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Abstract We investigate the following quasilinear elliptic equation;
Au+u +Au 7 =0, uwe W' (02, (1,)

where (2 is a bounded domain in R" with smooth boundary, A, u = div(IVu!"?Vu), N=3,2 < p

< N,0<gqg<l,andp” = N& By using variational methods, we obtain a lower bound of the
-P

extremal value A * (£2,p,q) for equation (1,) , which can be explicitly calculated.
Key words quasilinear elliptic equation, critical exponent, Ekeland’ s variational principle,
extremal value
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In this article, we consider the following A-parameter family of quasilinear elliptic problems
Autul 4 A =0, ue WD), (1)
where 2 is a bounded domain in R" with smooth boundary, A, u = div(l Vul "?Vu), N=3,2<p <N,

0 <g<landp” :N&'
-P

It is well known that there exists a constant A~ > 0 such that problem (1,) admits at least two solutions
ifA e (0,A") and no solutions if A > A° ""*'. We are now interested in the dependence of A on 2, N, p
and ¢ (i. e. how large is A" ? ). It is difficult to derive an exact result about A * for domains without
symmetric properties and few general results are known for this type of estimates except in Gazzola and

7). Here, it must be said that the method of sub and supersolutions does

Malchiodi” and our recent papers'®
not adapt for dealing with estimates of this kind, since for general {2 ( without symmetric property, say) precise
information about sub/supersolutions is no longer possible and explicit calculations for A * can not be actually
carried out.

The energy functional corresponding to problem (1,) is the following:
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Define

p*-p

— -1 A l-/
:P* q (*P P) (‘5),1,
P o—q-1 -q-1

1

G =p)(p* —g-1) *

| Q1 610

[’v’l:

where

IVuI"dx

Sy = inf
R (f w1 de)

It is well known that S, is independent of Q"

We now state the main results.

Theorem A Assume2 <p < N,0 <q < 1,p" = NNP and T, is defined as above. Then for all A
-p

P.q

(0,T,,), problem (1,) admits at least one solution in W' (£2).

> T p,

Theorem B Let A * be the extremal value for problem (1,), we have
)\X(Q,P,Q) > Tp.q‘
1 Some preliminary results
Define A, = {u e Wy"(0) | (I', (u),u) =0} and we divide A, into three parts as follows:
Al = {ue Al (p—l—q>j|vu|"dx—A<p* —q—l)j | wl” dx >0}
0 0
0 P * p*
A = JueA,l (p—1—q)j|vu| dx - A(p —q—1)f | wl? dx =0},
0 0

A = iueA/\| (p—l—q)fn|Vu|”dx—)\(p* —q—l)Ll ul? da <0}.

Proposition 1.1 LetA < T, , then A} # ¢ and A} = {0].

Proof Foranyu e W,"(02)\{0}, define
o(t) = Zl’_”*f | Vul? dx - t"”_"*J’ lwl™ dx, te (0, + o).
0 0

It is easily verified that

Ry AL P
max o) = 270l (o g
te (0, =) p —qg-11p -qg-1

(f [ wl ™ dx)f"‘-‘/
0
Ifx <T

P.q?

we apply the Holder inequality and the Sobolev inequality to conclude

max go(t) —/\ I wl? da

te (0, o)
p*—q-1
. v ([ 1Vl do) 5
_pr-q-l ( LA )Vﬁw “ —Aflul"*dx
p —qg-1\1p" —¢q-1 (f|u|"+‘dx)% @
(0]
p*—g-1
. (j|vu|"dx)ﬁ
>2-g-1 (o) ~A[ 1wl da
e e e U N e Ve

:{p—q—l(p*—p ) (J'V”']d’”)"' }flul

pma-1\pT —g -1 s e
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> (T,, —,\)j | wl” dx > 0.
i 0
Consequently there exist two and only two positive numbers denoted by t™ = ¢~ (u) andt" = ¢t* (u) such that
e(t™) = o(t") = )\J’ I wl? drande'(t7) >0 > @' (t7) ,ie. t" (uw)u e A, andt” (u)u e A .
0

It remains to show that A} = {0}. Let us argue by contradiction and assume Ju, e A and u, # 0. By

the definition of/li , we have
(p -1 —q)j I Vuy 1" dx = A(p” —q—l)j | u, 1" dx = 0.
0 0
Then

0 =[ 1V 17de = [ 1 ut” dx—)\fluol” dx
0 0

(0]

.

