depend on
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distance and therefore are given as

β =

 a b c c f e e d

f e e d a b c c

 (30)

for some positive numbers a, b, c, d, e, f . We notice that this matrix can be decomposed into the A′ = 4

strongly symmetric blocks a f

f a

 ,
 b e

e b

 ,
 c e

e c

 ,
 c d

d c


with the required property.

When this symmetry condition holds, under mild conditions on the concave network utility function,

we have that the scheduler must set the fractions of all user groups in the same equivalence class to be

equal. This is because such groups (e.g., user group pairs (1, 5), (2, 6), (3, 7), and (4, 8) in the example)

are completely equivalent in terms of the set of channel gains seen from all BS in the cluster. We indicate

the corresponding common fraction values as µ′i for i = 1, . . . , A′, such that µ(j−1)A′+i = µ′i for all

j = 1, . . . , B. In this case, for any m, we have
A∑
q=1

µq
β2
m,q

γ
∑B

`=1 β
2
`,q

=
1

γ

A′∑
i=1

µ′i

B∑
j=1

β2
m,(j−1)A′+i∑B

`=1 β
2
`,(j−1)A′+i

=
1

γ

A′∑
i=1

µ′i =
µ

γB

where we have used the fact that, by the symmetry condition,
∑B

j=1

β2
m,(j−1)A′+i∑B

`=1 β
2
`,(j−1)A′+i

= 1 and
∑A′

i=1 µ
′
i =

1
B

∑A
q=1 µq = µ

B . It follows that the solution of the fixed point equation (24) is given explicitly by

ηm(µ) = 1− µ

γB
(31)

which is independent of m, and (23) yields

Λk(µ) = γ

(
1− µ

γB

) B∑
m=1

β2
m,k. (32)

For all k = (j − 1)A′ + i, ∀j = 1, . . . , B (indicating user groups in the same equivalence class), the

sum
∑B

m=1 β
2
m,k is a constant independent of k. Then, with some abuse of notation, we introduce the

notation β2
i =

∑B
m=1 β

2
m,k for all groups k in the i-th equivalence class. In addition, we have:

Theorem 3: For symmetric systems with µk = µ′i for all k in equivalence class i, we have

θm,k(µ) =
µ′i
B

(33)

independently of m.

Proof: See Appendix C.
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As an immediate corollary, we have that if all the BSs in the cluster have the equal power constraint,

i.e., P1 = . . . = PB = P , then the per-BS power constraint (25) coincides with the sum power constraint

with Psum = BP .

B. Weighted sum-rate maximization

Using the obtained asymptotic results, we consider the weighted sum-rate maximization problem in

(17). First, we focus on the sum-power constraint (13). In the large system limit, we consider maximizing

the weighted aggregate user group rates, normalized by N , in the case where the weights W (i)
k for all

users in group k are identical (i.e., independent of i), and denoted by Wk. We shall see later that the

weights are calculated by the scheduler that solves the general network utility maximization problem (5)

and, under our assumptions on the form of g(·), these weights must be identical for statistically equivalent

users. Therefore, this assumption does not involve any loss of generality when the weighted-sum rate

maximization problem is used as an intermediate step for the scheduling rule that addresses the throughput

maximization problem (5). Furthermore, by the symmetry of the water-filling power allocation, it also

follows that the power q(i)
k allocated to all active users in group k must be identical (independent of

i), and can be denoted by qk. In these conditions, from (23) we have that the instantaneous group rate

converges to 1
N

∑N
i=1R

(i)
k → µkRk with

Rk = log (1 + Λk(µ)qk) (34)

Notice that Rk is the limit instantaneous rate for any user in group k that is effectively scheduled

(the non-scheduled users have zero instantaneous rate). Because of the large-system limit, this rate is a

deterministic quantity.

Using (24), we can write the large-system limit weighted sum-rate maximization problem subject to

the sum-power constraint in the form:

maximize
A∑
k=1

Wkµk log

(
1 + γ

(
B∑

m=1

β2
m,kηm

)
qk

)
(35a)

subject to
A∑
k=1

µkqk ≤ Psum,

A∑
k=1

µk ≤ γB, (35b)

ηm = 1−
A∑
k=1

µk
ηmβ

2
m,k

γ
∑B

`=1 η`β
2
`,k

, m = 1, . . . , B (35c)

0 ≤ ηm ≤ 1, m = 1, . . . , B (35d)

qk ≥ 0, 0 ≤ µk ≤ 1, k = 1, . . . , A (35e)
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This problem generally non-convex in q,µ and η. However, for fixed η and µ, it is convex in q, and

the solution is given by water-filling (see also (18)):

qk =

Wk

λ
− 1

γ
(∑B

m=1 β
2
m,kηm

)


+

(36)

For fixed η and q, we have a linear program with respect to µ. Finally, for fixed µ and q the problem

is degenerate with respect to η since the equality constraint (35c), that corresponds to the fixed-point

equation (24) has a unique solution η ∈ [0, 1]B for all feasible µ.

In the symmetric system case with the conditions given in the previous section, we have that user

groups in the same equivalence class are completely symmetric, since the limits Λk(µ) depend only on the

equivalence class and not on the specific user group in the class. Assuming that the user groups in the same

equivalence class also have the same rate weights, the optimization problem in the symmetric case reduces

to optimizing the powers q′i and the fractions µ′i for the equivalence classes. Letting µ′ =
∑A′

i=1 µ
′
i = µ/B,

we can state the optimization problem in the symmetric case as:

maximize B

A′∑
i=1

Wiµ
′
i log

(
1 + γ

(
1− µ′

γ

)
β2
i q
′
i

)
(37a)

subject to B

A′∑
i=1

µ′iq
′
i ≤ Psum, (37b)

A′∑
i=1

µ′i ≤ γ, (37c)

q′i ≥ 0, 0 ≤ µ′i ≤ 1, i = 1, . . . , A′ (37d)

The net effect of the symmetry is a sort of “resource pooling”: the system with a cluster of B cooperating

BSs reduces to an equivalent single-BS system with total transmit power Psum/B, load µ′ = µ/B,

A′ = A/B user classes, and equivalent channel path gains β2
i =

∑B
m=1 β

2
m,k given by the combination

of the path gains from all BSs in the cluster to the user groups in the i-th equivalence class.

In the case of per-BS power constraint with the general non-symmetric system involved, the power

constraint in problem (35) must be replaced by (25) where the coefficients {θm,k(µ)} are provided by

Theorem 2. Finally, in the symmetric case, using Theorem 3 and assuming Pm = P for all m, the power

constraint reduces to
A′∑
i=1

q′iµ
′
i ≤ P, m = 1, . . . , B.

Summing over m we obtain the equivalent constraint B
∑A′

i=1 q
′
iµ
′
i ≤ BP = Psum which coincides with

the sum power constraint in (37), as anticipated before.
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C. Optimization of the user fractions and powers

While (35) is still a non-convex problem in (q,µ), we can find near-optimal solutions by borrowing

from the greedy user selection heuristic used in the finite-dimensional case (see [31], [32]). In particular,

we consider the approach of incrementing user fractions µ sequentially in very small steps, ∆µ � 1,

until the objective function value cannot be increased any longer. If we take the infinitesimal of ∆µ,

this is equivalent to greedy user selection in the large system limit where ∆µ denoting the fraction of

one user to the total number of users goes to zero. We start from µ = 0 and at each step we find k

such that incrementing µk by ∆µ yields the largest improvement and the resulting new µ is feasible.

For the tentative configuration of the fractions µ, the corresponding power allocation is obtained from

the waterfilling solution. We stop when no further increment can improve the objective function value.

The detailed description is given in the following:

1) Initialize variables such that n = 0, Rwsr(0) = 0, µ = 0, and µ = 0.

2) Set n ← n + 1. For ∆µ � 1, set µ(k) = µ + ∆µek (note: ek denotes a vector of length A of

all zeros with a single 1 in position k), for k ∈ S = {j : µj + ∆µ ≤ 1, ∀j}. If S is empty or

µ+∆µ > γ, then exit and keep the current µ and the corresponding rates as the final values of the

algorithm. Otherwise, compute the tentative weighted sum rate value R(k)
wsr for each k, by solving

the optimization problem in (35) for fixed µ(k) with the waterfilling power allocation.

3) Let k̂ = arg maxk∈S R
(k)
wsr and set Rwsr(n) = R

(k̂)
wsr.

4) If Rwsr(n) > Rwsr(n− 1), then set µ← µ(k̂), µ← µ+ ∆µ and go back to step 2.

5) Otherwise, if Rwsr(n) ≤ Rwsr(n − 1), exit and take the current µ and the corresponding rates as

the final values of the algorithm.

