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Abstract We define the generalized property (@') , a variant of Weyl’s theorem. By means of the
new spectrum defined in view of the property of consistency in Fredholm and index, we consider the
preservation of generalized property (w') under a finite rank perturbation commuting with T,
whenever T is a-isoloid. The theory is illustrated in the case of some special classes of operators.
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Weyl'"' examined the spectra of all compact perturbations of a hermitian operator on Hilbert space and
found in 1909 that their intersection consisted precisely of those points of the spectrum which were not isolated
eigenvalues of finite multiplicity. This " Weyl’s theorem" has been considered by many authors. Variants have

*). We have established for a bounded linear operator T

been discussed by Harte and Lee'”’ and Rakocevic'>
defined on a Hilbert space the sufficient and necessary conditions for which the generalized property (w')
holds in Ref. [5]. In this paper, we continue to show how generalized property (w') follows from properties
of the variant (o, ) and the spectrum defined in view of the property of consistency in Fredholm and index
(defined in section 1). We consider the preservation of generalized property (') under a finite rank
perturbation commuting with 7, and give the sufficient and necessary condition for which the generalized
property (w') holds for T + F, whenever T € B(H) satisfies generalized property (w’) and F € B(H) is a
finite rank operator commuting with 7. Moreover, the theory is applied to several classes of operators.
Throughout this paper, let B(H) denote the algebra of bounded linear operators acting on an infinite-
dimensional complex Hilbert space H. If T € B(H), write N(T) and R(T) for the null space and the range
of T; o(T) for the spectrum of T'. An operator T € B(H) is called upper semi-Fredholm if it has closed range
with finite dimensional null space and if R(T) has finite co-dimension, T € B(H) is called a lower semi-
Fredholm operator. We call T € B(H) Fredholm if it has closed range with finite dimensional null space and

its range of finite co-dimension. For a semi-Fredholm operator, let n(7T) = dim N(T) and d(T) =
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dim H/R(T) = codim R(T) . The index of a Fredholm operator T € B(H) is given by ind(T) =n(T) -
d(T). The ascent of T, asc(T), is the least non-negative integer n such that N(T") = N(T""') and the
descent, dsc(T), is the least non-negative integer n such that R(T") = R(T""") . An operator T € B(H) is
called Weyl if it is Fredholm of index zero. And T € B(H) is called Browder if it is Fredholm " of finite ascent
and descent" ; equivalently if T is Fredholm and T — A[ is invertible for sufficiently small A # 0 in €. The
essential spectrum o, (T) and the Weyl spectrum o, (T) of T € B(H) are defined by
o, (T) = {Ax e C: T - Alis not Fredholm] , (1)
o, (T) = {Ax e C:T-Alisnot Weylj. (2)

We denote by o (T) the semi-Fredholm spectrum of T defined as the set of all A in C for which 7' — Al is
not a semi-Fredholm operator, and letp (1) = C\o:(T). SF, (H) is the set of all T € B(H) which are
upper semi-Fredholm operators of ind(T) < 0. The approximate point spectrum is defined by o, (T) =
{A e C: T - Alis not bounded below| , where an operator is said to be bounded below if it is injective and
has closed range. Letp (T) = C\o,(T).

For each nonnegative integer n define T, to be the restriction of Tto R(T") viewed as a map from R(T")
into R(T") (in particular, T, = T ). If for some n, R(T") is closed and T, is an upper (respectively lower)
semi-Fredholm operator then T is called an upper (respectively lower) semi-B-Fredholm operator. A semi-B-
Fredholm operator is an upper or lower semi-B-Fredholm operator. If moreover, T, is a Fredholm operator then
T is called a B-Fredholm operator. From Proposition 2. 1 in Ref. [6] if T, is a semi-Fredholm operator then T,
is also a semi-Fredholm operator for each m = n, and ind(7,) = ind(7,) . Then the index of a semi-B-
Fredholm operator is defined as the index of the semi-Fredholm operator T, .

