Sm³⁺掺杂对Sm_xNiCo_{0.2}Mn_{1.8}O₄热敏 陶瓷性能的影响

国 娜 李亚东

(苏州大学材料与化学化工部无机材料科学与工程系 苏州 215123)

摘 要 采用室温固相法和烧结工艺制备 Sm_xNiCo_{0.2}Mn_{1.8}O₄(0 $\leq x \leq 0.05$) 负温度系数热敏陶瓷,用 XRD 和 XPS 等 手段对其进行表征,研究了 Sm³⁺ 掺杂对其电性能的影响。结果表明,当 Sm³⁺ 掺杂量较低时 ($x \leq 0.02$),可以制备出单一的尖 晶石相, Sm³⁺ 取代尖晶石相八面体间隙中 Mn³⁺ 有利于获得高热稳定性的尖晶石相; 当 Sm³⁺ 掺杂量 $x \geq 0.03$ 时,相继出现 SmMnO₃ 和 SmMn₂O₅ 两杂相,导致 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 热敏陶瓷的热稳定性明显降低。

关键词 无机非金属材料, NTC 热敏陶瓷, Sm_xNiCo_{0.2}Mn_{1.8}O₄, 尖晶石相, XPS, 电性能

分类号 TB321, TQ174

文章编号 1005-3093(2011)02-0209-05

Effect of Sm^{3+} Doping on the Properties of Thermoceramics $Sm_xNiCo_{0.2}Mn_{1.8}O_4$

GUO Na LI Yadong**

(College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123) Manuscript received November 19, 2010; in revised from January 7, 2011.

* To whom correspondence should be addressed, Tel:(0512)62090215, E-mail:liyadong@suda.edu.cn

ABSTRACT The NTC thermoceramics of $\text{Sm}_x \text{NiCo}_{0.2} \text{Mn}_{1.8} O_4 (0 \le x \le 0.05)$ were prepared by the solid reaction technique and characterized by XRD and XPS. The influence of Sm^{3+} doping on the electrical properties of $\text{Sm}_x \text{NiCo}_{0.2} \text{Mn}_{1.8} O_4$ spinel phases was investigated. The results show that when Sm^{3+} doped content was low($x \le 0.02$), Sm^{3+} ions partially substituted Mn^{3+} ions in the octahedral sites of the $\text{Sm}_x \text{NiCo}_{0.2} \text{Mn}_{1.8} O_4$ spinel phases. It is beneficial to obtain high thermal stability of the spinel phases. While Sm^{3+} doped content was higher than 0.03, SmMnO_3 and $\text{SmMn}_2 O_5$ two impurity phases precipitated one after one and the thermal stability of thermoceramics decreased significantly.

KEY WORDS inorganic non-metallic materials, NTC thermoceramics, $Sm_xNiCo_{0.2}Mn_{1.8}O_4$, spinel phase, XPS, electical properties

具有负温度系数的尖晶石结构 MnCoNiO 系金 属氧化物 (Negative temperature coefficient, 简称 NTC), 是制造高精度 NTC 热敏电阻器的主要材料 之一^[1]。MnCoNiO 系尖晶石相的电性能, 主要取 决于尖晶石结构八面体间隙中 Mn³⁺/Mn⁴⁺ 离子浓 度的变化和它们之间的电荷跳跃^[2]。因此, 阳离子 掺杂以及阳离子在八面体间隙中的分布对其性能有 较大的影响^[3-6]。Zn、Mg、Fe 离子掺杂可使 Mn-CoNiO 系尖晶石相的电性能有较好的改善^[7-9], 这 些掺杂元素的离子半径一般都小于或接近于 Mn 离 子半径。本文采用室温固相法合成 Sm^{3+} 掺杂的 $Sm_xNiCo_{0.2}Mn_{1.8}O_4$ 前躯体, 通过煅烧和最后烧结制 备具有负温度系数的 $Sm_xNiCo_{0.2}Mn_{1.8}O_4$ 热敏陶瓷, 研究 Sm^{3+} 掺杂对其电性能的影响。

1 实验方法

选用 Co(CH₃COO)₂·4H₂O, Ni(CH₃COO)₂· 4H₂O、Mn(CH₃COO)₂·4H₂O 和 C₆H₈O₇·H₂O 作 为合成 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 前驱体的主要原料,选 用 (C₄H₆O₄)₃Sm₂·xH₂O 作为 Sm³⁺ 掺杂原料。按 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 化学式所示元素配比 (x=0.01– 0.05),进行前驱体的室温固相法合成。将称量的乙酸 盐原料混合并研磨成均匀粉末,然后将其与稍过量的 柠檬酸混合,并在玛瑙研钵中研磨 1 h 至混合粉末由