Figure 2 shows the sum rate versus µ′ = µ/B in a symmetric setting, when the above user fraction

and power allocation algorithm is applied and compares it with the globally optimal value obtained from

the exhaustive search algorithm. Under the two-cell model described in Section III-A, we assume the

two BSs are cooperating (B=2), the channel gain coefficients are given as (30) with [a b c d e f ] =

[1.5 1.3 1.0 0.5 0.3 0.2], and the antenna ratio, transmit power, and user group weight are γ = 4, P = 15

dB, and Wi = 1, ∀i, respectively. The exhaustive algorithm searches for the optimal weighted sum rate in

the A′ dimensional space of µ′ where each µ′i is ranged from 0 to 1 with
∑A′

i=1 µ
′
i < γ. If we discretize

this domain with ∆µ step size for each dimension, the computational complexity of the exhaustive

algorithm is roughly O((1/∆µ)A
′
), whereas the greedy algorithm has O(A′γ/∆µ) complexity. For the

greedy algorithm curve, we removed the comparison between Rwsr(n) and Rwsr(n− 1) in step 4 to see
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Fig. 2. Cluster sum rate (B = 2) of the proposed user fraction and group power optimization as µ′ increases from 0 to γ = 4.

the objective function over the range from 0 to γ. When ∆µ = 0.01, the greedy algorithm achieves the

same optimal value with the exhaustive algorithm at µ′ = 2.76.

D. Network utility function maximization

In general, the solution of (6) (or (35) in the large system limit) for the case A > γB (more users than

antennas) yields an unbalanced distribution of instantaneous rates, where some user classes are not served

at all (we have µk = 0 for some k). This shows that, for a general strictly concave network utility function

g(·), the ergodic rate region R requires time-sharing even in the asymptotic large-system case. Finding

the solution of (5) is therefore extremely hard. Nevertheless, this solution can be computed to any level

of accuracy by using a method inspired by the stochastic optimization approach of [20]. Interestingly, the

algorithm can be used both as for the computation of the optimum throughput point in the large system

limit, and as an actual downlink scheduling algorithm, that can be applied almost verbatim to the actual

finite-dimensional system. In the former case, the algorithm is equivalent to Lagrangian iteration where

the “virtual queues” (to be defined in the following) plays the role of Lagrange multipliers. In the latter

case, when applied to the finite dimensional system, the algorithm performs a stochastic “Lyapunov drift”

optimization (see [20]).

For each user group k = 1, . . . , A, define a virtual queue that evolves according to

Qk(t+ 1) = [Qk(t)− rk(t)]+ + ak(t) (38)
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where rk(t) denotes the virtual service rate and ak(t) the virtual arrival process. The queues are initialized

by Qk(0) = rk(0) = 0. Then, at each iteration t = 1, 2, . . ., the virtual arrival processes is given by

ak(t) = a?k where a? is the solution of the convex problem:

maximize V g(a)−
A∑
k=1

Qk(t)ak

subject to 0 ≤ ak ≤ amax, ∀ k (39)

and where V, amax > 0 are some suitably chosen constants, that determine the convergence properties of

the iterative algorithm. The service rates are given by

rk(t) = µk(t) log

(
1 + γ

(
B∑

m=1

β2
m,kηm(t)

)
qk(t)

)
where (µ(t),q(t),η(t)) is the solution of (35) for weights Wk = Qk(t). Then, the virtual queues are

updated according to (38). The theory developed in [20] (see also [21]) ensures the following result. Let

r(t) denote the vector of service rates generated by the above iterative algorithm. Then,

lim inf
t→∞

g

(
1

t

t−1∑
τ=0

Br(τ)

)
≥ g(R

?
)− K

V
(40)

where R
? is the solution of (5) and K is a constant that depends on the system parameters and on amax.

In particular, using the results in [21] we can prove the bound

K ≤ A

2

(
a2

max + log2
(
1 + γmax{β2

m,k : ∀ m, k}Psum

))
By choosing V and amax appropriately, we can ensure a desired tradeoff between the accuracy of the

approximation of the optimum point and the convergence speed of the iterative algorithm.

It should be noticed that if we use the greedy optimization of the user fractions as described in

Section III-C instead of the exact solution of (37), then the performance guarantee (40) is no longer

valid. However, the algorithm ensures that the throughput point that maximizes g(·) over the ergodic

rate region achievable with the (suboptimal) greedy optimization of the user fractions can be approached

arbitrarily closely.

IV. CHANNEL ESTIMATION AND NON-PERFECT CSIT

So far, we have assumed that the transmitter (cluster controller) has perfect CSIT. In this section we

consider the case where the BSs in the cluster broadcast a set of downlink pilot signals in order to enable

the users to measure their downlink channels and feed back channel state information in some form, in

order to provide CSIT and enable the computation of the LZFB precoding matrix, user selection, and
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power allocation. We seek the characterization of the non-trivial tradeoff between the advantage of having

a large number of transmit antennas or cluster size (large γ and/or large B) and the overhead required

for estimating the channels. We assume that the channels are constant over time-frequency blocks of

size WT complex dimensions, where W denotes to the system coherence bandwidth (in Hz) and T

denotes the system coherence time (in sec.). For each such block, γpBN dimensions are dedicated to

downlink training, in order to allow all users in the cluster to estimate the composite channel (i.e., the

corresponding column of H in (4)) formed by γBN coefficients. Since the channel vectors are Gaussian,

linear MMSE estimation is optimal with respect to the MSE criterion. A simple dimensionality argument

shows that the MSE can be made arbitrarily small as σ2
k → 0 (vanishing noise plus ICI) if and only if

γp ≥ γ. The ratio γp/γ denotes the “pilot dimensionality overhead”, relative to the minimum number of

pilots dimensions that allow MMSE estimation, under the condition that the MMSE vanishes as σ2
k → 0.

In the following, we assume that this condition holds.

Focusing on the estimation of a generic column of H in (4) corresponding to some user j in group k

of the reference cluster, the channel model of downlink channel estimation based on the common pilots

is given by

y
(j)
k = Th

(j)
k + z

(j)
k (41)

where T is a γpBN ×γBN training matrix with equal-energy orthogonal columns, corresponding to the

training sequences sent in parallel from the γBN antennas of the cluster joint transmitter (notice that

the vertical dimension corresponds to channel uses, or “time”, and the horizontal dimension corresponds

to the antennas), the vector h
(j)
k is the corresponding channel vector, obtained by the stacking of the

channels (including their path coefficients) from the different base stations forming the cluster, and z
(j)
k

is a vector of i.i.d. CN (0, 1) normalized noise plus interference samples. For simplicity, we re-index the

base stations forming the reference cluster as m = 1, . . . , B and the user groups as k = 1, . . . , A. With

this notation, from (4) we have

h
(j)
k =


β1,kh

(j)
1,k

...

βB,kh
(j)
B,k

 (42)

where h
(j)
i,k denotes the j-th column of the block Hi,k, with i.i.d. CN (0, 1) elements.

The equal-energy and orthogonality condition on the columns of the training matrix T yield that the

total transmit power (energy per channel use) in the training phase is given by

1

γpBN
tr
(
THT

)
=

γ

γp
p (43)
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where we let THT = pI, and p denotes the energy of the training sequences. Letting the total training

power equal to the total cluster transmit power, we obtain

p =
γp
γ

B∑
m=1

Pm

Noticing that

Cov(h
(j)
k ) = diag(β2

1,kI, . . . , β
2
B,kI)

∆
= Dk

has block-diagonal structure with diagonal blocks given by scaled γN × γN identity matrices, we

immediately obtain the MMSE estimator of h
(j)
k in the form

ĥ
(j)

k = Dk (I + pDk)
−1 THy

(j)
k (44)

with estimation error covariance given by

Σk = Dk − pDk (I + pDk)
−1 Dk = Dk (I + pDk)

−1 (45)

The MMSE covariance matrix is also block diagonal, with scaled identities diagonal blocks, and it depends

only on the user group index k and not on the individual user in the group (this is obvious since the

users in the same group are statistically equivalent).

From the well-known orthogonality condition of MMSE estimation and from joint Gaussianity, we

have the canonical decomposition

h
(j)
k = ĥ

(j)

k + e
(j)
k (46)

where the estimator ĥ
(j)

k and the error e
(j)
k are independent, and such that

Cov(ĥ
(j)

k ) = Dk −Σk = pDk (I + pDk)
−1 Dk (47)

Putting everything together, we can write the channel matrix H in (4) in the form H = Ĥ + E, where

Ĥ =


β̂1,1H1,1 · · · β̂1,AH1,A

...
...