Let SBF, (H) be the class of all upper semi-B-Fredholm operators, and SBF, (H) the class of all T e
SBF, (H) such thatind(T) =0, and for any T e B(H) , letog, . (T) = {A e C: T -l ¢ SBF, (H) b,
An operator T € B(H) is said to be a B-Weyl operator if it is a B-Fredholm operator of index zero. The
B-Weyl spectrum ¢, (T) of T is defined by

o (T) = {A e C. T~ Al is not a B-Weyl operator}. (3)
An operator T € B(H) is called Drazin invertible if it has a finite ascent or descent. The Drazin spectrum
o, (T) of Tis defined by 0, (T) = {A € C: T — Al is not Drazin invertible|. It is known that the Drazin
spectrum satisfies the spectral mapping theorem and o, (7) € o,(T). We have that if O is isolated in the
spectrum o (T) , then T is a B-Weyl operator if and only if T is Drazin invertible, for a proof see Theorem 4.2
in Ref. [7]. Actually, according to the perturbation theorem of semi-B-Fredholm operators, we can also get
that if O is isolated in ,(T), then T is a B-Weyl operator if and only if T is Drazin invertible.

The generalized property (w') which we will define has close relations with Weyl’s theorem. The plan of
this paper is as follows. In section 1, by defining two new spectrums, we give the definition of generalized
property (@') and show the preservation of generalized property (w') under a finite rank perturbation

commuting with 7. In section 2, the theory is exemplified in the case of some special classes of operators.

1 CFI operators and generalized property (w')

We begin with a definition and a lemma derived from Ref. [8]:
Definition 1. 1'*'  We say T e B(H) is consistent in Fredholm and index (abbrev. a CFI operator) , if for
each B € B(H) , one of the cases occurs;

1) TB and BT are Fredholm together and ind(7B) =ind(BT) =ind(B) ;

2) TB and BT are not Fredholm.
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Lemma 1.1"" T ¢ B(H) is a CFI operator if and only if one of the following three mutually disjoint cases
occurs ;

1)T is Weyl;

2)YR(T) is not closed;

3)R(T) is closed and dim N(T) =codim R(T) = .

Let p,(T) = {A e C: T - Alis a CFI operator}| (4)
and let o, (T) = C \p,(T). Clearly, A, € 0,(T) if and only if T = A,/ is a semi-Fredholm operator but ind
(T -2A,0) # 0. By perturbation theorem of semi-Fredholm operator, o,(7T) is an open set in the spectrum
o (T) of operator T. Let H(T) be the class of complex-valued functions which are analytic in a neighborhood
of 0 (T) and are not constant on any neighbourhood of any component of o (T).

Berkani and Koliha'®' have discussed generalized Weyl’s theorem. In the following, we consider a variant
of Weyl’s theorem called generalized property (w').

Recall that the generalized Weyl’s theorem holds for T € B(H) if there is equality

o(T)\ouww(T) = E(T), (5)
where E(T) for the isolated points of o ( 7') which are eigenvalues. The generalized a-Weyl’s theorem holds for
T € B(H) if there is equality

(T Ny (T) = E(T), (6)
where E*(T) for the isolated points of o, (T) which are eigenvalues.
Definition 1.2"°' T ¢ B(H) is said to satisfy generalized property (w') if

o(T)\oywWw(T) = E*(T). (7)

It is easy to prove that generalized property (') implies generalized Weyl’s theorem, but the converse is
not true.

Let

p,(T) = {A e C :there exists & > 0 such that T — ul € SF, (H) and
N(T = ul) Q’EWIR[(T—;LI)"]ifO <Ap-Al<el, (8)
and let o,(T) = C\p,(T). Clearly, o,(T) € acc o(T) C o,(T). T is called a-isoloid if A €
iso 0, (T)=N(T - AI) # {0}|. The following Theorem 1.1 and Theorem 1.2 give the relations between

generalized property (w') and property of consistency in Fredholm and index (see Ref. [5] for the proof).
Theorem 1.1 T e B(H) satisfies generalized property (') if and only if

o, (T) = o, (T) U [o,(T) Nacco,(T)] U {r e a(T): n(T-AI) =0}. (9)
Corollary 1.1 T e B(H) is a-isoloid and generalized property (') holds for T if and only if
o, (T) =0,(T) U [o,(T) Nacca,(T)] U [p,(T) Na(T)]. (10)

Remark 1.1°" 1) If o,(T) = o,(T), then T is a-isoloid and generalized property (w') holds for T.
Ifo,(T) € o,(T), then for any A ¢ o,(T), T — Alis a bounded below operator and is also a CFI

operator, which means that 7' = Al is invertible by Lemma 1. 1. ThenA ¢ o (7). Hence, ifo,(T) C o, (T),

then o (T) = o,(T).

