September 2011

Article ID:1002-1175 (2011) 05-0583-08

Some remarks on a quasilinear elliptic equation with critical exponent *

LIU Xing[†], SUN Yi-Jing

(School of Mathematics, Graduate University, Chinese Academy of Sciences, Beijing 100049, China)
(Received 9 October 2010; Revised 8 November 2010)

Liu X, Sun Y J. Some remarks on a quasilinear elliptic equation with critical exponent [J]. Journal of Graduate University of Chinese Academy of Sciences, 2011, 28(5):583-590.

Abstract We investigate the following quasilinear elliptic equation:

$$\Delta_{n} u + u^{q} + \lambda u^{p^{*}-1} = 0 , \quad u \in W_{0}^{1,p}(\Omega) , \qquad (1_{\lambda})$$

where Ω is a bounded domain in \mathbb{R}^N with smooth boundary, $\Delta_n u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, $N \ge 3$, $2 \le p$

< N, 0 < q < 1, and $p^* = \frac{Np}{N-p}$. By using variational methods, we obtain a lower bound of the

extremal value $\lambda^*(\Omega, p, q)$ for equation (1, p, q), which can be explicitly calculated.

Key words quasilinear elliptic equation, critical exponent, Ekeland's variational principle, extremal value

CLC 0175.25

In this article, we consider the following λ -parameter family of quasilinear elliptic problems:

$$\Delta_{0} u + u^{q} + \lambda u^{p^{*}-1} = 0, u \in W_{0}^{1,p}(\Omega), \tag{1}$$

where Ω is a bounded domain in R^N with smooth boundary, $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u)$, $N \ge 3$, $2 \le p < N$,

$$0 < q < 1 \text{ and } p^* = \frac{Np}{N-p}.$$

It is well known that there exists a constant $\lambda^* > 0$ such that problem (1_{λ}) admits at least two solutions if $\lambda \in (0,\lambda^*)$ and no solutions if $\lambda > \lambda^{*[1\cdot 4]}$. We are now interested in the dependence of λ^* on Ω , N, p and q (i. e. how large is λ^* ?). It is difficult to derive an exact result about λ^* for domains without symmetric properties and few general results are known for this type of estimates except in Gazzola and Malchiodi^[5] and our recent papers^[6-7]. Here, it must be said that the method of sub and supersolutions does not adapt for dealing with estimates of this kind, since for general Ω (without symmetric property, say) precise information about sub/supersolutions is no longer possible and explicit calculations for λ^* can not be actually carried out.

The energy functional corresponding to problem (1_{λ}) is the following:

$$I_{\lambda}(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^{p} dx - \frac{1}{q+1} \int_{\Omega} |u|^{q+1} dx - \frac{\lambda}{p^{*}} \int_{\Omega} |u|^{p^{*}} dx, u \in W_{0}^{1,p}(\Omega).$$

^{*} Supported by the Presidential Foundation of GUCAS

[†]E-mail: liuxing09@ mails. gucas. ac. cn

Define

$$T_{p,q} := \frac{p-q-1}{p^*-q-1} \left(\frac{p^*-p}{p^*-q-1} \right)^{\frac{p^*-p}{p-1-q}} (S_N)^{\frac{p^*-q-1}{p-1-q}} \frac{1}{|\Omega|^{\frac{(p^*-p)(p^*-q-1)}{p^*(p-1-q)}}},$$

where

$$S_N = \inf_{u \in W_0^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^p dx}{\left(\int_{\Omega} |u|^{p^*} dx\right)^{\frac{p}{p^*}}}.$$

It is well known that S_N is independent of $\Omega^{[8]}$.

We now state the main results.

Theorem A Assume $2 \le p < N$, 0 < q < 1, $p^* = \frac{Np}{N-p}$ and $T_{p,q}$ is defined as above. Then for all $\lambda \in (0, T_{p,q})$, problem (1_{λ}) admits at least one solution in $W_0^{1,p}(\Omega)$.

Theorem B Let λ^* be the extremal value for problem (1_{λ}) , we have

$$\lambda^* (\Omega, p, q) > T_{p,q}$$

1 Some preliminary results

Define $\Lambda_{\lambda} = \{u \in W_0^{1,p}(\Omega) \mid \langle I'_{\lambda}(u), u \rangle = 0\}$ and we divide Λ_{λ} into three parts as follows:

$$\Lambda_{\lambda}^{+} = \{ u \in \Lambda_{\lambda} \mid (p-1-q) \int_{\Omega} |\nabla u|^{p} dx - \lambda (p^{*}-q-1) \int_{\Omega} |u|^{p^{*}} dx > 0 \};$$

$$\Lambda_{\lambda}^{0} = \{ u \in \Lambda_{\lambda} \mid (p-1-q) \int_{\Omega} |\nabla u|^{p} dx - \lambda (p^{*}-q-1) \int_{\Omega} |u|^{p^{*}} dx = 0 \};$$

$$\Lambda_{\lambda}^{-} = \left\{ u \in \Lambda_{\lambda} \mid (p-1-q) \int_{\Omega} |\nabla u|^{p} dx - \lambda (p^{*}-q-1) \int_{\Omega} |u|^{p^{*}} dx < 0 \right\}.$$

Proposition 1.1 Let $\lambda < T_{p,q}$, then $\Lambda_{\lambda}^{\pm} \neq \phi$ and $\Lambda_{\lambda}^{0} = \{0\}$.