β̂B,1HB,1 · · · β̂B,AHB,A

 , (48)

with

β̂m,k =
β2
m,k√

1/p+ β2
m,k

, (49)
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and the blocks Hm,k are independent with i.i.d. CN (0, 1) elements, and where E is independent of Ĥ,

and is given in the form

E =


β̄1,1E1,1 · · · β̄1,AE1,A

...
...

β̄B,1EB,1 · · · β̄B,AEB,A

 , (50)

with

β̄m,k =
√
β2
m,k − β̂2

m,k =
βm,k√

1 + pβ2
m,k

, (51)

and the blocks Em,k and independent with i.i.d. CN (0, 1) elements.

In a practical FDD system, the users should feed back their estimated channel on each time-frequency

block, i.e., for each new observation. Several schemes have been proposed for closed-loop CSIT feedback,

including codebook-based vector quantization, scalar quantization of the channel coefficients, and unquan-

tized “analog” feedback. Furthermore, the feedback takes place on the uplink, and can be performed by

accessing the uplink channel in FDMA/TDMA, or exploiting the MIMO-MAC nature of the uplink in

order to allow a number of users proportional to the number of receiving antennas to send their feedback

signals simultaneously [37], [45], [46]. Analyzing the system in the presence of a specific feedback scheme

is possible, although even more cumbersome [37]. However, from the results in the above mentioned

papers we know that a well-designed digital feedback scheme can achieve a quantization error that is

negligible with respect to the downlink training estimation error. Furthermore, this can be done with

a moderate use of the uplink feedback total capacity, provided that the number of users feeding back

their CSIT is not too large (see for example the optimization tradeoff in [47]. For the sake of simplicity,

here we assume an ideal genie-aided CSIT feedback that provides Ĥ directly to the centralized cluster

controller at no additional costs, either in terms of rate or in terms of CSIT distortion. This provides a

“best case” for any CSIT scheme based on explicit downlink training and any form of feedback. Then,

since an actual system implementation CSIT feedback has a cost that impacts on the uplink capacity, we

shall propose a randomized scheduling scheme that pre-selects a subset of users and therefore limits the

number of users actually feeding back their CSIT in the next section.

Under these assumptions, the cluster transmitter computes a mismatched LZFB precoding matrix from

the estimated channel matrix Ĥ instead of H. The following theorem yields an achievability lower bound

on the large-system performance of the mismatched LZFB:

Theorem 4: Under the downlink training scheme described above and assuming genie-aided CSIT
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feedback, the achievable rate of users in group k is lower bounded by

Rk ≥ log

(
1 +

Λ̂k(µ)qk

1 +
∑B

m=1 β̄
2
m,k

)
(52)

where

Λ̂k(µ) = γ

B∑
m=1

β̂2
m,kηm(µ) (53)

where (η1(µ), . . . , ηB(µ)) is the unique solution with components in [0, 1] of the fixed point equation

ηm = 1−
A∑
q=1

µq
ηmβ̂

2
m,q

γ
∑B

`=1 η`β̂
2
`,q

, m = 1, . . . , B (54)

with respect to the variables η = {ηm}.

Proof: See Appendix D.

The conclusion of this section is that all the derivations and the optimization made before for the case

of perfect CSIT, including the system symmetry conditions, can be applied straightforwardly to the case

of non-ideal CSIT, provided that the per-user rates are replaced with the corresponding terms in (52). In

particular, Theorem 2 is valid by replacing {βm,k} with {β̂m,k} given in (49).

Finally, the system spectral efficiency must be scaled by the factor
[
1− γpNB

WT

]
+

, that takes into account

the downlink training overhead, i.e., fraction of dimensions per block dedicated to training. In particular,

letting τ = N
WT denote the ratio between the number of users per group, N , and the dimensions in a time-

frequency slot, we can investigate the system spectral efficiency for fixed τ , in the limit of N →∞. The

ratio τ captures the “dimensional crowding” of the system. It is clear that a highly underspread system

(WT � 1) can accommodate more users, and more jointly coordinated antennas at the transmitter.

Vice versa, if WT is not much larger than N , then the number of jointly coordinated transmit antennas

(captured by the product γB) is intrinsically limited by the channel time-frequency coherence.

V. NUMERICAL RESULTS AND SIMPLIFIED SCHEDULING

In this section, first we provide a comparison between the large-system limit results and the Monte Carlo

simulation of the corresponding finite-dimensional systems with greedy user selection. Then, driven by the

behavior of the finite-dimensional system, we propose a simplified scheduling algorithm that randomly

pre-select users according to the probability obtained from the asymptotic analysis. As explained in

Section I, this algorithm has the advantage that the feedback required for CSIT is greatly reduced, since

only the users that are effectively served are going to feedback their CSIT. However, quantifying the

feedback resource requirement in a precise manner is out of the scope of this paper. Finally, we consider
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the case of non-perfect CSIT and investigate the tradeoff between increasing the number of jointly

coordinated antennas and the dimensionality cost incurrent by downlink training for channel estimation.

In the multi-cell system model, we consider a linear cellular arrangement where M base stations are

equally spaced on the segment [−M,M ] km, in positions 2m−M − 1 for m = 1, . . . ,M and K user

groups are also equally spaced on the same segment, with K/M user groups uniformly spaced in each

cell. The distance dm,k between BS m and user group k is defined modulo [−M,M ], i.e., we assume

a wrap-around topology in order to eliminate boundary effects. We use a distance-dependent pathloss

model given by α2
m,k = G0/(1+(dm,k/δ)

ν)) and the pathloss parameters, G0, ν, and δ follow the mobile

WiMAX system evaluation specifications [18], such that the 3dB break point is δ = 36m (i.e., 3.6% of 1

km cell radius), the pathloss exponent is ν = 3.504, the reference pathloss at dm,k = δ is G0 = −91.64

dB, and the per-BS transmit power normalized by the noise power at user terminals is P = 154 dB.

a) Comparison with finite-dimensional systems: Figure 3 shows the average user throughputs (bit/s/Hz)

versus user locations for the first two cells near the origin (given the symmetry, this pattern repeats

periodically), for the case of M = 8 cells, K = 64 user groups, cluster size B = 1, 2 and 8 and γ = 4.

Notice that with 8 user groups per cell and γ = 4, we have twice as much users than antennas in each

cell. The case B = 8 corresponds to the network-wide full cooperation. For the finite-dimensional Monte

Carlo simulation, we applied the same stochastic optimization algorithm described in Section III-D,

where now t denotes a scheduling time slot index, and for each t a new set of i.i.d. channel vectors is

generated. In this case, the instantaneous weighted sum-rate is obtained via the user selection algorithm

of [31], assuming that the CSIT for all users in the systems is available at the cluster controllers. As far

as the network utility function g(·) is concerned, we consider the Proportional Fairness (PF) criterion,

corresponding to g(R) =
∑

k logRk. This PF criterion is applied to all the numerical results in this

section.

From Figure 3(a), we notice that the advantage of full cooperation is significant, whereas the cluster

of size B = 2 yields a significant improvement for the users in the center of the cluster, with respect to

the basic cellular system with no cluster cooperation (B = 1). In Figure 3(b), we compare the asymptotic

results with the finite-dimensional simulation results in the case of B = 2. The finite dimensional system

yields better per-user throughput than the large-system limit, thanks to the ability of the user selection to

exploit the randomness in the instantaneous channel realizations (multiuser diversity). However, as the

number of users at each location, N grows, the diversity gain continues to decline, for example, in this

figure, the relative gain of the finite-dimensional rate to the asymptotic rate is about 55% for N = 1 but

25% for N = 8. In the case of B = 1 and B = 8 which are not shown here, the same trends are observed
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Fig. 3. User throughputs obtained from asymptotic analysis for cooperation clusters of size B =1 (no cooperation), 2, and

8 (full cooperation) and from finite dimension simulation with greedy user selection for B = 2 and N =1, 2, 4, and 8, with

perfect CSIT. M = 8 cells and K = 64 user groups.
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Fig. 4. User group rate in finite dimension (N = 2, 4, and 8) with random user selection and power allocation aided by the

asymptotic results for cooperation clusters of size B=1, 2, and 8, with perfect CSIT. M = 8 cells and K = 64 user groups.

even though the diversity gain is slightly larger (B = 1) or smaller (B = 8). It is well-known that for

large systems (large N ), this multiuser diversity effect disappears because of “channel hardening” [33],

[34].

b) Random user selection scheme for reduced CSIT feedback: User selection requires a large amount

of CSIT feedback since it needs CSIT from many users in order to select a good subset at each scheduling

slot, even though no more users than the number of antennas can be served at a time. For systems with

finite but large size, it is not wise to have many more users than transmit antennas to feedback their

CSIT, since the multiuser diversity effect becomes marginal whereas the feedback resource grows at least

linearly with the number of users feeding back their CSIT at each slot. In this regime, a better option

consists of pre-select the users to be served in each slot, such that only these users feed back their CSIT.