Theorem 1.2 Suppose T e B(H) is a-isoloid and generalized property (') holds for T. If o, (T) C

o, (T), and for any f € H(T), oy (f(T)) = f(oyy (T)), then for any f € H(T), f(T) is a-isoloid and

generalized property (w') holds for f(T).

Remark 1.2 1) It is easy to prove that oy (f(T)) = f(ouy(T)) for any f € H(T) if and only if for each

pair A, w € C\o (T), ind(T = Al) ind(T -ul) = 0.

2) " T is a-isoloid" is essential in Theorem 1.2. For example, let A € B([I’) be an injective
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quasinilpotent operator, and define on H @ H the operator Tby T = (A — 1) @ I. 1t is easy to check that

o(T) =a,(T) = {-1,1}, 04h(T) = {-1}. (11)
Since n(T -1) = o andn(T +1) =0, thenE"(T) = {1}. Hence T satisfies generalized property (w') , but
T is not a-isoloid. Moreover, o(T) = o, (T), o (T) = o ,(T) = {-1,1},s00,(T) C ¢,(T) and for

any f e H(T), oy (f(T)) = flou(T)).
On the other hand, let f(T) = T°. Then
o(fIT)) = o,(fIT)) = opw(AT)) = {1]. (12)
Since f(T) =1 = (T -1)(T+1)andn(T -1) = o, then E'(f(T)) = {1}. This shows that generalized
property (@') does not hold for f(T).

Oberai''" had examples which show that the Weyl’s theorem for T is not sufficient for the Weyl’s theorem
for T + F with finite rank F. For generalized property (w'), it has the same case. See the example in 1) of
Remark 1. 3.

Theorem 1.3 Suppose that T € B(H) is a-isoloid and generalized property (w') holds for T. If ¥ € B(H)
is a finite rank operator commuting with 7, then o, (T) € o, (T) U p,(T + F) if and only if T + F is a-isoloid
and generalized property (w') holds for T + F.

proof Suppose that o,(T) € o, (T) U p,(T + F). By Corollary 1.1, we only need to prove that
oo (T+F) Co(T+F) U [o,(T+F) Nacco,(T+F)] U lp,(T+F) No(T+F)]. Leta, ¢
o (T+F) U [mﬂ acco,(T+F)] U [p,(T+F) No(T+F)], without loss of generality, we
suppose that A, € o,(T + F). Then there exists & > 0, such that T + F - Al € SF, (H) and

]V(T+F—/\I)QFOW]R[(T+F—/\I)"]. (13)

n=

fO<IA=-A,l <e. Also A, ¢ mﬂ acc o, (T + F), then we claim that A, € iso o, (T) Up,(T).
In fact, if A, ¢ m, we can prove that T + F — Alis Weyl if 0 < 1A — A, | is small enough, then
T — Al is Weyl. Since generalized property (') holds for T', we know that T — A7 is Browder. This shows that
T + F — Al is Browder, then

N(T 4 F=A1) = N(T+F = A1) N0 RI(T+F-AD"] = {0] (14)
(Lemma 3.4 in Ref. [11]) which means that T + F — Al is invertible, thatis, A, € iso o (T + F). IfA, ¢
acc g,(T +F), again, we get that A, e iso o, (T+F). Sor, e iso o, (T) Up,(T) (Corollary 2. 4 in Ref.
[12]). Thus if A, € isoo,(T), then A, € 0 (T) \o, (T) since T is a-isoloid and generalized property (')
holds for T', which implies that T — A,/ is Drazin invertible. Then T+ F — Al is Drazin invertible ( Theorem
2.7 in Ref. [13]), thatis, A, ¢ 0,(T+F). IfA, € p,(T),thenA, ¢ o,(T) Up,(T+F). The fact that
o,(T) € o,(T) Up, (T +F) tells us that T — A,/ is invertible. Thus T+ F — A [ is Drazin invertible, that
is, Ay ¢ o,(T+F). |
Conversely, suppose that T + F is a-isoloid and generalized property (w’) holds for T + F. Let A, ¢
o,(T) Up, (T +F),thenT — A,lis bounded below, and T + F - A,/ is an upper semi — Fredholm operator
of n(T+F -A,J) >0andasc(T +F - A,]) < . Thus A, € isog, (T + F), thatis, A, € E*(T + F).
Since T + F satisfies generalized property (w') , we get that T + F — A I is B-Weyl and also Drazin invertible.
Hence T' — A, I is Drazin invertible, then using the fact that T — A,/ is bounded below, we know that T - A,/
is invertible. By Lemma 1.1, we have proved that T — A,/ is a CFI operater, thatis, A, ¢ o,(7T). O
The next result deals with nilpotent perturbations. We first recall two well-known results; if N is a