²⁰¹⁰ 年 11 月 19 日收到初稿; 2011 年 1 月 7 日收到修改稿。 本文联系人: 李亚东

淡红色逐渐变为乳白细腻的糊状产物。将糊状产物在 80℃干燥24h,得到Sm_xNiCo_{0.2}Mn_{1.8}O₄前驱体。将 前驱体在850℃煅烧2h,得到Sm_xNiCo_{0.2}Mn_{1.8}O₄ 煅烧粉末,然后使用质量分数为5%的PVA水溶液 作为粘结剂将其造粒并冷压成型为直径10mm、厚 3mm的生坯圆片。将生坯圆片在1100-1250℃烧结 1h,得到相对密度大于96%的Sm_xNiCo_{0.2}Mn_{1.8}O₄ 陶瓷圆片样品。在样品的表面涂覆氧化银浆后在850 ℃灼烧10min,得到银电极。在样品的银电极两面焊 上引线,用于电性能测试和老化性能评估。

使用 X/ Pert-ProMPD 型 X 射线衍射仪表 征 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的相结构,采用 CuK_α (λ =0.15418 nm) 辐射,扫描速度 2°/min。采用软件 Jade 5.0 计算样品的晶胞参数。分别用阿基米德法和 XRD 测量数据计算样品的真实密度 D_{bulk} 和理论密 度 D_{th},样品的相对密度为 D_{rel}=D_{bulk}/D_{th}。用 ES-CALAB 250, ThermoVG scientific ESCA, KRATOS 型 X 射线光电子能谱仪 (XPS) 测试掺杂前后样品的 X 射线光电子能谱,并使用 XPSPEAK 分峰拟合软 件对样品的 Mn2p_{3/2}XPS 谱线进行分峰拟合处理。

使用 Agilent34401 数字多用表在 20~150 ℃ (±0.05 ℃) 硅油中测量 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的 电阻 – 温度特性。通过在 150 ℃老化 500 h 后的电 阻变化评估样品的热稳定性,老化系数为: $\Delta R/R_0 = (R - R_0)/R_0 \times 100\%, R_0, R$ 分别为样品老化前后的 电阻。

2 结果与讨论

2.1 $Sm_x NiCo_{0.2}Mn_{1.8}O_4$ 样品的电阻 – 温度特性

图 1a 给出了 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品在 25-150 ℃的电阻 - 温度特性曲线,可见 Sm³⁺ 掺杂对 MnCoNiO 系热敏陶瓷的负温度系数特性没有影响, 其电阻 - 温度特性可用能斯特方程表示为

$$\rho_{\rm T} = A \cdot \exp(E_a/kT)$$

其中 ρ_T 为样品在温度 T(K) 时的电阻值, A 为比例 常数, E_a 为样品的载流子电导激活能。令 $E_a/k=B$,

$$\ln \rho_T = \ln A + B/T$$

显然, $\ln\rho_T$ 与 1/T 呈线性关系, 直线斜率即为 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的热敏常数 *B*, 如图 1(b) 所示。处理以上实验数据可得到 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的电阻率 $\rho_{25}(25 \ C)$ 、热敏常数 *B* 和电导激活能 E_a , 分别列于表 1。

- 图 1 在 1200°烧结 1 h 的 Sm_xNiCo_{0.2}Mn_{1.8}O₄(0≤ x ≤0.05) 样品的电阻率 – 温度特性和 logρ_T 与 1/T 的关系
- **Fig.1** Resistivity-temperature characteristics (a) and a plot of log ρ_T -1/T (b) of the Sm_xNiCo_{0.2}Mn_{1.8}O₄ (0 $\leq x \leq 0.05$) samples sintered at 1200 °C for 1 h

表 1 1200°, 1 h 烧结获得的 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的热敏常数 B, 电阻率 ρ_{25} 和电导激活能 E_a

Tabel 1Thermoconstant B, resistivity ρ_{25} and activation energy E_a of the Sm_xNiCo_{0.2}Mn_{1.8}O₄ samples
sintered at 1200 °C for 1 h