In this case, we have to design a user pre-selection scheme that approximately maximizes the desired

network utility function. For example, a simple round-robin scheme may perform far from the desired

PF optimal point.

For this purpose, we consider a randomized scheduling scheme based on our asymptotic analysis that

effectively provides such user pre-selection. We stress the fact that this may be useful for the sake of

limiting the total CSIT feedback requirement, while still approximating the optimal proportional fairness

throughput point. In the proposed scheme, the users to which CSIT feedback is requested are randomly
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selected in each slot t as follows: let {µk} be the user fractions per group of (approximately) co-located

users, which is obtained from the asymptotic analysis. The cluster controller has a maximum of γBN

independent data streams to transmit using LZFB (equal to the number of jointly coordinated transmit

antennas). At each time t, the scheduler generates γBN i.i.d. random variables S1(t), . . . , SγBN (t),

taking values on the integers {0, 1, . . . , A} with probability P(Si(t) = k) = µk

γB for k 6= 0 and P(Si(t) =

0) = 1 −
∑A

k=1
µk

γB . Then, user group k is served by stream i at time slot t if Si(t) = k. Notice that

streams i’s for which Si(t) = 0 are not used and that multiple streams may be associated to the same

user group. Finally, for each stream a user in the associated group is selected at random, making sure

that streams serve distinct users. Once the allocation of streams to users is determined, the selected users

are requested to feedback their CSIT and the scheduler optimizes the transmit powers by solving the

weighted sum rate maximization problem with weights Wk = ∂g(R)/∂Rk, corresponding to the optimal

asymptotic throughput point. In the special case of PF scheduling, this is given by Wk = 1/Rk, [19].

The finite-dimension simulation results under this random user selection scheme is compared with the

asymptotic results in Figure 4 under the same system setting as in Figure 4. As N increases, the finite-

dimensional results converge to the infinite-dimensional limit and they are almost overlapped, especially

when B = 1 or 2. Hence, the proposed scheme is effective for systems of finite but moderately large

size.

c) Non-perfect CSIT and coordination vs. estimation tradeoff: Figure 5 shows the cell sum rate

(cluster sum rate normalized by the number of cooperating cells in the reference cluster) versus values of

γ in the cases of (a) perfect CSIT and no consideration of training overhead, and (b) non-perfect CSIT

and explicit downlink training with γp = γ. We consider a larger number of user groups, K = 192 in

the M = 8 cells. As shown in Figure 5(a), under the assumption of perfect CSIT given at no cost, the

cell sum rate grows almost linearly as γ (the ratio of BS antennas over the users per group) increases,

and grows also as B (cluster size) increases, which shows the inter-cell cooperation and larger number

of transmit antenna gain. However, when the CSIT estimation error and downlink training overhead are

taken into account, there is a non-trivial tradeoff between the improvement owing to more and more

jointly coordinated transmit antennas and the cost of estimating higher and higher dimensional channels.

Notice that this tradeoff is “fundamental”, in the following sense: a trivial upper bound on the achievable

sum capacity of the reference cluster is obtained by letting all users perfectly cooperate as a single

multi-antenna receiver. The capacity of the resulting block-fading single-user MIMO channel with γBN

transmit antennas and AN receiving antennas and fading coherence block WT = N/τ was characterized

in the high-SNR regime in [48], [49]. Using this result, in the case 1
2τ ≥ A ≥ γB, the dimensionality
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Fig. 5. Cell sum rate versus the antenna ratio γ for cooperation clusters of size B=1, 2, and 8. M = 8 cells and K = 192

user groups.
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“pre-log” loss factor with respect to the case of ideal CSIT is given by
(

1− γBN
WT

)
that coincides

with what is said at the end of Section IV with choice of γp = γ. In fact, the “pre-log” optimality

of explicit training for single-user MIMO channels with block fading in the high-SNR regime is well-

known [49], [50]. Also, the same result show that if 1
2τ < min{A, γB}, then there is no point in using

more than WT/2 jointly coordinated antennas. Finally, notice that the recently proposed schemes for

“blind” interference alignment [51], exploiting reconfigurable antennas at the user terminals, still require

channel state information at the receiver (CSIR) for coherent detection at each user terminal. Since the

resulting channel is MIMO point-to-point, the same downlink training said above appears. In other words,

these “blind” interference alignment schemes avoid CSIT feedback, but still require downlink training in

the same amount considered in this work. In conclusions, while we have analyzed a specific downlink

training scheme, we have that, for a cluster in isolation, the sum capacity scaling in the high-rate regime

(high-SNR) is indeed the correct one.

Figure 5 shows the cell sum rate with consideration of training overhead and estimation error for

γp = γ. Inspired by practical system values, we chose τ = 1/64 and 1/32. In the finite-dimensional

case, this corresponds to WT = 640 or 320 signal dimensions, respectively, with N = 10 users per

user groups (total KN/M = 240 users per cell). We notice that as γ increases, the sum rates in most

cases grow at first, achieve some maximum point and decrease, due to the tradeoff between the benefit

from a large number of antennas and the training overhead cost. For given B and τ , the maximum sum

rate is achieved at γB = 1
2τ , which is in line with the result of the high-SNR regime when γB ≤ A.

For example, for B = 2 and τ = 1/64, the sum rate is maximum at γ = 16 where 2γ = 1
2(1/64) . For

B = 1 and τ = 1/64, the optimal γ is beyond the number of user groups per cell. We can also see

that, when the number of antennas is large, the no cooperation case (B = 1) achieves the highest sum

rate for both τ = 1/64 and 1/32, which suggests that no cooperation gain can be expected, because the

improvement of multi-antenna gain does not compensate for the dimensional decrease (pre-log factor)

due to the training overhead.

In order to see the best cluster size with downlink training and estimation, we consider a system with

a large number of cells, M = 24. Figure 6 illustrates the cell sum rate versus the cluster size B for

γ = 1, 2, 4, and 8 and τ = 1/64 and 1/32 with γp = γ. In a linear cellular arrangement with M = 24,

the clusters except for B = 1, 2, or 24, do not have the symmetric structure described in Section III-A.

So for those clusters, we notice that the solution of problem (35) under the cluster sum-power constraint

produces an upper-bound of the optimal value under per-BS power constraint. Even though not explicitly

shown in the figure, we can confirm that the cluster sum rate (B times the cell sum rate) is maximized
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when γB = 1
2τ but as far as the cell sum rate is concerned, the optimal γ for given B and τ is smaller

than the optimal one in terms of the cluster sum rate, i.e., 1
2τγ . For example, in Figure 6(a), when γ = 4

and τ = 1/64, the maximum cluster sum rate is achieved at B = 8, but the cell sum rate given as the

cluster sum rate divided by B is maximum at B = 3. When the channel is more time or frequency

selective (τ = 1/32), the optimum cluster size gets even smaller, as shown in Figure 6(b). Furthermore,

the cell sum rate is more sensitive to the cluster size, when the number of antennas is larger.

VI. CONCLUSIONS

We considered a multi-cell “network MIMO” system in a realistic cellular scenario, with inter-cell

cooperation and fairness criteria. Specifically, we focused on linear zero-forcing beamforming combined

with user selection. We derived the asymptotic expression in the large system limit and proposed an

algorithm that computes the throughput point under an arbitrary fairness criterion, expressed by the

maximization of a suitable concave and componentwise increasing network utility function over the region

of achievable ergodic user rates. The proposed method handles the per-cluster sum-power constraint.

We showed that under certain system symmetries, this coincides with the more stringent per-BS power

constraint. In particular, the system symmetries make the analysis much simpler, as it allows for a closed-

form solution of a fixed-point equation that characterized the zero-forcing beamforming performance. The

fairness scheduling was applied in the form of stochastic network optimization. The proposed asymptotic

analysis is computationally much more efficient than the Monte Carlo simulation. It also provides a

good approximation of finite-dimensional systems, when the users are randomly selected according to

the asymptotic user fraction in the large system limit. In particular, we proposed a random user selection

scheme that associates users with downlink data streams according to probabilities obtained from the

asymptotic analysis, and provides a good approximation of the optimal throughput point while requiring

much less CSIT feedback resource.