:MJIVuolpdx—j |y 17" d.
p —q- 1l o

Therefore, we have

(7, - ,\JL| uy 17 dw

p ¥ —q-1
. (f |V uy |7 da) 77
| pr-q-1 ( p_-p )"""’ 2 —/\J'“O'/ dx
p —q-1 p —q-1 |l |l :y(:"'l-/(/l) [ 21 B /'*I:/EIflw; -
p * —q-1
. ) ¥ —p VvV P },7114
g1 ( b = p )’/‘]/’I (LI u, 17 dx) 7= _)\Jlu“*dx
N S P N e e

p* —q-1

_p-q-1 ( P’ ~p )fj]{'(fﬂ'v%' de) 7

- | 17" d
)\L 1, x

po-g-11p" —gq-1 (L| ug 17 dw) T
:p*—q—l ( *p*—p );fjl_’; (UIVuol'dx) "*w—p*_l_qflv%lpdx
pomantir maend (*p*i—p fquol”dx)IHﬂ’ poman e
p —q-1lh
=0.
From the inequality above, we get u, = 0. This is a contradiction. ]

Proposition 1.2 Let A < 7, , we have the following estimates:

*—p 1 -1 - p* _
I VU > B(A) = —2——9(s)", YUEeA, (1)
Ap' —qg-1
. o — II:—*q:I‘ (p*-p)(p* —q-1)
I Val < Bo) = (2T ol T Yaeal (@)
P —-P (S\) p(p-q-1)
Moreover, B(A) > B(0) forallA e A0, T, ).
Proof LetU e A, , by the definition of A, , we have
(p=1-¢@) I VUII} <A(p" —q-1) | UJ;:. (3)
From the Sobolev inequality, we derive
1

(p-1- I VU|" <Aa(p" =q-1) | VU|"

. (4)
(507

Thus
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o 1 -1 - [l
I VU1 s B(y) =~ 225 ) (5)
Ap —qg-1
Letu € A, by the definition of A, and A, , we have
Awlys = 0 Vulg = [0 ar (6)
o
(p—q—l)HVqu:—)\(p*—q—l)flulp*dx>0. (7)
0

Then
(p" =g =D 1ul™ dv=(p" =p)| Vul;

(=g =11 Vullj =" =g =1DC] Vul 1= [ 1 1™ do)

(p-q-1)| Vu||£—/\(p* —q—l)J | wl? da
0

> 0. (8)
By the Hélder inequality and the Sobolev inequality, we obtain

: o IVl e
Ol A -l L (9)
v P
From (9), we get
PE-p
* - - pq-1 p*-p)(p* -q-1)
” Vu ” 1’; < B(()) = (p # I 1)/ | <ql+1>(p+—ﬂ) | 0|( p*(p-1-q) 1 . (10)
p--p (5,) St
T
It is easily verified that T, = Alf((o/\))' Therefore , 75;((3; = ;“’ >1, ¥V axe(0,T7,,), that is
B(A) > B(0) forallA e (0, T,,).

then A7 U A and A; are both closed in Wy (£2).
Proof For any u, — u, strongly in W;"(Q) with {u,| C A U A}, it follows that u, € A, and for all

Proposition 1.3 Let 0 < XA < T

P.q

n e N, we have
(p-1 —q)fqunV'dx—/\(p* —q—1)f | u, 1" dx = 0.
0 0
Passing to the limit as n — o« , we conclude that

(p -1 —q)j”|Vu0|pdx—)\(p* -q-1>f“| u, 1" da = 0.

Thus, u, belongs to A} U AS.
For any U, — U, strongly in W;” () with {U,| C A, it follows that U, e A,. By Proposition 1.2,
| VU, | Z*_” > B(A) > B(0) > || Vu | 2*_’7, YV ueA],providled 0 <A <T . Therefore, U, does not

P.q

belong to A} . By Proposition 1. 1, U, does not belong to A . In turn, it follows that U, belongs to A;. ]

Proposition 1.4  Given u € A, there exists &, > 0 and a differentiable functional f = f(w) > 0,

A
we W,"(02), |o| < &, satisfying the following ;
fO) =1, flw)(u+w) e A}, Yo € W' (2), |o| < &.