Specimens	x=0	x = 0.01	x = 0.02	x=0.03	x = 0.05
$\rho_{25}/\Omega \cdot \mathrm{cm}(\pm 0.5\%)$	1480	1278	2389	2227	2065
$B/K(\pm 0.5\%)$	3644	3598	3541	3788	3714
$E_a/\mathrm{eV}(\pm 0.5\%)$	0.314	0.310	0.306	0.327	0.320

2.2 $Sm_xNiCo_{0.2}Mn_{1.8}O_4$ 样品的组成

图 2 为不同含量 Sm^{3+} 掺杂 $Sm_x NiCo_{0.2} Mn_{1.8} O_4$ (0≤ x ≤0.05) 样品的 XRD 图谱。由图 2 可见, Sm_xNiCo_{0.2}Mn_{1.8}O₄样品的主晶相仍保持 NiMn₂O₄ (PDF01-1110)相同的尖晶石结构,属Fd3m点群,晶 胞参数 a=0.83446—0.83786 nm。在 1200 ℃, 1 h 烧 结后, 当 Sm³⁺ 含量 $x \leq 0.02$ 时, Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的 XRD 图谱中未见任何杂相出现, 说明此时 Sm³⁺ 已完全溶入 NiCo_{0.2}Mn_{1.8}O₄ 尖晶石相基体中 形成了固溶体。同时,由于 Sm³⁺ 和 O²⁻ 离子半径 比 $r_{Sm}^{3+}/r_O^{2-}=1.04/1.32=0.788$,可以认为 Sm³⁺ 只能 进入尖晶石八面体间隙^[10,11]。但是, 当 Sm³⁺ 含量 x 达到 0.03 时, 在 $2\theta=33.1^\circ$ 处出现 SmMnO₃ 杂 相的衍射峰, 随着 Sm^{3+} 含量继续增加 (x=0.05) 又 出现了 SmMn₂O₅ 杂相, 如图 2a 所示。这表明在 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 尖晶石相中 Sm³⁺ 存在一固溶 度极限,是 Sm³⁺ 掺杂导致的晶格畸变能增加造成

- 图 2 在 1200 ℃烧结 1 h 的 Sm_xNiCo_{0.2}Mn_{1.8}O₄(0≤ x ≤0.05) 样品的 XRD 谱和在不同温度烧结 1 h 的 Sm_{0.03}NiCo_{0.2}Mn_{1.8}O₄ 样品的 XRD 谱
- Fig.2 XRD patterns (a) of $\text{Sm}_x \text{NiCo}_{0.2} \text{Mn}_{1.8} \text{O}_4$ ($0 \le x \le 0.05$) samples sintered at 1200 °C for 1 h and XRD patterns of $\text{Sm}_{0.03} \text{NiCo}_{0.2} \text{Mn}_{1.8} \text{O}_4$ samples sintered at different temperatures for 1 h (b)

的。图 2b 所示的是不同温度 (1100 ℃ ~1250 ℃) 条件下烧结 1 h 所获得的 Sm_{0.03}NiCo_{0.2}Mn_{1.8}O₄ 样 品的 XRD 图谱。从图 2b 可见,随着烧结温度的 升高, Sm_xNiCo_{0.2}Mn_{1.8}O₄ 尖晶石相的稳定性逐渐下 降, SmMnO₃ 和 SmMn₂O₅ 两杂相相继出现。

采用 Jade 5.0 软件分析计算 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的 XRD 图谱数据,结果表明,随着 Sm³⁺ 掺 杂量的增加, 晶胞参数出现先减小后增大的显著变 化 (图 3)。当 Sm³⁺ 含量 $x \leq 0.02$ 时, 晶胞参数 随掺杂量的增加逐渐减小,与相关文献的结果一 致^[12]。Sm³⁺、Mn³⁺和 Mn⁴⁺离子半径分别为 0.104 nm、0.066 nm 和 0.054 nm^[13],表明上述现 象违背阳离子尺寸效应导致晶格膨胀的基本规律。 采用 XRD 分析晶胞常数或晶格畸变的变化趋势 是一个十分有效和精确的方法, 但是在其它条件 相同的情况下,固溶体晶格中的空位导致的晶格收 缩和 Sm³⁺ 离子掺杂导致的晶格膨胀可能是控制 $Sm_xNiCo_{0.2}Mn_{1.8}O_4$ 尖晶石相晶胞常数变化的两个 主要矛盾。为了抵消 Sm³⁺ 掺杂带来的畸变能, 避 免体系能量增高,在 Sm³⁺ 掺杂时阳离子尺寸效应 引起尖晶石晶格畸变迅速增加的同时可能伴随着离 子空位浓度的增多,导致 $Sm_xNiCo_{0.2}Mn_{1.8}O_4$ 尖晶 石晶格收缩畸变, 晶胞参数随 Sm³⁺ 掺杂量增加逐 渐减小。当 Sm³⁺ 含量 x > 0.02 时,由于空位引 起的晶格畸变很大, 增幅逐渐变小, 因此 Sm³⁺ 掺 杂带来的阳离子尺寸效应又逐渐开始占主导地位, Sm_xNiCo_{0.2}Mn_{1.8}O₄ 尖晶石相的晶胞参数随 Sm³⁺ 掺杂量增加又逐渐增大。因此晶胞参数随 Sm³⁺ 离 子掺杂量增加呈"U"型变化,其最小值即为反映正 负两种晶格畸变趋势的平衡点, 与温度有关。其原因 可能是,随着烧结温度的升高,Sm_xNiCo_{0.2}Mn_{1.8}O₄ 尖晶石晶格中的空位浓度逐渐增加, 容许 Sm³⁺ 掺