Our analytic tool can be extended to handle explicit channel state information estimation, obtained

from downlink training. This allows the investigation of the tradeoff between the number of jointly

coordinated antennas and the cost of estimating higher dimensional channels. This tradeoff yields the

optimal “cooperation cluster size” that maximizes the system throughput subject to fairness, when the

cost of channel estimation is also taken into account. Due to this training overhead, the increase in

the cooperation cluster size does not necessarily correspond to a system throughput increase. As a

matter of fact, our analysis shows that in most cases no cooperation among base stations (conventional

cellular systems) with a significant number of antennas per base station (large γ) yields the best system
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Fig. 6. Cell sum rate versus the cluster size B for the antenna ratio γ=1, 2, 4, and 8 in the case of non-perfect CSIT and

explicit downlink training with γp = γ. M = 24 cells and K = 192 user groups.
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performance when the channel estimation cost is taken into account. This poses serious questions about

whether “network MIMO” is a desirable solutions, also taking into account that base station cooperation

yields a non-trivial complexity in system implementation, requiring some form of centralized processing

of all the B base stations in each cluster. It clearly appear that more effort should be devoted to using a

larger number of antennas at each base station, since this yields larger system throughput and significantly

less system complexity.

APPENDIX A

PROOF OF THEOREM 1

For the sake of clarity, we recall some definitions and facts about random matrices with independent

non-identically distributed elements (see [52], [53]) of the type defined in (4), (7), that will be essential

in the proof of Theorem 1.

Definition 1: Consider an Nr ×Nc random matrix H = [Hi,j ], whose entries have variance

Var[Hi,j ] =
Pi,j
Nr

(55)

such that P = [Pi,j ] is an Nr ×Nc deterministic matrix with uniformly bounded entries. For given Nr,

we define the variance profile of H as the function vNr : [0, 1)× [0, 1)→ R such that

vNr(x, y) = Pi,j ,
i−1
Nr
≤ x < i

Nr
, j−1

Nc
≤ y < j

Nc
(56)

When we consider the limit for Nr →∞ with fixed ratio Nc

Nr
→ ν, we assume that vNr(x, y) converges

uniformly to a bounded measurable function v(x, y), referred to as the asymptotic variance profile of H.

For random matrices distributed according to Definition 1, we have the following results.

Theorem 5 ( [52, Theorem 2.52]): Let H be an Nr×Nc random matrix whose entries are independent

zero-mean complex circularly symmetric random variables satisfying the Lindeberg condition

1

Nc

∑
i,j

E
[
|Hi,j |21{|Hi,j | ≥ δ}

]
→ 0 (57)

as Nr, Nc →∞ with Nc

Nr
→ ν, for all δ > 0. Assume that the variances of the elements of H are given

by Definition 1 and define the function

z(Nr)(y, s) = hH
j

I + s
∑
`6=j

h`h
H
`

−1

hj ,
j−1
Nc
≤ y < j

Nc
. (58)
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As Nr →∞ with Nc

Nr
→ ν, z(Nr)(y, s) converges almost surely to the limit z(y, s), given by the solution

of the fixed-point equation

z(y, s) = E

 v(X, y)

1 + s ν E
[

v(X,Y)
1+sz(Y,s) |X

]
 , y ∈ [0, 1]. (59)

where X and Y are i.i.d. random variables uniformly distributed on [0, 1].

Defining the effective dimension ratio as

ν ′ = ν
P (E[v(X,Y)|Y] 6= 0)

P (E[v(X,Y)|X] 6= 0)
,

the following high-SNR limit can be proved.

Corollary 1 (see [52, Theorem 3.1]): As s goes to infinity, we have

lim
s→∞

z(y, s) =

 Ψ∞(y) if ν ′ < 1

0 if ν ′ ≥ 1
(60)

where, for ν ′ < 1, Ψ∞(y) is the positive solution to

Ψ∞(y) = E

 v(X, y)

1 + νE
[
v(X,Y)
Ψ∞(Y)

∣∣∣X]
 (61)

We now enter specifically the proof of Theorem 1. From the well-known formula for the inverse of a

2× 2 block matrix, we can write the (j, j) diagonal element of the matrix (I + sHHH)−1 as[(
I + sHHH

)−1
]
j,j

=
1

1 + shH
j

I + s
∑
` 6=j

h`h
H
`

−1

hj

(62)

Furthermore, assuming that H has full rank, then[(
HHH

)−1
]
j,j

= lim
s→∞

s

[(
I + sHHH

)−1
]
j,j

= lim
s→∞

s

1 + shH
j

I + s
∑
`6=j

h`h
H
`

−1

hj

=
1

lim
s→∞

hH
j

I + s
∑
` 6=j

h`h
H
`

−1

hj

(63)

Comparing the definition of Λ
(i)
k (µ) in (11) with (63) and using Theorem 5 and Corollary 1, we have

that the desired limiting value of Λ
(i)
k (µ) is given by Ψ∞(y), evaluated at the corresponding value of y
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such that j−1
Nc
≤ y < j

Nc
for j =

∑k−1
`=1 µ`N + i, after replacing the general matrix H in Theorem 5 with

Hµ given by our problem.

In this case, the number of rows in the matrix is given by Nr = γBN and the number of columns

is given by Nc = µN . With the normalization by 1/
√
N of all the channel coefficients, the matrix Hµ

defined in (7) is formed by independent blocks Hm,k(µk) of dimension γN ×µkN , such that each block

has i.i.d. CN (0, β2
m,k/N) elements. As N → ∞, we have that Nc, Nr → ∞ with ratio ν = µ

γB . By

imposing the appropriate normalization, the asymptotic variance profile of Hµ is given by the piece-wise

constant function

v(x, y) = γBβ2
m,k for (x, y) ∈

[
m− 1

B
,
m

B

)
×

[∑k−1
j=1 µj

µ
,

∑k
j=1 µj

µ

)
(64)

with m = 1, . . . , B and k = 1, . . . , A. Also, we find explicitly

ν ′ = ν

∑A
k=1

µk

µ 1
{

1
B

∑B
m=1 βm,k 6= 0

}
1
B

∑B
m=1 1

{
1
µ

∑A
k=1 µkβm,k 6= 0

} (65)

and notice that the case ν ′ < 1 in (60) always holds since, by construction, rank(Hµ) = µN . Hence, the

limit for Λ
(i)
k (µ) is obtained as the solution of the fixed point equation (61), for any y ∈

[∑k−1
j=1 µj

µ ,
∑k

j=1 µj

µ

)
.

In fact, the piece-wise constant form of v(x, y) yields that Λ
(i)
k (µ) converges to a limit that depends only

on k (the user group) and not on i (the specific user in the group).

With some abuse of notation, we let Λk(µ) = Ψ∞(y) for all y ∈
[∑k−1

j=1 µj

µ ,
∑k

j=1 µj

µ

)
, in order to

denote this limit. Particularizing (61) to this case, we obtain

Λk(µ) = γ

B∑
m=1

β2
m,k

1 +

A∑
q=1

µq
β2
m,q

Λq(µ)

, k = 1, . . . , A (66)

It follows that the asymptotic limit of Λµ is block-diagonal, with scaled-identity diagonal blocks, where

the k-th block is given by Λk(µ)IµkN .

In order to obtain the more convenient expression (23), we introduce the variables ηm ∈ [0, 1], for

m = 1, . . . , B, and replace Λk(µ) = γ
∑B

m=1 β
2
m,kηm into (66). Since ηm takes values in [0, 1], we can

write ηm = 1/(1 + zm) for zm ≥ 0, and solving for zm, we obtain zm =
∑A

q=1 µq
β2
m,q

Λq(µ) . Eliminating

the variables zm from the latter equation, we arrive at the desired fixed point equation (24), as given in

Theorem 1.

As a final remark, notice that (24) has some significant advantages with respect to (66). In particular,

the variables ηm take values in [0, 1] (by construction), and typically we have B < A (less BSs in a

cluster than user groups). Therefore, (24) can be always initialized by letting ηm = 1, and the fixed point
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equation iterative solution involves only B, rather than A, variables. Also, it is immediately evident by

inspection that the solution of (24) for ηm ∈ [0, 1] always exists and it is unique.

APPENDIX B

PROOF OF THEOREM 2

We start with the following auxiliary result:

Lemma 1: Let x be a n-dimensional vector with i.i.d. entries with variance 1
n . Let A and C be n×n

Hermitian symmetric matrices independent on x. Finally let D be a n× n diagonal matrix independent

on x. Then:

xHDH(DxxHDH + A)−1C(DxxHDH + A)−1Dx→ φ(DHA−1CA−1D)

(1 + φ(DHA−1D))
2

where φ(·) = limn→∞
1
n tr(·) and the convergence is almost surely.