Proof For any $u \in W_0^{1,p}(\Omega) \setminus \{0\}$, define

$$\varphi(t) \ = \ t^{p-p^*} \int_{\Omega} | \ \nabla u |^p \ \mathrm{d}x \ - \ t^{q+1-p^*} \int_{\Omega} | \ u |^{q+1} \ dx \,, \quad t \in (0\,,\,+\infty\,).$$

It is easily verified that

$$\max_{t \in (0, \infty)} \varphi(t) = \frac{p - q - 1}{p^* - q - 1} \left(\frac{p^* - p}{p^* - q - 1} \right)^{\frac{p^* - p}{p - 1 - q}} \frac{\left(\int_{\Omega} |\nabla u|^p dx \right)^{\frac{p^* - q - 1}{p - 1 - q}}}{\left(\int_{\Omega} |u|^{q + 1} dx \right)^{\frac{p^* - p}{p - 1 - q}}}.$$

If $\lambda < T_{p,q}$, we apply the Hölder inequality and the Sobolev inequality to conclude

$$\begin{split} &\max_{t \in (0, \infty)} \varphi(t) - \lambda \int_{\Omega} |u|^{p^{*}} dx \\ &= \frac{p - q - 1}{p^{*} - q - 1} \left(\frac{p^{*} - p}{p^{*} - q - 1} \right)^{\frac{p^{*} - p}{p - 1 - q}} \frac{\left(\int_{\Omega} |\nabla u|^{p} dx \right)^{\frac{p^{*} - q - 1}{p - 1 - q}}}{\left(\int_{\Omega} |u|^{q + 1} dx \right)^{\frac{p^{*} - q - 1}{p - 1 - q}}} - \lambda \int_{\Omega} |u|^{p^{*}} dx \\ &\geqslant \frac{p - q - 1}{p^{*} - q - 1} \left(\frac{p^{*} - p}{p^{*} - q - 1} \right)^{\frac{p^{*} - p}{p - 1 - q}} \frac{\left(\int_{\Omega} |\nabla u|^{p} dx \right)^{\frac{p^{*} - q - 1}{p - 1 - q}}}{\left(|u||^{\frac{q + 1}{p^{*}}} |\Omega|^{\frac{p^{*} - q - 1}{p^{*}}} \right)^{\frac{p^{*} - p}{p - 1 - q}}} - \lambda \int_{\Omega} |u|^{p^{*}} dx \\ &= \left[\frac{p - q - 1}{p^{*} - q - 1} \left(\frac{p^{*} - p}{p^{*} - q - 1} \right)^{\frac{p^{*} - p}{p^{-1 - q}}} \frac{\left(\int_{\Omega} |\nabla u|^{p} dx \right)^{\frac{p^{*} - q - 1}{p^{*}}} - \lambda \right] \int_{\Omega} |u|^{p^{*}} dx \end{split}$$

$$\geqslant (T_{p,q} - \lambda) \int_{\Omega} |u|^{p^*} dx > 0.$$

Consequently there exist two and only two positive numbers denoted by $t^- = t^-(u)$ and $t^+ = t^+(u)$ such that $\varphi(t^-) = \varphi(t^+) = \lambda \int_0^- |u|^{p^+} dx$ and $\varphi'(t^-) > 0 > \varphi'(t^+)$, i. e. $t^+(u)u \in \Lambda_\lambda^-$ and $t^-(u)u \in \Lambda_\lambda^+$.

It remains to show that $\Lambda_{\lambda}^{0} = \{0\}$. Let us argue by contradiction and assume $\exists u_{0} \in \Lambda_{\lambda}^{0}$ and $u_{0} \neq 0$. By the definition of Λ_{λ}^{0} , we have

$$(p-1-q)\int_{\Omega} |\nabla u_0|^p dx - \lambda (p^*-q-1)\int_{\Omega} |u_0|^{p^*} dx = 0.$$

Then

$$\begin{split} 0 &= \int_{\varOmega} \mid \nabla u_0 \mid^p \, \mathrm{d}x \, - \int_{\varOmega} \mid \ u_0 \mid^{q+1} \, \mathrm{d}x \, - \lambda \int_{\varOmega} \mid \ u_0 \mid^{p^*} \, \mathrm{d}x \\ &= \frac{p^* - p}{p^* - q - 1} \int_{\varOmega} \mid \nabla u_0 \mid^p \, \mathrm{d}x \, - \int_{\varOmega} \mid \ u_0 \mid^{q+1} \, \mathrm{d}x. \end{split}$$