nilpotent operator commuting with 7' € B(H) , then
o(T) =0(T+N) and o,(T) = o,(T +N). (15)
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Corollary 1.2 Suppose that T € B(H) satisfies generalized property (w'). If F € B(H) is a finite rank
nilpotent operator commuting with 7', then generalized property (') holds for T + F.
Proof From Theorem 1.1, we only need to prove that o, (T + F) C o, (T + F) U [m N
acco (T+F)]U{Xxeo(T+F): n(T+F-AI) =0}. LetA, ¢ o,(T + F) U [mﬂ
acc o, (T+F)] U {A € o(T+ F): n(T+ F - AI) =0}, without loss of generality, suppose A, €
o(T + F). Thenn(T+F -A,I) >0, and from the proof of Theorem 1.3 we know that A, € iso o, (T + F).
Since F' is a nilpotent operator, then A, € iso o,(7T), and there exists p € N, such that F” = 0. If x e
N(T+F), (T+F)'x =0, then
T'x = (-1)'T'x =0, (16)
that is, N(T + F) © N(T"). Using the fact thatn(T + F — A,0) > 0, we getn( (T = A,1)") > 0, which
induces that n(T — A,/) > 0. Therefore A, € E*(T), and T — Al is Drazin invertible since generalized
property (') holds for T. Thus T + F — A,I is Drazin invertible, that is, A, ¢ o, (T + F). O
Remark 1.3 1) " T is a-isoloid" is essential in Theorem 1. 3. For example, let T = A @ [ act on H @ H with
an injective quasinilpotent operator A. It is clear that T satisfies generalized property ('), but T is not a-
isoloid. Note thatg,(T) = 0. Take any finite rank projection P € B(H) , and let F = 0@ (- P). Then TF
= FT and 0,(T) € o,(T) U p,(T + F), but generalized property (w’) fails for T + F because 0 e
EN(T+F) N oy (T+F).
2) "o, (T) € o,(T) Up,(T+ F)"is essential in Theorem 1.3. For example, let B, P € B(I’) be
defined :
B(x,, %y, x5, =+) = (0, x,, x,, %, =+ ), (17)
P(x,, 2,5, %y, ) = (=-2,,0,0, ). (18)
Define on H @ H the operators Tand Fby T = B@ I, F = 0 @ P. Clearly, F is a finite rank operator and
FT = TF. It is easy to check that
o(T) =ouw(T) ={d e {Cl:lAl=1},0/(T) ={AeC:1 Al =1},E(T) =0. (19)
So T is a-isoloid and generalized property (w') holds for T. Moreover, o,(T) = {A e C: 1 Al < 1}.
On the other hand,
o(T+F) =g, (T+F) ={rxeC.lAl=1},
o (T+F) ={xeC.:1 Al =1} U {0}, E(T+F) = 1{0}. (20)
Hence, o,(T) € o,(T) U p,(T + F) and generalized property (') does not hold for T + F.
3) "a finite rank operator F' commutes with 7" is essential in Theorem 1.3. For example, let T, F e

B(1’) be defined by

X, X %,
T(x,, %,, %, =) =(0,x1,?2,?3, n) (21)
F(x,, %5, 23, ==+) = (0, —x,,0,0, ). (22)
Clearly TF # FT. It is easy to check that
o(T) = ow(T) = {0}, E(T) = 0. (23)

So T is a-isoloid and generalized property (w’) holds for 7. Since o,(T) = Q, then o,(T) € o,(T) U
p,(T + F). On the other hand,

o(T+F) =04, (T+F) =1{0}, E'(T+F) = {0}. (24)
It follows that T + F does not satisfy generalized property (o').
Theorem 1.4 Suppose that T € B(H) is a-isoloid, generalized property (w') holds for T, and F € B(H)
is a finite rank operator commuting with 7. If o,(T) € o,(T), and for any f € H(T), o4 (f(T)) =
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flou (T)), thenf(T) + F satisfies generalized property (w') for any f € H(T).
Proof By Theorem 1.2 and Theorem 1.3, we need to prove that o,(f(T)) € o,(f(T)). Let u, ¢
o,(f(T)), then f(T) - wyl is bounded below. Let

