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Abstract We study the linearly full holomorphic 2-spheres in a complex Grassmann manifold
G(2,5) by using harmonic sequence and moving frames. We construct some examples of
homogeneous holomorphic 2-spheres in G(2, 5) by applying the irreducible unitary representations
of SU(2). Then, we determine all linearly full degenerate holomorphic 2-spheres with constant
Gaussian curvatures of 2/3 and 4/3, up to U(5) equivalence. Moreover, we prove that all non-
degenerate holomorphic 2-spheres with constant Gaussian curvature of 4/3 must be U(5) equivalent
under some conditions.
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Let f be a harmonic map from a Riemann surface M into a complex Grassmann manifold G(k, n). Then
by using the d-transform associated to the map f, one can obtain the following sequence of harmonic maps'"

a

9
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where f; = 9f; forj = 0,1,2, -~ and f;: M — G(kj, n) are harmonic maps. We call k; the rank of f; and

define k,,, = 0 if f; is anti-holomorphic. The map f; is called non-degenerate (resp. degenerate) when k, =

ki, (resp. k;> k; ;). When fis holomorphic, the sequence (1) is orthogonal and therefore is finite. In this
case, the sequence is called a pseudo-holomorphic sequence and f; is called a pseudo-holomorphic map
generated by f.

In 1989, Chi and ZhengL2J classified all holomorphic curves from 2-spheres into G (2, 4) whose
curvature is equal to 2 into two families, up to unitary equivalence, in which none of the curves is congruent.
Xu and Jiao"?' studied the linearly full holomorphic 2-spheres into G (2, 4) and gave several pinching
theorems for the Gaussian curvature. Furthermore, they determined all holomorphic 2-spheres with constant
Gaussian curvature of 1 in G(2, 4) up to U(4) equivalence.

In 2004, Jiao and Peng'*' classified all linearly full holomorphic 2-spheres in G(2, 5) with the induced

Gaussian curvatures K = 4, 2, 4/3, 1 and 4/5 into some classes, up to unitary equivalence. Recently, Jiao
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proved that if f is a linearly full totally unramified pseudo-holomorphic curve with constant Gaussian curvature
Kin G(2,5) and fis non- + holomorphic, then K is either 1/2 or 4/5"".

In this paper, we will use harmonic sequence and moving frames to discuss the holomorphic 2-spheres
into a complex Grassmann manifold G(2, 5). Preliminaries are given in section 1 and section 2. In section 2,
we construct some examples of homogeneous holomorphic 2-spheres into G(2, 5) by making use of the unitary
representations of the 3-dimensional special unitary group SU(2).

In section 3, we give a pinching theorem about the Gaussian curvature K of a degenerate holomorphic
immersion from S* to G(2, 5) ( see Theorem 3.1). Furthermore, we determine all linearly full degenerate
holomorphic 2-spheres with constant Gaussian curvatures of 2/3 and 4/3, up to U(5) equivalence ( see
Theorem 3.2).

In section 4, we prove that all non-degenerate holomorphic 2-spheres with constant Gaussian curvature

4/3 must be U(5) equivalent under some conditions ( see Proposition 4.1).

1 Geometry of minimal surfaces in complex Grassmannians

We begin to give a description of the geometry of minimal surfaces in complex Grassmann manifolds''’ .
Let G(k, n) be the Grassmann manifold of all k-dimensional subspaces in a complex number space C " of
dimension n. In particular, G(1, n) is just the complex projective space CP"~".
We will use the following ranges of indices in this section.
1 <AB,C--<sn, 1 <i,j,l <k, kh+1<a B,y <n
A unitary frame of C " consists of an ordered set of unitary basis e = (e,, =+, e,) of C". The space of
unitary frames can be identified with the unitary group U(n). Let w,; be the Maurer-Cartan forms of U(n).
They are skew-hermitian and satisfy the Maurer-Cartan structure equations of U(n), i.e.
W + wy =0, (2)
doy = -0 N o (3)
An element of G(k, n) can be defined by the multivector e, Ae,-- Ae,# 0, defined up to a factor. The
vectors {e;| and their orthogonal vectors {e, | are defined up to a transformation of U(k) and U(n - k)

respectively, so that G(k, n) has a G-structure with G = U(k) x U(n —k). The Kaehler metric on
G(k, n) is defined by

ds" = Y w0 0, (4)