Therefore, we have

$$\begin{split} & \left[\left[\frac{p-q-1}{p^*-q-1} \left(\frac{p^*-p}{p^*-q-1} \right)^{\frac{p^*-p}{p-1-q}} \frac{\left(\int_{\Omega} \mid \nabla u_0 \mid^p \, \mathrm{d}x \right)^{\frac{p^*-q-1}{p-1-q}}}{\parallel u_0 \parallel_{p^{*p^{*-1}-q}}^{\frac{p^*-p-1}{p-1-q}} \mid \Omega \mid^{\frac{(p^*-p)(p^*-q-1)}{p^*(p-1-q)}} - \lambda \right] \int_{\Omega} \mid u_0 \mid^{p^*} \, \mathrm{d}x \\ & = \frac{p-q-1}{p^*-q-1} \left(\frac{p^*-p}{p^*-q-1} \right)^{\frac{p^*-p}{p-1-q}} \frac{\left(\int_{\Omega} \mid \nabla u_0 \mid^p \, \mathrm{d}x \right)^{\frac{p^*-q-1}{p^*-1-q}}}{\left(\parallel u_0 \parallel_{p^*}^{\frac{q+1}{p^*}} \mid \Omega \mid^{\frac{p^*-q-1}{p^*-1-q}} - \lambda \int_{\Omega} \mid u_0 \mid^{p^*} \, \mathrm{d}x \right)} \\ & \leq \frac{p-q-1}{p^*-q-1} \left(\frac{p^*-p}{p^*-q-1} \right)^{\frac{p^*-p}{p^*-1-q}} \frac{\left(\int_{\Omega} \mid \nabla u_0 \mid^p \, \mathrm{d}x \right)^{\frac{p^*-q-1}{p^*-1-q}}}{\left(\int_{\Omega} \mid \nabla u_0 \mid^{p} \, \mathrm{d}x \right)^{\frac{p^*-q-1}{p^*-1-q}}} - \lambda \int_{\Omega} \mid u_0 \mid^{p^*} \, \mathrm{d}x \\ & = \frac{p-q-1}{p^*-q-1} \left(\frac{p^*-p}{p^*-q-1} \right)^{\frac{p^*-p}{p^*-1-q}} \frac{\left(\int_{\Omega} \mid \nabla u_0 \mid^{p} \, \mathrm{d}x \right)^{\frac{p^*-q-1}{p^*-1-q}}}{\left(\int_{\Omega} \mid \nabla u_0 \mid^{p} \, \mathrm{d}x \right)^{\frac{p^*-q-1}{p^*-1-q}}} - \frac{p-1-q}{p^*-q-1} \int_{\Omega} \mid \nabla u_0 \mid^{p} \, \mathrm{d}x \\ & = \frac{p^*-q-1}{p^*-q-1} \left(\frac{p^*-p}{p^*-q-1} \right)^{\frac{p^*-p}{p^*-1-q}} \frac{\left(\int_{\Omega} \mid \nabla u_0 \mid^{p} \, \mathrm{d}x \right)^{\frac{p^*-q-1}{p^*-1-q}}}{\left(\frac{p^*-p}{p^*-q-1} \right)^{p} \left(\frac{p^*-p}{p^*-q-1} \right)^{p} \left(\frac{p^*-p}{p^*-1-q} \right)^{p$$

From the inequality above, we get $u_0 = 0$. This is a contradiction.

Proposition 1.2 Let $\lambda < T_{p,q}$, we have the following estimates:

$$\| \nabla U \|_{p}^{p^{*}-p} > B(\lambda) = \frac{1}{\lambda} \frac{p-1-q}{p^{*}-q-1} (S_{N})^{\frac{p^{*}}{p}}, \quad \forall U \in \Lambda_{\lambda}^{-}$$
 (1)

$$\| \nabla u \|_{p}^{p^{*-p}} < B(0) = \left(\frac{p^{*} - q - 1}{p^{*} - p} \right)^{\frac{p^{*} - p}{p - q - 1}} \frac{1}{(S_{N})^{\frac{(q+1)(p^{*} - p)}{p(p - q - 1)}}} | \Omega|^{\frac{(p^{*} - p)(p^{*} - q - 1)}{p^{*}(p - 1 - q)}}, \forall u \in \Lambda_{\lambda}^{+}$$
 (2)

Moreover, $B(\lambda) > B(0)$ for all $\lambda \in \Lambda(0, T_{p,q})$.

Proof Let $U \in \Lambda_{\lambda}$, by the definition of Λ_{λ} , we have

$$(p-1-q) \| \nabla U \|_{p}^{p} < \lambda (p^{*}-q-1) \| U \|_{p^{*}}^{p^{*}}.$$
(3)

From the Sobolev inequality, we derive

$$(p-1-q) \| \nabla U \|_{p}^{p} < \lambda (p^{*}-q-1) \| \nabla U \|_{p}^{p^{*}} \frac{1}{(S_{N})^{\frac{p^{*}}{p}}}.$$
 (4)

Thus

$$\| \nabla U \|_{p}^{p^{*-p}} > B(\lambda) = \frac{1}{\lambda} \frac{p-1-q}{p^{*}-q-1} (S_N)^{\frac{p^{*}}{p}}.$$
 (5)

Let $u \in \Lambda_{\lambda}^{+}$, by the definition of Λ_{λ} and Λ_{λ}^{+} , we have

$$\lambda \| u \|_{p^*}^{p^*} = \| \nabla u \|_{p}^{p} - \int_{\Omega} | u |_{q+1}^{q+1} dx;$$
 (6)

$$(p-q-1) \parallel \nabla u \parallel_{p}^{p} - \lambda (p^{*}-q-1) \int_{0}^{1} |u|^{p^{*}} dx > 0.$$
 (7)