Proof: Let

Q = xHDH(DxxHDH + A)−1C(DxxHDH + A)−1Dx

From the inversion lemma we have that(
DxxHDH + A

)−1
= A−1 − 1

1 + xHDHA−1Dx
A−1DxxHDHA−1 (67)

Hence,

Q = xHDHA−1C(DxxHDH + A)−1Dx

− 1

1 + xHDHA−1Dx
xHDHA−1DxxHDHA−1C(Dxx†D† + A)−1Dx

=
a

1 + xHDHA−1Dx
(68)

where

a = xHDHA−1C(DxxHDH + A)−1Dx

Applying again the inversion lemma we have:

a = xHDHA−1CA−1Dx

− 1

1 + xHDHA−1Dx
xHDHA−1CA−1DxxHDHA−1Dx

=
b

1 + xHDHA−1Dx
(69)

where

b = xHDHA−1CA−1Dx
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From (68) and (69) we obtain

Q =
xHDHA−1CA−1Dx

(1 + xHDHA−1Dx)
2 (70)

Finally, we arrive at the desired result by using the well-known result in random matrix according to

which limn→∞ xHMx = φ(M) provided that x,M are independent, that M has a well-defined limiting

eigenvalue distribution and that x has i.i.d. elements with mean zero and variance 1/n.

Using Lemma 1, we can proceed with the proof. From the expression of θm,k(µ), it follows that

θm,k(µ) =
1

N

µkN∑
i=1

mγN∑
`=1+(m−1)γN

∣∣∣[Vµ
](i)
`,k

∣∣∣2
=

1

N
tr
(
ΦmVµΘkV

H
µ

)
=

1

N
tr
(
ΦmHµ(HH

µHµ)−1Λ
1/2
µ ΘkΛ

1/2
µ (HH

µHµ)−1HH
µΦm

)
(71)

where Φm is a diagonal matrix with all zeros, but for γN consecutive ones, corresponding to positions

from (m−1)γN+1 to mγN on the main diagonal, and where Θk denotes the µN -dimensional diagonal

matrix with all zeros, but for µkN consecutive ones, corresponding to positions from µ1:k−1N + 1 to

µ1:kN on the main diagonal (recall that we define the partial sum µ1:k =
∑k

j=1 µj).

The submatrix of ΦmHµ corresponding to the non-zero rows, i.e., including rows from (m−1)γN+1

to mγN , can be written as

[βm,1Hm,1(µ1), · · · , βm,AHm,A(µA)] = WmBm

where Wm is a γN × µN rectangular matrix with i.i.d. entries, with mean 0 and variance 1/N , and

Bm = diag

βm,1, . . . , βm,1︸ ︷︷ ︸
µ1N

, . . . , βm,k, . . . , βm,k︸ ︷︷ ︸
µkN

, . . . , βm,A, . . . , βm,A︸ ︷︷ ︸
µAN

 (72)

Also, we let

Ck = Λ
1/2
µ ΘkΛ

1/2
µ

= diag

0, . . . , 0︸ ︷︷ ︸
µ1:k−1N

,Λ
(1)
k (µ), . . . ,Λ

(µkN)
k (µ)︸ ︷︷ ︸

µkN

, 0, . . . , 0︸ ︷︷ ︸
(µ−µ1:k)N

 (73)

Notice that Bm and Ck have both dimension µN × µN .
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After simple algebraic manipulation, letting the `-th row of Wm be denoted by wH
m,` we can write

HH
µHµ =

B∑
m=1

BmWH
mWmBm

= Bmwm,`w
H
m,`Bm +

∑
j 6=`

Bmwm,jw
H
m,jBm

+
∑
q 6=m

BqW
H
q WqBq (74)

In order to be able to apply Lemma (1), we need that the variance of the elements of the i.i.d. vector wm,`

(playing the role of x in the Lemma), is equal to the inverse of the vector length. Therefore, dividing by

µ, we define

A =
1

µ

B∑
q=1

BqW
H
q WqBq (75)

and

Am,` = A− 1

µ
Bmwm,`w

H
m,`Bm (76)

Using (72), (73), (75) and (76) in (71) we arrive at

θm,k(µ) =
1

Nµ
tr
(

1
√
µ

WmBmA−1CkA
−1BmWH

m

1
√
µ

)

=
1

Nµ

γN∑
`=1

1
√
µ

wH
m,`Bm

(
1

µ
Bmwm,`w

H
m,`Bm + Am,`

)−1

Ck

·
(

1

µ
Bmwm,`w

H
m,`Bm + Am,`

)−1

Bmwm,`
1
√
µ

(77)

→ γ

µ

φ
(
BmA−1CkA

−1Bm

)
(1 + φ (BmA−1Bm))2 (78)

where the last line follows by applying Lemma 1, and by noticing that the terms for different ` in the

sum in (77) converge to the same limit (by symmetry), that can be obtained by using A in lieu of Am,`,

while assuming A and wm,` to be independent, for all ` = 1, . . . , γN and m = 1, . . . , B.



36

At this point, our goal is to evaluate the two limit normalized traces in (78). We start by the term in

the denominator , which is considerably simpler. We have

φ
(
BmA−1Bm

)
= lim

N→∞

1

µN
tr
(
BmA−1Bm

)
= lim

N→∞

1

µN
tr

((
1

µ
HH
µHµ

)−1

B2
m

)

= lim
N→∞

1

N
tr
((

HH
µHµ

)−1
B2
m

)

= lim
N→∞

1

N

A∑
k=1

µkN∑
i=1

β2
m,k

Λ
(i)
k (µ)

=

A∑
k=1

µkβ
2
m,k

Λk(µ)
(79)

where we used the fact that, by definition,[(
HH
µHµ

)−1
](i)

k

=
1

Λ
(i)
k (µ)

for the diagonal elements of
(
HH
µHµ

)−1
in position µ1:k−1N+i for i = 1, . . . µkN , and the convergence

result of Theorem 1. Also, comparing (79) with the expression of zm in the proof of Theorem 1 (see

Appendix A, eq. (66) and below), we have that

zm =

A∑
k=1

µkβ
2
m,k

Λk(µ)
(80)

Since ηm(µ) = 1/(1 + zm), where {ηm(µ) : m = 1, . . . , B} are the auxiliary variables defined in

Theorem 1 as the solutions of the fixed-point equation (24), we have that the denominator of (78) is

given by (
1 + φ

(
BmA−1Bm

))2
= η−2

m (µ) (81)

Next, we consider the numerator of (78). For this purpose, let ρ be a dummy non-negative real variable

and consider the identity:

−d
dρ

tr
((
ρB2

m + A
)−1

Ck

)
= tr

(
Bm(ρB2

m + A)−1Ck(ρB
2
m + A)−1Bm

)
(82)

By almost-sure continuity of the trace in the left-hand side of (82) with respect to ρ ≥ 0, it follows that

the desired expression for the numerator of (78) can be calculated as

φ
(
BmA−1CkA

−1Bm

)
= lim

ρ↓0

−d
dρ
φ
((
ρB2

m + A
)−1

Ck

)
(83)
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In order to compute the asymptotic normalized trace in (83), we use [52, Lemma 2.51], reported here

for completeness.

Lemma 2: Let H be Nr × Nc of the type given in Definition 1, satisfying the same assumptions of

Theorem 5. For any a, b ∈ [0, 1] with a < b,

1

Nr

bbNrc∑
i=baNrc

[(
sHHH + I

)−1
]
i,i

→
∫ b

a
ΓHHH(x, s) dx (84)

where Nc/Nr → ν and where ΓHHH(x, s) and ΥHHH(y, s) are functions defined implicitly by the fixed-

point equation

ΓHHH(x, s) =
1

1 + νsE [v(x,Y),ΥHHH(Y, s)]

ΥHHH(y, s) =
1

1 + sE [v(X, y),ΓHHH(X, s)]
(85)

for (x, y) ∈ [0, 1] × [0, 1], where X and Y are i.i.d. uniform-[0, 1] RVs and where the variance profile

function v(x, y) was introduced in Definition 1.