FTY =l = (T = A" (T = A1) oo (T = A, 1) " (T) (25)
where A, # A, and g(T) is invertible. Then T' - A, I'is bounded below, which implies that T' - A, I'is invertible
since o, (T) € o,(T). Hence f(T) — u,l is invertible. Thenpu, ¢ o, (f(T)). O

If o,(T) = o,(T), using the perturbation theorem of semi-Fredholm operators, we can prove that

0,(T) € o,(T) andind(T - AI) = Oforany A € {C | \o,(T). By Corollary 1. 1 and Theorem 1.4, we
get:

Corollary 1.3 Ifo,(T) = 0,(T) and F € B(H) is a finite rank operator commuting with 7', then f(T) +
F satisfies generalized property (w') for any f € H(T).

Corollary 1.4 Suppose that T € B(H) is a-isoloid, generalized property (w') holds for Tand F € B(H) is
a finite rank operator commuting with 7. Then

1) Ifm C o,(T), thenf(T) + F satisfies generalized property (w') for anyf e H(T).

2) o, (T) Co,(T) No.(T), thenf(T) + F satisfies generalized property (') for anyf e H(T).
Proof 1) Ifo,(T) C o,(T), theno,(T) N acc o,(T) € o,(T) andp,(T) N a(T) = 0. By Theorem
1.1, we get that 0, (T) = o,(T). Hencef(T) + F satisfies generalized property (w') for any f e H(T) by
Corollary 1. 3.

2) fo,(T) € o, (T) No (T), theno,(T) € o,(T) and o, (T) = o,(T), which implies that for
any f e H(T), o, (f(T)) = f(o,w(T)). By Theorem 1.4, we know that f(T) + F satisfies generalized
property (') for any f e H(T). ]

2 The application

In this section the theory is applied to several classes of operators.

Forx e H, the orbit of x under T is the set of images of x under successive iterates of T: Orb(T, x) =
{x, Tx, T’x, ---|. A vectorx e H is supercyclic if the set of scalar multiples of Orb( T, x) is dense in H,
and x is hypercyclic if Orb( T, x) is dense. A hypercyclic operator is one that has a hypercyclic vector. We
similarly define the notion of supercyclic operator. We denote by HC(H) (SC(H) ) the set of all hypercyclic
('supercyclic) operators in B( H) and I—m( SC(H) ) the norm-closure of the class HC(H) (SC(H) ). The

essential facts for hypercyclic operators and supercyclic operators were described by Herrero "' in 1991.

If T e HC(H) or T € SC(H) , we have thatind(T = Al) = 0 for any A € ps (T). It follows that o, (T)
C o,(T), and for any f € H(T), 0wy (J(T)) = f(osw(T)). By Theorem 1.4, we get:
Theorem 2.1 Suppose that T e mor T e m If T is a-isoloid, generalized property (w’) holds

for Tand F € B(H) is a finite rank operator commuting with T, then f(T) + F satisfies generalized property
(w") for any f € H(T).

Let weak-H(p) denote the class of all those operates T € B(H) satisfying the conditions;

1) asc(T-AI) <o forallA e C;

2) there exists positive integer p: = p(A) such that H,(T — AI) = N(T = Al)" for all A € iso o(T).

Evidently, if A € iso o (T), then A is a pole of the resolvent of 7. And weak-H(p) contains the class of
operators that satisfy the following property H(p): H,(T = Al) = N(T = Al)" for all A € {C |. The class
H(p) is large, which contains p -hyponormal operator, M -hyponormal operator, totally s -paranormal
operator, totally paranormal operator, transaloid operator and so on.

Theorem 2.2 Suppose that T° € weak-H(p) and F € B(H) is a finite rank operator commuting with T,
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then f(T) + F satisfies generalized property (w') for any f € H(T).
Proof Suppose T° e weak-H(p), we claim thatg,(T) = o,(T). In fact, we only need to prove o, (T) C

o,(T). Let A, ¢ o,(T), then there exists & > 0 such that T — Al € SF, (H) and N(T - AI) Qi\l R[(T
- AD"]if0<IA -A,l <e. Tt follows that T — Alis lower semi-Fredholm and ind(T" - AI) = 0. Thus
ind(T* — AI) = 0 since T" e weak-H(p), which means that T* - Alis Weyl if 0 < A —= A, | <e&. By
asc(T" - AI) < o, we know that 7" — Alis Browder, and hence T — Al is Browder too if 0 < A — A, | <e.