Then

$$(p^* - q - 1) \int_{\Omega} |u|^{q+1} dx - (p^* - p) || \nabla u ||_{p}^{p}$$

$$= (p - q - 1) || \nabla u ||_{p}^{p} - (p^* - q - 1) (|| \nabla u ||_{p}^{p} - \int_{\Omega} |u|^{q+1} dx)$$

$$= (p - q - 1) || \nabla u ||_{p}^{p} - \lambda (p^* - q - 1) \int_{\Omega} |u|^{p^*} dx$$

$$> 0.$$
(8)

By the Hölder inequality and the Sobolev inequality, we obtain

$$(p^* - p) \| \nabla u \|_p^p < (p^* - q - 1) \frac{\| \nabla u \|_p^{q+1}}{(S_N)^{\frac{q+1}{p}}} | \Omega |_p^{\frac{p^* - q - 1}{p^*}}.$$
 (9)

From (9), we get

$$\| \nabla u \|_{p}^{p^{*-p}} < B(0) = \left(\frac{p^{*} - q - 1}{p^{*} - p} \right)^{\frac{p^{*} - p}{p - q - 1}} \frac{1}{(S_{N})^{\frac{(q+1)(p^{*} - p)}{p(p - q - 1)}}} | \Omega|^{\frac{(p^{*} - p)(p^{*} - q - 1)}{p^{*}(p - 1 - q)}}.$$
 (10)

It is easily verified that $T_{p,q} = \frac{\lambda B(\lambda)}{B(0)}$. Therefore, $\frac{B(\lambda)}{B(0)} = \frac{T_{p,q}}{\lambda} > 1$, $\forall \lambda \in (0, T_{p,q})$, that is $B(\lambda) > B(0)$ for all $\lambda \in (0, T_{p,q})$.

Proposition 1.3 Let $0 < \lambda < T_{p,q}$, then $\Lambda_{\lambda}^{+} \cup \Lambda_{\lambda}^{0}$ and Λ_{λ}^{-} are both closed in $W_{0}^{1,p}(\Omega)$.

Proof For any $u_n \to u_0$ strongly in $W_0^{1,p}(\Omega)$ with $\{u_n\} \subset \Lambda_{\lambda}^+ \cup \Lambda_{\lambda}^0$, it follows that $u_0 \in \Lambda_{\lambda}$ and for all $n \in N^+$, we have

$$(p-1-q)\int_{\Omega} |\nabla u_n|^p dx - \lambda (p^*-q-1)\int_{\Omega} |u_n|^{p^*} dx \ge 0.$$

Passing to the limit as $n \to \infty$, we conclude that

$$(p-1-q)\int_{\Omega} |\nabla u_0|^p dx - \lambda (p^*-q-1)\int_{\Omega} |u_0|^{p^*} dx \ge 0.$$

Thus, u_0 belongs to $\Lambda_{\lambda}^+ \cup \Lambda_{\lambda}^0$.

For any $U_n \to U_0$ strongly in $W_0^{1,p}(\Omega)$ with $\{U_n\} \subset \Lambda_\lambda^-$, it follows that $U_0 \in \Lambda_\lambda$. By Proposition 1.2, $\|\nabla U_0\|_p^{p^*-p} > B(\lambda) > B(0) > \|\nabla U_0\|_p^{p^*-p}$, $\forall u \in \Lambda_\lambda^+$, provided $0 < \lambda < T_{p,q}$. Therefore, U_0 does not belong to Λ_λ^+ . By Proposition 1.1, U_0 does not belong to Λ_λ^+ . In turn, it follows that U_0 belongs to Λ_λ^- . \Box **Proposition 1.4** Given $u \in \Lambda_\lambda^+$, there exists $\varepsilon_0 > 0$ and a differentiable functional $f = f(\omega) > 0$, $\omega \in W_0^{1,p}(\Omega)$, $\|\omega\| < \varepsilon_0$ satisfying the following:

$$f(0) = 1, f(\omega)(u + \omega) \in \Lambda_{\lambda}^{+}, \forall \omega \in W_{0}^{1,p}(\Omega), \|\omega\| < \varepsilon_{0}$$

And

$$f'(0)\varphi = \frac{-p\int_{\Omega}\mid \boldsymbol{\nabla} u\mid^{p-2}\boldsymbol{\nabla} u\,\boldsymbol{\nabla}\varphi\,\,\mathrm{d}x + (1+q)\int_{\Omega}\mid u\mid^{q}\,\mathrm{sgn}(u)\varphi\,\,\mathrm{d}x + \lambda p^{*}\int_{\Omega}\mid u\mid^{p^{*}-2}u\varphi\,\,\mathrm{d}x}{(1-q)\parallel \boldsymbol{\nabla} u\parallel^{p}_{p} - \lambda(p^{*}-1-q)\int_{\Omega}\mid u\mid^{p^{*}}\mathrm{d}x}.$$

Proof Let $u \in \Lambda_{\lambda}^+$. Define $G: W_0^{1,p}(\Omega) \times R^+ \to R$ as follows:

$$G(\omega,t) = t^p \int_{\Omega} |\nabla(u+\omega)|^p dx - t^{1+q} \int_{\Omega} |u+\omega|^{q+1} dx - \lambda t^{p^*} \int_{\Omega} |u+\omega|^{p^*} dx.$$

It is obvious that G(0,1) = 0 and

$$G_{t}(0,1) = (p-1-q) \int_{\Omega} |\nabla u|^{p} dx - \lambda (p^{*}-q-1) \int_{\Omega} |u|^{p^{*}} dx > 0.$$