In order to use Lemma 2 we write

tr
((
ρB2

m + A
)−1

Ck

)
= tr

((
ρI + B−1

m AB−1
m

)−1
B−1
m CkB

−1
m

)
=

1

ρ
tr

((
I +

1

ρ
B−1
m AB−1

m

)−1

B−1
m CkB

−1
m

)
(86)

Noticing that, by definition, A = 1
µHH

µHµ, we can identify the matrix 1√
µB−1

m HH
µ with the matrix H

of Lemma 2. In this case, Nr = µN and Nc = γBN . Using {Bm} and {Wm} defined before, we can

write the block-matrix form

HH
µ =

[
B1W

H
1 ,B2W

H
2 , . . . ,BBWH

B

]
so that

B−1
m HH

µ =
[
B−1
m B1W

H
1 ,B

−1
m B2W

H
2 , . . . ,B

−1
m BBWH

B

]
It follows that the variance profile function of 1√

µB−1
m HH

µ is given by

vm(x, y) =
β2
`,k

β2
m,k

, for (x, y) ∈
[
µ1:k−1

µ
,
µ1:k

µ

)
×
[
`− 1

B
,
`

B

)
(87)

Using this in Lemma 2 and letting 1/ρ = s, we find

1

µN

µ1:kN∑
i=µ1:k−1N+1

[(
I + sB−1

m AB−1
m

)−1
]
i,i
→
∫ µ1:k/µ

µ1:k−1/µ
Γm(x, s) dx (88)
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where Γm(x, s) and Υm(y, s) are defined by

Γm(x, s) =
1

1 + γBs
µ E [vm(x,Y),Υm(Y, s)]

Υm(y, s) =
1

1 + sE [vm(X, y),Γm(X, s)]
(89)

Noticing that vm(x, y) is piecewise constant (see (87), we have that also the functions Γm(x, s) and

Υm(y, s) are piecewise constant. With some abuse of notation, we denote the values of these functions

as {Γm,q(s), q = 1, . . . , A} and {Υm,`(s), ` = 1, . . . , B}, respectively, we find that (89) can be re-written

directly in terms of these values as

Γm,q(s) =
1

1 + s
µ

∑B
`=1

γβ2
`,q

β2
m,q

Υm,`(s)
, for q = 1, . . . , A

Υm,`(s) =
1

1 + s
µ

∑A
q=1

µqβ2
`,q

β2
m,q

Γm,q(s)
for ` = 1, . . . , B (90)

Finally, using (88) and (86) and noticing that the non-zero diagonal elements of B−1
m CkB

−1
m converge

to the constant Λk(µ)β−2
m,k, we arrive at:

φ
((
ρB2

m + A
)−1

Ck

)
=
µk
ρµ

Γm,k(1/ρ)Λk(µ)β−2
m,k (91)

It turns out that it is convenient to define the new variables

Sm,q(ρ) =
1

ρβ2
m,q

Γm,q(1/ρ), and Gm,`(ρ) = Υm,`(1/ρ)

Therefore, we can rewrite (90) and (91) as

Sm,q(ρ) =
1

ρβ2
m,q + γ

µ

∑B
`=1 β

2
`,qGm,`(ρ)

, for q = 1, . . . , A (92)

Gm,`(ρ) =
1

1 + 1
µ

∑A
q=1 µqβ

2
`,qSm,q(ρ)

, for ` = 1, . . . , B (93)

φ
((
ρB2

m + A
)−1

Ck

)
=

µk
µ

Λk(µ)Sm,k(ρ) (94)

Taking the derivative in (94), we have that the numerator of (78) can be obtained as:

lim
ρ↓0

−d
dρ
φ
((
ρB2

m + A
)−1

Ck

)
=

µk
µ

Λk(µ) lim
ρ↓0

−d
dρ
Sm,k(ρ)

=
µk
µ

Λk(µ)Ṡm,k(0) (95)

where we define Ṡm,k(0) = −d
dρ Sm,k(ρ)|ρ=0 and, for later use, Ġm,`(0) = d

dρGm,`(ρ)|ρ=0.
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Next, we wish to find a fixed-point equation that yields directly Ṡm,k(0). By continuity, we can replace

directly ρ = 0 into the fixed point equations after taking the derivatives. By doing so, from (92) and

(93), we obtain:

Ṡm,q(0) =
β2
m,q + γ

µ

∑B
`=1 β

2
`,qĠm,`(0)(

γ
µ

∑B
`=1 β

2
`,qGm,`(0)

)2 , for q = 1, . . . , A (96)

Ġm,`(0) =

1
µ

∑A
q=1 µqβ

2
`,qṠm,q(0)(

1 + 1
µ

∑A
q=1 µqβ

2
`,qSm,q(0)

)2 , for ` = 1, . . . , B (97)

Also, the equations for Sm,q(0) and Gm,`(0), obtained by replacing ρ = 0 in (92), (93), read:

Sm,q(0) =
1

γ
µ

∑B
`=1 β

2
`,qGm,`(0)

, for q = 1, . . . , A (98)

Gm,`(0) =
1

1 + 1
µ

∑A
q=1 µqβ

2
`,qSm,q(0)

, for ` = 1, . . . , B (99)

Replacing (98) into (99), we obtain, for all ` = 1, . . . , B,

Gm,`(0) =
1

1 +
∑A

q′=1

µq′β
2
`,q′

γ
∑B

`′=1 β
2
`′,q′Gm,`′ (0)

. (100)

By multiplying both sides by γβ2
`,q and summing over `, we find

Um,q = γ

B∑
`=1

β2
`,q

1 +
∑A

q′=1

µq′β
2
`,q′

Um,q′

, (101)

where we define Um,q = γ
∑B

`=1 β
2
`,qGm,`(0). Comparing the fixed point equation (101) with (66), we

discover that Um,q = Λq(µ), independent of m. Using this result in (98), we obtain

Sm,q(0) =
µ

Λq(µ)
(102)

Using the definition of Um,q, (96) can be written as,

Ṡm,q(0) =
µ2β2

m,q + µU̇m,q

Λ2
q(µ)

, (103)

where, with some abuse of notation, we define U̇m,q = γ
∑B

`=1 β
2
`,qĠm,`(0).
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Multiplying both sides of (97) by γβ2
`,q, using (103) and (102) and summing over `, we obtain

U̇m,q = γ

B∑
`=1

β2
`,q

1
µ

∑A
q′=1 µq′β

2
`,q′Ṡm,q′(0)(

1 + 1
µ

∑A
q′=1 µq′β

2
`,q′Sm,q′(0)

)2

= γ

B∑
`=1

β2
`,q

1
µ

∑A
q′=1 µq′β

2
`,q′

µ2β2
m,q′+µU̇m,q′

Λ2
q′ (µ)(

1 +
∑A

q′=1

µq′β
2
`,q′

Λq′ (µ)

)2 (104)

= γµ

A∑
q′=1

[
B∑
`=1

η2
` (µ)β2

`,qβ
2
`,q′

]
µq′

Λ2
q′(µ)

(
β2
m,q′ +

1

µ
U̇m,q′(µ)

)
(105)

where we have used again the identity (80) in the denominator of (104). Somehow surprisingly, we notice

that (105) is a system of A linear equations in the A unknown {U̇m,q : q = 1, . . . , A}. Therefore, this can

be solved explicitly (although not in closed form in general). In particular, we define the A×A matrix

M =

[
B∑
`=1

η2
` (µ)b`b

T
`

]
diag

(
µ1

Λ2
1(µ)

, . . . ,
µA

Λ2
A(µ)

)
(106)

where b` = (β2
`,1, . . . , β

2
`,A)T, and the vector of unknowns U̇m, then, we the linear system corresponding

to (105) is given by

[I− γM] U̇m = γµMbm (107)

Solving the system (107) and using (103) in (95), we obtain the sought numerator of (78) in the form

µk
µ

Λk(µ)Ṡm,k(0) = µk
µβ2

m,k + U̇m,k

Λk(µ)
. (108)

Finally, putting together (78), (81) and (108), we obtain our final result:

θm,k(µ) =
γ

µ

φ
(
BmA−1CkA

−1Bm

)
(1 + φ (BmA−1Bm))2

=
γ

µ

µk(µβ
2
m,k + U̇m,k)

Λk(µ)
η2
m(µ)

=
µkη

2
m(µ)

(
β2
m,k + U̇m,k/µ

)
∑B

`=1 η`(µ)β2
`,k

(109)

where in the last line we used Theorem 1. Comparing (27) and (109), we see that the two expression

coincide by letting ξm = U̇m/µ. Therefore, Theorem 2 is proved.

Fig. 7 shows finite dimensional samples of θm,k(µ) for randomly generated channels and their asymp-

totic values obtained from (109) under the two cell setting used in the example of Fig. 2 with µ =

[0.5 0.5 0.75 1 1 0.75 0.5 0.5]. As N increases, the finite dimensional samples (dots) converge the

asymptotic values (lines) and this example shows the validness of the asymptotic analysis.
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Fig. 7. Finite dimensional samples of θm,k(µ) with N = [4 8 16 32 64 128 256] (dots) and asymptotic values in the large

system limit (lines) for m = 1, k = 1, . . . , 8, and µ = [0.5 0.5 0.75 1 1 0.75 0.5 0.5] under the same setting as in the example

of Fig. 2

APPENDIX C

PROOF OF THEOREM 3

We wish to show that, under the symmetric system conditions, limN→∞ θm,k(µ) = µ′i
B for all user

groups k in equivalence class i. Again, we begin by recalling some facts from [52], [53].