Then N(T — AI) = N(T - Al) ﬂnal R[(T-AI)"] = {0} (Lemma 3.4 in Ref. [11]), which means that
T — Alis invertible. Now we have that A, € isoo(T) U p(T). Without loss of generality, we suppose that A,
e iso o (T), then /I e iso (T"). Since T* e weak — H(p), ):15 a pole of the resolvent of T". So A, is
a pole of the resolvent of T, that is, A, ¢ o,(7T). Thuso,(T) = o,(T). By Corollary 1. 3, we know that f
(T) + F satisfies generalized property (w') for any f € H(T). ]

We know that generalized property (') may fail for Tif T € weak — H(p).

Theorem 2.3 Suppose that T € weak — H(p) and F € B(H) is a finite rank operator commuting with 7. If
o,(T) € o,(T), thenf(T) + F satisfies generalized property (') for any f € H(T).

Proof Suppose T' € weak — H(p) and 0,(T) € o,(T), we claim thato,(T) = o,(T). In fact, let A, ¢

o,(T), then there exists ¢ > 0 such that T = Al € SF, (H) and N(T - AI) C

)8

R[(T - AD"]if0<

i
IA=2A,l <e. Sinceasc(T = Al) < o, then N(T - Al) = N(T - Al) ﬂf‘llR[(T -AI)"] = {0}, which
implies that 7 — A7 is bounded below. Thus T — Al is invertible since o,(T) € o,(T). Now we have that A,
€ iso o(T) U p(T). Without loss of generality, we suppose that A, € iso o (T). Since T € weak - H(p) ,
A, is a pole of the resolvent of T. Thatis A, ¢ o, (T). Thuso,(T) = o,(T). By Corollary 1.3, we know
that f(T) + F satisfies generalized property (') for any f € H(T). ]

The next results deal with the generalized property (w') for quasinilpotent operators. We first recall three
well-known results:

1)For any T € B(H) and a finite rank operator F', then n(T) < o if and only if n(T + F) < o ;

2)For any T € B(H) and a finite rank operator F, then o,y (T) = o4y (T + F) (Proposition 3.3 in Ref.
(715

3)Let T € B(H) be such that n(T) < o . Suppose that there exists an injective quasinilpotent operator
Q € B(H) commuting with T. Then n(T) = 0 (Lemma 2. 11 in Ref. [15]).

If Q is an injective quasinilpotent operator, then  satisfies generalized property (w’). In fact, if Q is an
injective quasinilpotent operator, then Q" is an injective quasinilpotent operator for all positive integer n. It
follows that R( Q") is not closed for all positive integer n, then we have 0(Q) = o,(Q) = 7,,(Q) = {0},
E*(Q) = 0. Thus Q satisfies generalized property (w’).

Theorem 2.4 Suppose that Q € B(H) is an injective quasinilpotent operator and F € B(H) is a finite rank
operator commuting with (). Then Q + F satisfies generalized property (w').

Proof Suppose ( is an injective quasinilpotent operator, then o, (Q + F) = o, (Q) = {0} andn(Q) =
0. Thusn(Q + F) < . Since @ is an injective quasinilpotent operator commuting with Q + F, this implies
that n(Q + F) = 0. Then we claim that ¢ (Q + F) = {0}. In fact, for any A # 0, Q — A[lis invertible, in
particular a Weyl operator, so that Q + F — Alis a Weyl operator, which implies thatn(Q + F = Al) < .
Therefore n(Q + F — AI) =0, then Q + F — Al is invertible. So we have thato(Q + F) = o,,(Q + F) =
{0} and E°(Q + F) =0, and consequently generalized property (') holds for Q + F. ]
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Generally, a non-injective quasinilpotent operator () may fail to satisfy generalized property (w'). For
example, Q e B([*) is defined by
X, Xy %,

Q(x,, x5, x5, **) = (72’?, —, ), (26)
theno (Q) = 04, (Q) = 0,(Q) = {0} and E*(Q) = {0}, these show that Q does not satisfy generalized
property (0").

Theorem 2.5 Suppose that Q € B(H) is a non-injective quasinilpotent operator and F € B(H) is a finite
rank operator commuting with Q. If ( satisfies generalized property (w'), then  + F satisfies generalized
property (w').

Proof Suppose () is a non-injective quasinilpotent operator, then  is a-isoloid and o,(Q) € o,(Q). By

Theorem 1.3, we know that () + F satisfies generalized property (w').
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