Then we can apply the implicit function theorem at the point (0, 1) and obtain $\varepsilon_0 > 0$ and a differentiable functional $f = f(\omega)$, $\omega \in W_0^{1,p}(\Omega)$, $\|\omega\| < \varepsilon_0$ satisfying that

$$f(0) = 1, f(\omega)(u + \omega) \in \Lambda_{\lambda}^{+}, \forall \omega \in W_{0}^{1,p}(\Omega), \|\omega\| < \varepsilon_{0}.$$

2 Proof of the Theorems

Proof of Theorem A For every $u \in \Lambda_{\lambda}$, we can easily obtain

$$I_{\lambda}\left(\,u\,\right) \;=\; \left(\,\frac{1}{p}\,-\,\frac{1}{p^{\,*}}\right)\!\int_{\varOmega}\mid\; \boldsymbol{\nabla} u\mid^{\,p}\,\mathrm{d}x\;-\; \left(\,\frac{1}{q\,+\,1}\,-\,\frac{1}{p^{\,*}}\right)\!\int_{\varOmega}\mid\; u\mid^{\,1+q}\mathrm{d}x\,,$$

Clearly, $I_{\lambda}(u)$ is coercive on Λ_{λ} . Thus, $I_{\lambda}(\Lambda_{\lambda})$ has a lower bound and $\inf_{\Lambda_{\lambda}^{*}\cup\Lambda_{\lambda}^{0}}I_{\lambda}$ are finite.

From Ekeland's variational principle (see Theorem 4.8.1 in Ref. [9]), there exists a sequence $\{u_n\}$ $\subset \Lambda_{\lambda}^+ \cup \Lambda_{\lambda}^0$ with the following properties:

1)
$$I_{\lambda}(u_n) \leq \inf_{\Lambda_{\lambda}^+ \cup \Lambda_{\lambda}^0} I_{\lambda} + \frac{1}{n};$$

2)
$$I_{\lambda}(\omega) \geqslant I_{\lambda}(u_n) - \frac{1}{n} \| u_n - \omega \|$$
, $\forall \omega \in \Lambda_{\lambda}^+ \cup \Lambda_{\lambda}^0$.

Since $2 \le p < p^*$, we derive

$$\begin{split} I_{\lambda}(\,u\,) \;\; &= \Big(\frac{1}{p} \; -\frac{1}{q\,+\,1}\Big) \parallel \; \boldsymbol{\nabla} u \parallel_{\,p}^{\,p} \; + \; \lambda \Big(\frac{1}{q\,+\,1} \; -\frac{1}{p^{\,*}}\Big) \int_{\varOmega} \mid \; u \mid_{\,p^{\,*}} \; \mathrm{d}x \\ \\ &< -\frac{1}{p\,(\,1\,+\,q\,)} \big[\; (p\,-\,q\,-\,1\,) \parallel \; \boldsymbol{\nabla} u \parallel_{\,p}^{\,p} \; - \; \lambda \, (\,p^{\,*} \; -\,q\,-\,1\,) \int_{\varOmega} \mid \; u \mid_{\,p^{\,*}} \; \mathrm{d}x \, \big] \; < \; 0 \;, \; \; \forall \; \; u \; \in \; \Lambda_{\lambda}^{\,+}. \end{split}$$

Therefore, $\inf_{A_{\Lambda}^{+} \cup A_{\Lambda}^{0}} I_{\lambda} = \inf_{A_{\Lambda}^{+}} I_{\lambda} < 0$. Thus, $I_{\lambda}(u_{n}) < 0$ for n large enough and we can assume $u_{n} \in \Lambda_{\lambda}^{+}$. Since $I_{\lambda}(|u|) = I_{\lambda}(u)$, we can assume that $u_{n} > 0$. The coercivity of I_{λ} implies that $\{u_{n}\}$ is bounded. Going if necessary to a subsequence, we can assume $u_{n} \rightharpoonup u_{\lambda}$ weakly in $W_{0}^{1,p}(\Omega)$ and pointwise a. e. in Ω . Let $g_{n} = u_{n} - u_{\lambda}$, then $g_{n} \rightharpoonup 0$ weakly in $W_{0}^{1,p}(\Omega)$. By the compactness of the embedding $W_{0}^{1,p}(\Omega) \rightarrow L^{1+q}(\Omega)$, we have

$$\int_{\Omega} |u_n|^{1+q} dx \to \int_{\Omega} |u_\lambda|^{1+q} dx;$$
$$\int_{\Omega} |g_n|^{1+q} dx \to 0.$$

We divide the arguments below into three steps.

Step 1 $u_{\lambda} \not\equiv 0$.