图 3 在不同温度烧结 1 h 的 Sm_xNiCo_{0.2}Mn_{1.8}O₄ (0≤ x ≤0.05) 样品的晶胞参数

杂量和晶格收缩的程度也增大,因此由空位引起的 晶格畸变会导致的晶格收缩程度更大,可抵消更多 Sm³⁺离子掺杂导致的晶格膨胀(由阳离子尺寸效应 引起)。因此,随着烧结温度的升高,空位引起的晶格 收缩和阳离子尺寸效应导致的晶格膨胀的平衡点将 向高 Sm³⁺掺杂量的方向移动。当烧结温度从 1100 ℃增至 1200 ℃时,这个平衡点所对应的 Sm³⁺掺杂 量从 0.02 右移至 0.04 左右。

2.3 $Sm_x NiCo_{0.2}Mn_{1.8}O_4$ 样品的光电子能谱

图 4 为在 1200 ℃烧结 1 h 的 NiCo_{0.2}Mn_{1.8}O₄ 和 Sm_{0.02}NiCo_{0.2}Mn_{1.8}O₄ 样品的 Mn2 $p_{3/2}$ X 射线光 电子能谱图。采用 XPSPEAK 分峰拟合软件对样品 的 Mn2 $p_{3/2}$ XPS 谱线进行了分峰拟合处理,分别得 到 Mn³⁺(III) 和 Mn⁴⁺(IV) 对应的 Mn2 $p_{3/2}$ XPS 谱 线,得到 Mn³⁺ 和 Mn⁴⁺ 的 $2p_{3/2}$ 电子结合能分别 为 641.2 eV 和 642.2 eV。同时,根据 Mn2 $p_{3/2}$ (III) 和 Mn2 $p_{3/2}$ (IV) 各峰相对面积的变化,Sm³⁺ 掺杂导致 Mn2 $p_{3/2}$ (III) 峰面积减小,因此 Sm³⁺ 掺杂主要通过 取代尖晶石相八面体间隙中 Mn³⁺ 的形式进行。

综上所述,在 1200° 烧结 1 h 的条件下,当 Sm³⁺ 含量 $x \leq 0.02$ 时, Sm³⁺ 全部进入尖晶石结构的八 面体间隙内取代 Mn^{3+[14,15]},使 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品保持单一的尖晶石结构。对于尖晶石相,电子 传导主要取决于八面体间隙中 Mn³⁺/Mn⁴⁺ 离子浓 度的变化和它们之间的电荷跳跃 ^[16–19]。当 Mn³⁺ 和 Mn⁴⁺ 离子的含量接近时,尖晶石相的电导率 达到最大值。X 射线光电子能谱分析表明, Sm³⁺ 掺杂导致八面体间隙中 Mn³⁺ 含量相对减小,这 显然削弱由 Mn³⁺ 引起的 Jahn–Teller 效应,使 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的电导率降低,如表 1 所 示。