Definition 2: An Nr ×Nc matrix P with elements Pi,j is asymptotically row-regular if

lim
Nc→∞

1

Nc

Nc∑
j=1

1{Pi,j ≤ α}

is independent of i for all α ∈ R, as the aspect ratio Nc

Nr
converges to a constant.

Theorem 6 ( [52], [53]): Define an Nr × Nc complex random matrix H whose entries are indepen-

dent zero-mean complex circularly symmetric random variables (arbitrarily distributed) satisfying the

Lindeberg condition (57) with variance given by (55) for an Nr × Nc deterministic asymptotically

row-regular matrix P with uniformly bounded entries, for any Nr. Then, the asymptotic empirical

eigenvalue distribution of HHH converges almost surely to the asymptotic distribution of the random

matrix HwTHH
w, where Hw is a matrix whose entries are i.i.d. complex circularly-symmetric with zero-

mean and variance 1/Nr and where T is a diagonal matrix whose asymptotic empirical distribution is
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given by

fT(α) = lim
Nc→∞

1

Nc

Nc∑
j=1

1{Pi,j ≤ α}

It is easy to check that when the system symmetry condition defined in Section III holds, then the

variance matrix P of the random matrix Hµ is asymptotically row-regular as in Definition 2. Using

Theorem 6, it follows that the asymptotic empirical spectral distribution of HµH
H
µ converges to that of

HwTHH
w where T is diagonal and invertible, with asymptotic spectral distribution fT(α) given by the

probability mass function with masses {µk/µ : k = 1, . . . , A} at the points {β2
m,k : k = 1, . . . , A} (notice

that under the symmetry conditions the set of such points does not depend on m).

Under asymptotic row-regularity, Hµ is statistically equivalent to WT1/2 with W Gaussian complex

circularly symmetric, of dimension γNB × µN and i.i.d. elements. In other words, we can replace Hµ

with HwT1/2 in all normalized traces expressions, letting N →∞, and obtain the same result. We have

θm,k(µ) =
1

N
tr
(
ΦmHµ(HH

µHµ)−1Λ
1/2
µ ΘkΛ

1/2
µ (HH

µHµ)−1HH
µΦm

)
→ 1

N
tr
(
T1/2WHΦmWT1/2(T1/2WHWHT1/2)−1Λ

1/2
µ ΘkΛ

1/2
µ (T1/2WHWT1/2)−1

)
=

1

N
tr
(

(WHW)−1WHΦmW(WHW)−1T−1/2Λ
1/2
µ ΘkΛ

1/2
µ T−1/2

)
(110)

where Φm and Θk were defined after eq. (71). From Theorem 2 we know that θm,k(µ) converges almost

surely. Furthermore, using (110) we see that the limit, in the symmetric case, is independent of m. In

fact, because of the isotropic nature of W, it is clear that we can replace WHΦmW with WΦ`W, for

` 6= m, and the limit does not change.

Using these facts, in the limit for large N we can write

lim
N→∞

θm,k(µ) =
1

B

B∑
`=1

lim
N→∞

θ`,k(µ)

= lim
N→∞

B∑
`=1

1

NB
tr
(
Φ`Hµ(HH

µHµ)−1Λ
1/2
µ ΘkΛ

1/2
µ (HH

µHµ)−1HH
µΦ`

)
= lim

N→∞

1

NB
tr
(

(HH
µHµ)−1Λ

1/2
µ ΘkΛ

1/2
µ (HH

µHµ)−1HH
µHµ

)
= lim

N→∞

1

NB
tr
(
Λ

1/2
µ (HH

µHµ)−1Λ
1/2
µ Θk

)
= lim

N→∞

1

NB
tr (Θk)

=
µk
B
. (111)
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Finally, for a symmetric system we have that µk = µ′i for all user groups k in equivalence class i. This

concludes the proof.

APPENDIX D

PROOF OF THEOREM 4

Let V̂µ denote the beamforming matrix for given user fractions µ, defined as in Section II-B after

replacing Hµ with Ĥµ, defined as in (7) with the change βm,k → β̂m,k.

Let’s focus on a generic user j in group k. From (3) and (9) the received signal is given by

y
(j)
k =

(
h

(j)
k

)H
V̂µQ1/2u + z

(j)
k

=
(
ĥ

(j)

k

)H
v̂

(j)
k

√
q

(j)
k u

(j)
k +

(
e

(j)
k

)H
V̂µQ1/2u + z

(j)
k (112)

where we used the fact that v̂
(j)
k is orthogonal to all measured channel vectors ĥ

(i)

` , for all other scheduled

users, and we used the decomposition (46). The useful signal coefficient
(
ĥ

(j)

k

)H
v̂

(j)
k is, by construction,

equal to the diagonal element corresponding to user j in group k of the matrix Λ̂
1/2

µ , calculated from

Ĥµ as in (11). The additional interference term
(
e

(j)
k

)H
V̂µu is the intra-cluster multiuser interference

due to the fact that CSIT is not perfect.

A standard technique to lower bound the mutual information I(u
(j)
k ; y

(j)
k |Ĥ) is as follows:

I(u
(j)
k ; y

(j)
k |Ĥ) = h(u

(j)
k )− h(u

(j)
k |y

(j)
k , Ĥ)

= log πeqk − h(u
(j)
k − ay

(j)
k |y

(j)
k , Ĥ)

≥ log πeqk − h(u
(j)
k − ay

(j)
k |Ĥ)

≥ log πeqk − E
[
log πeVar(u

(j)
k − ay

(j)
k |Ĥ)

]
(113)

where we assumed that u(j)
k is Gaussian with variance 1 (denoting, as before, the transmit power to

users in group k). The bound holds for any coefficient a. In particular, we wish to use the coefficient

that minimizes the conditional variance Var(u
(j)
k − ay

(j)
k |Ĥ), given by the linear MMSE estimation of

u
(j)
k from y

(j)
k for given Ĥ. After standard algebra, omitted here for the sake of brevity, we obtain the

variance (conditional MMSE estimation error)

Var(u
(j)
k − ay

(j)
k |Ĥ) =

qk

[
E
[(

e
(j)
k

)H
V̂µQV̂H

µe
(j)
k

∣∣∣∣ Ĥ]+ 1

]
∣∣∣∣(ĥ

(j)

k

)H
v

(j)
k

∣∣∣∣2 qk + E
[(

e
(j)
k

)H
V̂µQV̂H

µe
(j)
k

∣∣∣∣ Ĥ]+ 1

(114)
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Replacing this into (113), we obtain the desired lower bound in the form

I(u
(j)
k ; y

(j)
k |Ĥ) ≥ E

log

1 +

∣∣∣∣(ĥ
(j)

k

)H
v

(j)
k

∣∣∣∣2 qk
1 + E

[(
e

(j)
k

)H
V̂µQV̂H

µe
(j)
k

∣∣∣∣ Ĥ]

 (115)

Let’s examine the terms in (115) separately. As already said before, the coefficient in the numerator of

the SINR term inside the logarithm, in the large system limit, is given by
∣∣∣∣(ĥ

(j)

k

)H
v

(j)
k

∣∣∣∣2 → Λ̂k(µ),

where the latter is obtained via Theorem 1 replacing the coefficients βm,k with the new coefficients β̂m,k

defined in (49), thus obtaining (53) and (54).

The intra-cluster interference term in the denominator can be evaluated as follows. First, notice that

because of the properties of the MMSE estimator, the channel error vector is independent of the estimator

Ĥ. Therefore, the conditioning with respect to Ĥ makes V̂µ and the diagonal matrix of transmitted powers

Q act as constant matrices with respect to the conditional expectation, since they are both functions of

the CSIT Ĥ. We have

E
[(

e
(j)
k

)H
V̂µQV̂H

µe
(j)
k

∣∣∣∣ Ĥ] = tr
(
QV̂H

µCov(e
(j)
k )V̂µ

)
= tr

(
QV̂H

µΣkV̂µ

)
= tr

(
ΣkV̂µQV̂H

µ

)
=

B∑
m=1

β̄2
m,k (116)

where the last line follows from the definition of Σk in (45), which is block-diagonal with B diagonal

blocks of dimension γN × γN , and the m-th diagonal block is given by β̄2
m,kI where β̄m,k is defined

in (51), and by noticing that V̂µQV̂H
µ is the covariance matrix of the signal transmitted from all the

base stations forming the cluster. Under a per-BS power constraint, the partial trace of this matrix on

any diagonal segment corresponding to one base station (diagonal segments of length γN ) is equal to 1.

Therefore, the simple form of (116) follows. This concludes the proof.
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