On the contrary, we assume that $u_{\lambda} \equiv 0$. Then $g_n \in \Lambda_{\lambda}^+$ and $I_{\lambda}(g_n) \to \inf_{A^+ \cup A^0} I_{\lambda}$. That is

$$0 < (p - q - 1) \| \nabla g_n \|_p^p - \lambda (p^* - q - 1) \int_{\Omega} |g_n|^{p^*} dx + o(1), \qquad (11)$$

and

$$\frac{1}{p} \| \nabla g_n \|_p^p - \frac{\lambda}{p^*} \int_{\Omega} |g_n|^{p^*} dx = \inf_{\Lambda_{\lambda}^* \cup \Lambda_{\lambda}^0} I_{\lambda} + o(1), \qquad (12)$$

which leads to the following contradiction:

$$0 < \frac{p(p-q-1) - p^{*}(p^{*}-q-1)}{p} \| \nabla g_{n} \|_{p}^{p} + p^{*}(p^{*}-q-1) \inf_{\Lambda_{\lambda}^{*} \cup \Lambda_{\lambda}^{0}} I_{\lambda} + o(1)$$

$$\leq p^{*}(p^{*}-q-1) \inf_{\Lambda_{\lambda}^{*} \cup \Lambda_{\lambda}^{0}} I_{\lambda} + o(1) < 0.$$

Therefore, $u_{\lambda} \neq 0$.

Step 2

$$\lim_{n \to \infty} \inf(p^* - p) \| \nabla u_n \|_p^p < (p^* - q - 1) \int_{\Omega} |u_{\lambda}|^{1+q} dx.$$
 (13)

Since for $\{u_n\} \subset \Lambda_{\lambda}^+$, we have:

$$(p^* - q - 1) \parallel \nabla u_n \parallel_p^p = (p^* - q - 1) \int_{\Omega} |u_n|^{1+q} dx + \lambda (p^* - q - 1) \int_{\Omega} |u_n|^{p^*} dx.$$
 (14)

Then

$$(p^* - p) \| \nabla u_n \|_p^p - (p^* - q - 1) \int_{\Omega} |u_n|^{1+q} dx$$

$$= - [(p - 1 - q) \| \nabla u_n \|_p^p - \lambda (p^* - q - 1) \int_{\Omega} |u_n|^{p^*} dx] < 0.$$

Therefore,

$$\lim_{n\to\infty} \inf(p^* - p) \| \nabla u_n \|_p^p \le (p^* - q - 1) \int_{\Omega} |u_\lambda|^{1+q} dx.$$

It remains to show the inequality above strictly holds. Let us argue by contradiction and assume

$$\lim_{n\to\infty} \inf(p^* - p) \| \nabla u_n \|_p^p = (p^* - q - 1) \int_{\Omega} |u_\lambda|^{1+q} dx.$$

Then

$$(p^* - q - 1) \int_{\Omega} |u_{\lambda}|^{1+q} dx \ge \limsup_{n \to \infty} (p^* - p) || \nabla u_n ||_{p}^{p}$$

$$\ge \liminf_{n \to \infty} (p^* - p) || \nabla u_n ||_{p}^{p} = (p^* - q - 1) \int_{\Omega} |u_{\lambda}|^{1+q} dx.$$

That is

$$(p^* - p) \parallel \nabla u_n \parallel_p^p \rightarrow (p^* - q - 1) \int_{\Omega} |u_\lambda|^{1+q} dx,$$

as $n \to \infty$, which gives:

$$\lambda \int_{\Omega} |u_n|^{p^*} dx = \|\nabla u_n\|_{p}^{p} - \int_{\Omega} |u_n|^{1+q} dx \to \frac{p-q-1}{p^*-p} \int_{\Omega} |u_\lambda|^{1+q} dx,$$

as $n \to \infty$

Therefore, we apply the Sobolev inequality and the Hölder inequality to conclude

$$\begin{split} & \left[\left. T_{p,q} - \lambda \right. \right] \int_{\Omega} \mid u_n \mid^{p^*} \mathrm{d}x \\ & \leq \left[\left. \frac{p - q - 1}{p^* - q - 1} \left(\frac{p^* - p}{p^* - q - 1} \right)^{\frac{p^* - p}{p^{-1 - q}}} \frac{\left(\int_{\Omega} \mid \nabla u_n \mid^p \mathrm{d}x \right)^{\frac{p^* - q - 1}{p - 1 - q}}}{\parallel u_n \parallel \frac{p(p^* - q - 1)}{p^* - 1 - q}} \mid \Omega \mid \frac{(p^* - p)(p^* - q - 1)}{p^* (p - 1 - q)}} - \lambda \right] \int_{\Omega} \mid u_n \mid^{p^*} \mathrm{d}x \\ & = \frac{p - q - 1}{p^* - q - 1} \left(\frac{p^* - p}{p^* - q - 1} \right)^{\frac{p^* - p}{p^{-1 - q}}} \frac{\left(\int_{\Omega} \mid \nabla u_n \mid^p \mathrm{d}x \right)^{\frac{p^* - q - 1}{p - 1 - q}}}{\left(\parallel u_n \parallel \frac{q + 1}{p^*} \mid \Omega \mid \frac{p^* - q - 1}{p^*} \right)^{\frac{p^* - p}{p^* - 1 - q}}} - \lambda \int_{\Omega} \mid u_n \mid^{p^*} \mathrm{d}x \\ & \leq \frac{p - q - 1}{p^* - q - 1} \left(\frac{p^* - p}{p^* - q - 1} \right)^{\frac{p^* - p}{p^{-1 - q}}} \frac{\left(\int_{\Omega} \mid \nabla u_n \mid^p \mathrm{d}x \right)^{\frac{p^* - q - 1}{p - 1 - q}}}{\left(\int_{\Omega} \mid u_n \mid^{q + 1} \mathrm{d}x \right)^{\frac{p^* - q - 1}{p - 1 - q}}} - \lambda \int_{\Omega} \mid u_n \mid^{p^*} \mathrm{d}x \\ & = \frac{p - q - 1}{p^* - p} \left(\frac{p^* - p}{p^* - q - 1} \right)^{\frac{p^* - q - 1}{p - 1 - q}} \frac{\left(\int_{\Omega} \mid \nabla u_n \mid^p \mathrm{d}x \right)^{\frac{p^* - q - 1}{p - 1 - q}}}{\left(\int_{\Omega} \mid u_n \mid^{p^*} \mathrm{d}x \right)^{\frac{p^* - q - 1}{p - 1 - q}}} - \lambda \int_{\Omega} \mid u_n \mid^{p^*} \mathrm{d}x \to 0. \end{split}$$