2.4 $Sm_x NiCo_{0.2}Mn_{1.8}O_4$ 样品的老化性能

图 5 为在 1200 ℃烧结 1 h 的 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品在 150 ℃老化 500 h 后的老化系数 ($\Delta R/R_o$) 与 Sm³⁺ 掺杂量的关系。由图 5 可见, Sm³⁺ 掺 杂量的变化对 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的热稳定 性有较大的影响。随着 Sm³⁺ 含量增加, 样品的老 化系数先减小后增大, Sm³⁺ 含量为 0.02 的样品 老化系数最小, 即热稳定性最好。以上的分析结果 表明, Sm³⁺ 掺杂主要是取代尖晶石相八面体间隙 中 Mn³⁺。根据二元化合物 SmO 中的 Sm–O 键能 (D_{Sm–O} ≈565 kJ/mol) 远大于 MnO 中的 Mn–O 的 键能 (D_{Mn–O} ≈67 kJ/mol)^[20] 可以推测, Sm³⁺ 掺 杂后 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 尖晶石相八面体间隙中出 现较强的 Sm–O 键, 更有利于整个尖晶石相的稳定, 改善了 Sm_xNiCo_{0.02}Mn_{1.8}O₄ 样品的热稳定性。但是,

图 4 在 1200 ℃烧结 1 h 的样品 NiCo_{0.2}Mn_{1.8}O₄ 和 Sm_{0.02}NiCo_{0.2}Mn_{1.8}O₄ 的 Mn2_{p3/2}XPS 谱

Fig.4 $Mn2_{p3/2}$ X-ray photoelectron spectra of $NiCo_{0.2}Mn_{1.8}O_4$ (a) and $Sm_{0.02}NiCo_{0.2}Mn_{1.8}O_4$ (b) sintered at 1200 °C for 1 h

图 5 在 1200 ℃烧结 1 h 的 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样
品在 150 ℃老化 500 h 后的电阻变化

Fig.5 Aging coefficient of $Sm_x NiCo_{0.2}Mn_{1.8}O_4$ sintered at 1200 °C for 1 h after aging at 150 °C for 500 h

当 Sm³⁺ 含量超过 Sm_xNiCo_{0.02}Mn_{1.8}O₄ 尖晶石相的 固溶度极限 (x > 0.02) 时, SmMnO₃ 和 SmMn₂O₅ 相 先后逐渐出现, 致使 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的老 化系数又迅速增大, 使热稳定性降低 ^[21-23]。

3 结 论

采用室温固相法合成 Sm_xNiCo_{0.2}Mn_{1.8}O₄(0≤ x ≤0.05) 前躯体,将其烧结可制备出具有负温度系 数热敏陶瓷。在 1200 ℃烧结 1 h, 当 Sm³⁺ 掺杂 量较低时 (x ≤0.02) 可获得单一的尖晶石相。Sm³⁺ 掺杂主要是取代尖晶石相八面体间隙中 Mn³⁺,随着 Sm³⁺ 掺杂量的增加 Sm_xNiCo_{0.2}Mn_{1.8}O₄ 样品的老 化系数下降,热稳定性提高;进一步增加 Sm³⁺ 掺杂 量 (x ≥0.03) 则相继出现 SmMnO₃ 和 SmMn₂O₅ 相, 导致热稳定性明显降低。

参考文献

- 1 M.Vakiv, O.Shpotyuk, O.Mrooz, I.Hadzaman, Controlled thermistor effect in the system $Cu_xNi_{1-x-y}Co_{2y}Mn_{2-y}O_4$, Journal of the European Ceramic Society, **21**, 1783–1785(2001)
- 2 E.G.Larson, R.J.Arnott, D.G.Wikham, Preparation, semiconduction and low-temperature magnetization of the system $Ni_{1-x}Mn_{12+x}O_4$, Journal of Physics and Chemistry of Solids, **23**, 1771–1781(1962)
- 3 A.Navrotsky, O.J.Kleppa, The thermodynamics of cation distributions in simple spinels, Journal of Inorganic & Nuclear Chemistry, 29, 2701–2714(1967)
- 4 K.Park, I.H.Han, Effect of Cr₂O₃ addition on the microstructure and electrical properties of Mn–Ni–Co oxides NTC thermistors, Journal of Electroceramics, **17**, 1069– 1073(2006)
- 5 M.Hosseini, The effect of cation composition on the electrical properties and aging of Mn–Co–Ni thermistors, Ceramics International, 26, 245–249(2000)
- 6 K.Park, J.K.Lee, J.G.Kim, S.Nahm, Improvement in the electrical stability of Mn–Ni–Co–O NTC thermistors by substituting Cr₂O₃ for Co₃O₄, Journal of Alloys and Compounds, **437**, 211–214(2007)
- 7 K.Park, J.K.Lee, S.-J.Kim, W.-S.Seo, W.-S.Cho, C.-W.Lee, S.Nahm, The effect of Zn on the microstructure and electrical properties of $Mn_{1.17-x}Ni_{0.93}Co_{0.9}Zn_xO_4$ ($0 \le x \le 0.075$) NTC thermistors, Journal of Alloys and Compounds, **467**, 310–316(2009)
- 8 K.Park, S.J.Kim, J.-G.Kim, S.Nahm, Structural and electrical properties of MgOdopedMn_{1.4}Ni_{1.2}Co_{0.4-x}Mg_xO₄ ($0 \le x$ <0.25) NTC thermistors, Journal of the European Ceramic Society, **27**, 2009–2016(2007)
- 9 K.park, D.Y.Bang, Electical properties of NiMnCoFe oxide thick-film NTC thermistors prepared by screen printing, Journal of Materials Science-Materials in Electronics, 14, 81–87(2003)
- 10 V.L.Joseph Joly, P.A.Joy, S.K.Date, Effect of R on the magnetic transition temperature of RMn_{0.5}Co_{0.5}O₃, Solid State Communications, **121**, 219–222(2002)