And

—pfn|Vu|F72Vquodx+(l+q)L|ulqsgn(u)qux +)\p*fn|u|p“2qudx
RO | | |
(=) [ Vull, =" =1 -g)[ 1ul"ds

Proof Tetu e A;. Define G: W(l)’”(.(l) x R*— R as follows:
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Clw,t) = z”LI V(u+w)l” d -z‘*“f“| wtwl ™ dx -Az"*L| wtrwl” dr.
It is obvious that G(0,1) = 0 and
G(0,1) = (p-1 —q)jﬂl Vul’de - A(p" - ¢ —1)L| wl? dx > 0.
Then we can apply the implicit function theorem at the point (0, 1) and obtain & > 0 and a

differentiable functional f = f(w), @ € W,"(2), | o | < &, satisfying that
fO) =1, f(w)(u+w) e A}, Y w € W' (), |w]| < s&. O

2 Proof of the Theorems

Proof of Theorem A For everyu € A,, we can easily obtain

]A(u):(]—_]—*)J|Vu|”dx—( ! _l*) | wl "y,
p p 0 q+1 p 0

Clearly, I, (u) is coercive on A,. Thus, I, (A, ) has a lower bound and inf,,, aql, are finite.

From Ekeland’ s variational principle (see Theorem 4.8.1 in Ref. [9]), there exists a sequence {u, |

n)
C A, U A} with the following properties :

1

1)1, (u,) < inf o, +—;
4 n

AfU A

1 +
2) [(0) = L) =l ~wl, ¥ ocA UA

Since2 < p < p", we derive

IA(u)=(L_;)|| Vull L+ ! —1*) | ul” de
p q+1 g+1 p o)
1 . .
o o v Po_ £ J » .
< p(1+q)[(p g=D I Vullg =A(p" =g =1)| T ul” de] <0,V u e A
Therefore , ian;u wly = ian;I)\ < 0. Thus, I, (u,) < 0 for n large enough and we can assume u, € A;.

Since I, (1 ul ) =1,(u), we can assume thatu, > 0. The coercivity of I, implies that {u, | is bounded. Going
if necessary to a subsequence, we can assume u,—u, weakly in W;” (£2) and pointwise a. e. in . Letg, =

u, —u, , then g,—0 weakly in W, (£2). By the compactness of the embedding W;” () — L'*"(£2) , we have

n

1 1
f|u”| +qu~>f | u, |'"dus
0 N

f | g 1'""dx — 0.
0

We divide the arguments below into three steps.
Step1  u, 0.

On the contrary, we assume thatu, = 0. Theng, € A and/,(g,) — inf,., ,/,. Thatis

0<(p=q-11Ve ;-2 —q=1D[ 11" de+o(l), (11)
and
A

1 : )+ -
S Ve e 1 e = i (1), (12)

which leads to the following contradiction ;

0o<2r-g-D-p (p—g-D g,
» »
=p"(p° —q—l)infMuAglA +o0(l) <0.

" +p (p" - ¢ —l)inf/‘)wﬂlA +0(1)
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Therefore, u, % 0 .
Step 2
lim inf(p” = p) | Vu, ||} < (p" =g - 1>L| w, 1" da (13)
Since for {u,| C A, we have:
(0" =q-1) | Vu, |" = (p° —q—l)fnl w, 1"y + A (p" - g —1)L| w, 1" dv.  (14)

Then
(" =p) IV )= (" =g =1 f 1, 1
= [(p-1-9) | Vu, " -A(p" —¢ —1)L| w 1" dx] < 0.
Therefore ,

lim inf(p~ = p) || Vu, | P = (p" -q - I)J | uAl”"dx.
e 0

It remains to show the inequality above strictly holds. Let us argue by contradiction and assume

lim inf(p" = p) || Vu, [0 = (p" =g = D) [ 1u,1""dx
e (]

Then
(p" =g =1 Vu, 1""dx = lim sup(p” = p) | Vu, ||
0 n—o
= lim inf(p" = p) | Vu, I} = (p" —¢ - 1>f L, 17,
- A
That is

(" =p) I Vu, )= (" =g =D [ 1, 1",

asn — o , which gives:
/\f|un|p*dx: | Vu, | flu [ dy P q_lj| ['"1d
)

asn — o .