It implies that $u_n \to 0$ strongly in L^{p^*} and hence $u_{\lambda} \equiv 0$. This is a contradiction.

Step 3 u_{λ} is a solution of eq. (1_{λ}) .

By Step 2, there exists a constant C > 0 independent of n such that a subsequence of $\{u_n\}$ (still called $\{u_n\}$) satisfying the following inequality:

$$(p^* - p) \parallel \nabla u_n \parallel_p^p - (p^* - q - 1) \int_{\Omega} |u_n|^{1+q} dx < -C.$$
 (15)

By Proposition 1.4, there exist a suitable functional $f(u_n)$ corresponding to each u_n such that

$$f(\omega)(u_n + \omega) \in \Lambda_{\lambda}^+, \ \forall \omega \in W_0^{1,p}(\Omega), \|\omega\| < \varepsilon_n$$

Hence, for each $\phi \in W_0^{1,p}(\Omega)$ and $t \in \left(0, \frac{\mathcal{E}_n}{\parallel \phi \parallel}\right)$,

$$\begin{split} \frac{1}{n} \big[& \mid f_{n}(t\phi) - 1 \mid \mid u_{n} \mid \mid + t f_{n}(t\phi) \mid \mid \phi \mid \mid \big] \geqslant \frac{1}{n} \mid \mid f_{n}(t\phi) \left(u_{n} + t\phi \right) - u_{n} \mid \\ \geqslant & I_{\lambda} \big[\left[u_{n} \right] - I_{\lambda} \big[f_{n}(t\phi) \left(u_{n} + t\phi \right) \big] \\ & = \frac{1}{p} \mid \mid \nabla u_{n} \mid \mid_{p}^{p} - \frac{1}{1 + q} \int_{\Omega} \mid u_{n} \mid^{1+q} \mathrm{d}x - \frac{\lambda}{p^{*}} \int_{\Omega} \mid u_{n} \mid^{p^{*}} \mathrm{d}x - \frac{1}{p} \big[f_{n}(t\phi) \big]^{p} \mid \mid \nabla \left(u_{n} + t\phi \right) \mid \mid_{p}^{p} + \\ & \frac{1}{1 + q} \big[f_{n}(t\phi) \big]^{1+q} \int_{\Omega} \mid u_{n} + t\phi \mid^{1+q} \mathrm{d}x + \frac{\lambda}{p^{*}} \big[f_{n}(t\phi) \big]^{p^{*}} \int_{\Omega} \mid u_{n} + t\phi \mid^{p^{*}} \mathrm{d}x \\ & = - \left[\frac{\big[f_{n}(t\phi) \big]^{p} - 1 \big]}{p} \right] \mid \mid \nabla \left(u_{n} + t\phi \right) \mid \mid_{p}^{p} - \frac{1}{p} \big[\mid \mid \mid \nabla \left(u_{n} + t\phi \right) \mid \mid_{p}^{p} - \mid \mid \mid \nabla u_{n} \mid \mid_{p}^{p} \big] + \\ & \left[\frac{\big[f_{n}(t\phi) \big]^{1+q} - 1 \big]}{1 + q} \right] \int_{\Omega} \mid u_{n} + t\phi \mid^{1+q} \mathrm{d}x + \frac{1}{1 + q} \big[\int_{\Omega} \mid u_{n} + t\phi \mid^{1+q} \mathrm{d}x - \int_{\Omega} \mid u_{n} \mid^{1+q} \mathrm{d}x \big] + \\ & \lambda \left[\frac{\big[f_{n}(t\phi) \big]^{p^{*}} - 1 \big]}{p^{*}} \right] \int_{\Omega} \mid u_{n} + t\phi \mid^{p^{*}} \mathrm{d}x + \frac{\lambda}{p^{*}} \big[\int_{\Omega} \mid u_{n} + t\phi \mid^{p^{*}} \mathrm{d}x - \int_{\Omega} \mid u_{n} \mid^{p^{*}} \mathrm{d}x \big]. \end{split}$$

Dividing by t > 0 and passing to the limit as $t \to 0$, we derive

$$\frac{1}{n} [| f'_{n}(0) \phi | | | u_{n} | | + | | \phi | |]
\ge - [f'_{n}(0) \phi] [\int_{\Omega} | \nabla u_{n} |^{p} dx - \int_{\Omega} | u_{n} |^{q+1} dx - \lambda \int_{\Omega} | u_{n} |^{p^{*}} dx] - \int_{\Omega} | \nabla u_{n} |^{p-2} \nabla u_{n} \nabla \phi dx + \int_{\Omega} (u_{n})^{q} \phi dx + \lambda \int_{\Omega} (u_{n})^{p^{*}-1} \phi dx
= - \int_{\Omega} | \nabla u_{n} |^{p-2} \nabla u_{n} \nabla \phi dx + \int_{\Omega} (u_{n})^{q} \phi dx + \lambda \int_{\Omega} (u_{n})^{p^{*}-1} \phi dx.$$
(16)