- 11 V.L.Joseph Joly, S.D.Bhame, P.A.Joy, S.K.Date, Magnetic properties of La₂MnCo_{1-x}Fe_xO₆, Journal of Magnetism and Magnetic Materials, **261**, 433–441(2003)
- 12 Yanwen Tian, Xiaoxue Kang, Liying Liu, Chaqing Xu, Tao Qu, Research on cathode material of Li-ion battery by yttrium doping, Journal of Rare Earths, 26, 279–283(2008)
- 13 G.H.Zheng, Z.X.Dai, Y.Y.Zhang, Y.P.Sun, The influence of Sm doping in the electron-doped manganites La_{0.9}Te_{0.1}MnO₃, Journal of Alloys and Compounds, **489**, 348–352(2010)
- 14 Zhang Na, TANG Zhiyuan, Huang Qing-hua, Lu Xinghe, Synthesis and characterization of multidoped lithium manganese oxide spinel LiCo_{0.02}La_{0.01}Mn_{1.97}O_{3.98}Cl_{0.02}, Transactions of Nonferrous Metals Society of China, **16**, 286–289(2006)
- 15 Yi Tingfeng, Zhu Yanrong, Hu Xinguo, Structure and electrochemical properties of LiLa_xMn_{2-x}O₄ cathode material by the ultrasonic-assisted sol-gel method. International, Journal of Minerals Metallurgy and Materials, 16, 119–123(2009)
- 16 E.Elbadraoui, J.L.Baudour, F.Bouree, B.Gillot, S.Fritsch, A.Rousset, Cation distribution and mechanism of electrical conduction in nickel–copper manganite spinels, Solid State Ionics, **93**, 219–225(1997)
- 17 S.Fritscha, J.Sarrias, M.Brieu, J.J.Couderc, J.L.Baudour, E.Snoeck, and A.Rousset, Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors, Solid State Ionics, **109**, 229–237(1998)
- 18 D.Kukuruznyak, J.Moyer, N.Nguyen, E.Stern, F.Ohuchi, Relationship between electronic and crystal structure in Cu–Ni–Co–Mn–O spinels Part A: Temperature-induced structural transformation, Journal of Electron Spectroscopy and Related Phenomena, **150**, 275(2006)
- 19 B.Gillot, R.Legros, R.Metz, A.Rousset, Electrical conductivity of copper and nickel manganites in relation with the simultaneous presence of Mn³⁺ and Mn⁴⁺ ions on octahedral sites of the spinel structure, Solid State Ionics, **51**, 7–9(1992)
- 20 D.R.Lide, ed. CRC Handbook of Chemistry and Physics. 80thed. London: CRC Press. 1999.
- 21 D.L.Fang, C.H.Zheng, C.S.Chen, Aging of nickel manganite NTC ceramics, Journal of Electroceramics, 22, 421(2009)
- 22 M.M.Vakiv, O.I.Shpotyuka, V.O.Balitska, Ageing behavior of electrical resistance in manganite NTC ceramics, Journal of the European Ceramic Society, 24, 1243– 1246(2004)
- 23 D.L.Fang, Z.B.Wang, P.H.Yang, W.Liu, C.S.Chen, Preparation of ultra-fine nickel manganite powders and ceramics by a solid-state coordination reaction, Journal of the American Ceramic Society, 89, 230–235(2006)