Therefore, we apply the Sobolev inequality and the Holder inequality to conclude

.
Ty, = AL 1w 1 d

* —g-1
e ([ 1V 1 a5
< p—q—l( pP_—p ) 2 ol e de
" p(p* —g-1) (r* =p)(p* =g=1) 0
p —q-1\p -q-1 Lu, | 121 ot

p* —q-1
T-¢

P*-p V 4 -
(Ll u, | dx)

=p—q—1( P -p )‘ A D, 17 da
A A TR PN s L A
p*—g-1
. m(fwu 1* d) i
— -1 — p-1-¢ n -
Sp* 1 1( *p pl) 2 “Al w17 da
pr-g-11p" —q-

1 P*=p 0
([ 1wty
(0]

p* —q-1
p-q-1 ( P’ - p )”,TI"T,’ (L' Vu, 17 dw) 7=
P

p-p

“ Al L, 1" de —0.

0

pF-p

Coad (L I w, | 1“’dx)piliq

It implies that u, — O strongly in L'~ and hence u, = 0. This is a contradiction.
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Step 3w, is a solution of eq. (1,).
By Step 2, there exists a constant C > 0 independent of n such that a subsequence of {u,| (still called

{u,} ) satisfying the following inequality :

(" =p) IVl = (" =g =1 1w "de <= C (15)
By Proposition 1. 4, there exist a suitable functional f(u,) corresponding to each u, such that
flo)(u, +w) e A}, Yo € W,"(2), |o]| < e,
Hence, for each ¢ W(])"'(_Q) and t e (Q,L),
&
1 1
—HAGe) =T u, |+, () Td Il ] = — /(i) (u, + 1) ~u, |l
=0 [u, ) - LLf,G¢)(u, +1td) ]
1 1 A . 1
- V P o_ l+q p _ P V P
A et e AR R R R VA R OO T

A [f”(td))]”*fnl u, +td 1" dx

i([f,[(@)]‘*ﬂj{ﬁ w, + 1|
[ Ve ) 1 = U B ) 1 Ve )

[f”<zd))11+q _1 1+q 1 1+q _ 1+q
[—”H' w, +ipl dy * 1 +q[f”| w, +td | dx LI w, | "dx] o+

1 +g¢

[[fn(‘d’) ‘1” u, + 11" d +P%[L| w17 e = [ a1 e,

Dividing by ¢ > 0 and passing to the limit as t — 0, we derive

—5Uf;an¢lnmu + el

-1/ (0)o] leu 7 dx - ; o, 17 dx—/\ﬂl w, 1" de] -

| Vu, 1”772 Vu, Ve dx + f (u,)'¢ dx + AJ (u,)" ¢ dx
0 o o

-j | Vi, 172 Vu Ve da +f(un)”d) dv + Aj (u,)" "¢ du (16)
0 (0] (0]

By Proposition 1.4, we have
-p| I Vu, 1”772 Vu, V¢ dx + (1 + q)f l'w, | "sgn(u,)d dx + )\p*f low, 17w, do
o o

0

S.(0) = .
(=) | Va, [ =G =1 =) 1w, 1" dx

pf | Vu, 1”77 Vu, V¢ dx — (1 +q)f l'w, | ”sgn(u,)d dx —)\p*f L u, 17w, da
0 0 0

(b =p) I Vu L= (p7 =g =) [ Tu, 1" de

Thus, by the boundedness of u, and (15), we have
L. (0)p ] =
where C, is a positive constant independent of n.

Therefore, from (16), we obtain
2

j | Vu, 1" Vu, V¢ dx —f(un)qd) dx —)\f (u)" ' de = - —,
o o o n

and passing to the limit as n — o , we conclude that
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L| Vi, 172 Vu, Ve da —J;)(uA)qd) dx -AL(uA)"“‘d) dv =0, Yo e Wy" ().

That is, u, is a weak solution of eq. (1,) withA < T, . The proof of Theorem A is completed. ]

Proof of Theorem B  From the definition of A * (2,p,q) and Theorem A, it is obvious that A * (2,p,q) >
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