By Proposition 1.4, we have

$$f'_{n}(0)\phi = \frac{-p\int_{\Omega} |\nabla u_{n}|^{p-2} \nabla u_{n} \nabla \phi \, dx + (1+q)\int_{\Omega} |u_{n}|^{q} \operatorname{sgn}(u_{n})\phi \, dx + \lambda p^{*}\int_{\Omega} |u_{n}|^{p^{*}-2} u_{n}\phi \, dx}{(1-q) \|\nabla u_{n}\|_{p}^{p} - \lambda (p^{*}-1-q)\int_{\Omega} |u_{n}|^{p^{*}} \, dx}$$

$$= \frac{p\int_{\Omega} |\nabla u_{n}|^{p-2} \nabla u_{n} \nabla \phi \, dx - (1+q)\int_{\Omega} |u_{n}|^{q} \operatorname{sgn}(u_{n})\phi \, dx - \lambda p^{*}\int_{\Omega} |u_{n}|^{p^{*}-2} u_{n}\phi \, dx}{(p^{*}-p) \|\nabla u_{n}\|_{p}^{p} - (p^{*}-q-1)\int_{\Omega} |u_{n}|^{1+q} dx}.$$

Thus, by the boundedness of u_n and (15), we have

$$|f'_{n}(0)\phi| \leq C_{1},$$

where C_1 is a positive constant independent of n.

Therefore, from (16), we obtain

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla \phi \, dx - \int_{\Omega} (u_n)^q \phi \, dx - \lambda \int_{\Omega} (u_n)^{p^*-1} \phi \, dx \ge - \frac{C_2}{n},$$

and passing to the limit as $n \to \infty$, we conclude that

$$\int_{\Omega} |\nabla u_{\lambda}|^{p-2} \nabla u_{\lambda} \nabla \phi \, dx - \int_{\Omega} (u_{\lambda})^{q} \phi \, dx - \lambda \int_{\Omega} (u_{\lambda})^{p^{*}-1} \phi \, dx \ge 0, \quad \forall \phi \in W_{0}^{1,p}(\Omega).$$

That is, u_{λ} is a weak solution of eq. (1_{λ}) with $\lambda < T_{p,q}$. The proof of Theorem A is completed.

Proof of Theorem B From the definition of $\lambda^*(\Omega, p, q)$ and Theorem A, it is obvious that $\lambda^*(\Omega, p, q) > T_{p,q}$.

References

- [1] Garca Azorero J, Peral Alonso I. Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term [J].

 Trans Amer Math Soc, 1991, 323(2): 877-895.
- [2] Garcia Azorero J, Peral Alonso I. Some results about the existence of a second positive solution in a quasilinear critical problem [J]. Indiana Univ Math J, 1994, 43(3): 941-957.
- [3] Huang Y X. Positive solutions of certain elliptic equations involving critical Sobolev exponents [J]. Nonlinear Analysis TMA, 1998, 33 (6): 617-636.
- [4] Tan Z, Yao Z G. The existence of multiple solutions of p-Laplacian elliptic equation [J]. Acta Mathematica Scientia, 2001, 21B(2): 203-212.
- [5] Gazzola F, Malchiodi A. Some remarks on the equation $-\Delta u = \lambda (1 + u)^p$ for varying λ , p and varying domains [J]. Comm Partial Differential Equations, 2002, 27(4): 809-845.
- [6] Sun Y J, Li S J. A nonlinear elliptic equation with critical exponent: Estimates for extremal values[J]. Nonlinear Analysis TMA, 2008, 69(5): 1856-1869.
- [7] Sun Y J, Li S J. Some remarks on a superlinear-singular problem: Estimates of λ* [J]. Nonlinear Analysis TMA, 2008, 69(8): 2636-2650.
- [8] Talenti G. Best constant in sobolev inequality [J]. Ann Math Pure Appl, 1976, 110(1): 353-372.
- [9] Chang K C. Methods in nonlinear analysis [M]. Heidelberg: Springer-Verlag, 2005.

一个含临界指数的拟线性椭圆型方程的注记

刘 星, 孙义静

(中国科学院研究生院数学科学学院,北京 100049)

摘 要 研究了如下的拟线性椭圆型方程:

$$\Delta_{p} u + u^{q} + \lambda u^{p^{*}-1} = 0, \quad u \in W_{0}^{1,p}(\Omega),$$
 (1_{\lambda})

其中, Ω 是 R^N 中具有光滑边界的有界区域, $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, $N \ge 3$, $2 \le p < N$, 0 < q < 1, $p^* = \frac{Np}{N-p}$. 设 $\lambda^*(\Omega,p,q)$ 是拟线性椭圆型方程 (1_{λ}) 可解的参数集的上确界. 运用变分方法,在不要求具有对称性质的一般区域 Ω 上得到了 $\lambda^*(\Omega,p,q)$ 的一个可以精确计算的下界.

关键词 拟线性椭圆型方程,临界指数, Ekeland 变分原理,参数计算