When k& = 1, this is just the Fubini-Study metric on CP""' of constant holomorphic curvature 4.
Let M be an oriented surface and f : M — G (k, n) an immersion. Then M acquires an induced
Riemannian metric
dsy = f7ds’ = oo, (5)
where ¢ is a complex-valued one form, defined up to a factor of norm one. The structure equations of M with
respect to the induced metric can be written as
de = -p N o, (6)

K
do =S¢ Mo, (7)

where p is the complex connection form and K is the Gaussian curvature. Choose a local unitary frame e =
(e , =+, e,) along fsuch thate, , e,, -+, e, span f(x) and still denote w,, the entries of the pull back of the
Maurer- Cartan form of U(n) via e. Restricted to M, we set

w, = a,p + b,e. (8)
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The map f is holomorphic if and only if b, = 0. The isometric condition (5) implies

zawbm =0, (9)
Z (agt, + byb,) = 1. (10)

The harmonicity condition for f is

Da, : = da, + AgiW g — A ;05 — AP = 0 mod ¢, (11)
which is equivalent to

Db, = db, +byw, - b,w,; +b,p =0 mod ¢. (12)

The quadratic differential form

1. = Da.e + Db g (13)
is called the complex second fundamental form of the map f. The map f is called totally geodesic if Hf{i =0
for all & and 7.

The following Lemma'®’ will be frequently used in this paper.
Lemma 1.1 Let (M, ds},) be a surface and z a conformal coordinate on some open subset U of M. Let u be
a smooth complex valued function and w a purely imaginary 1-form on U. Assume
du = uw mod dz.
Then
Alogl ul ¢ A ¢ = 2dow,

where ¢ = Adz as above and A the Laplacian of M.

2 Construction of some homogeneous holomorphic 2-spheres in G(2, 5)

In this section, we review some results on irreducible unitary representations of the 3-dimensional special
unitary group SU(2). We will use some notation in Ref. [7]. SU(2) can be defined by
-b
7);a,b(—:C,| al+1b1° = 1}.

sw2>:{g=(“
b a
The Lie algebra su(2) of SU(2) is given by

/- 1x -y

su(2) = {X = (
v - T

);xeR,yeC}.

A basis {&,, &,, &, of su(2) is given by
( /=1 0 ) 0 -1 ( 0 /- 1)
& = y €9 = ( ), &y = .
0o - /-1 L0 /-1 0
Put T ={exp(te,); t € R | and we have S* =SU(2)/T.
Let V, be the representation space of SU(2), which is an (n + 1) -dimensional complex vector space of
all complex homogeneous polynomials of degree n in two variables z, and z,. The standard irreducible

representation p, of SU(2) on V, is defined by

p. (&) f(zy, 2,) + = flaz, + bz,, - bz, + az,) (14)
for g € SU(2) and fe V,. If we view elements of V, as polynomial functions of S* = {(z,, z,) e C*; Iz, 1° +
lz,1> = 1}, we can define a SU(2) -invariant Hermitian inner product ( , ) on V, as follows
(n + 1) !

(f, h): jf h dv,

where h € V, and dv is the volume element of S*. It is easy to check that{u" | defined by
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) 1 -k _k
ui'b;z—z'L Zy, 0<sks<sn

il (n k)1 "

is a unitary basis for V,. Since p, (g)u." € V, we can write

(@ = 3 AL (@b,
=0

where {A}(a, b) | are polynomials of degree n in {a, a, b, b}. By (14) we have

, _ (-0
/\k(a’ b) - /r_k)!,”"z“”_l

—k\(k - i _

(" )( )d’(@‘*%"*”(— b)". (15)
P q

Let C """ be the complex number space of n +1 dimensions and | E,}"_, be the standard basis of C"*'. With

i

n+1

respect to the unitary basis {u." |, we may identify V, with C and represent each linear endomorphism

p,(g) (for g € SU(2)) by a matrix (A, (a, b)), then we still denote the matrix by p,(g). ltis easy to see
p,(g) e U(n+1), and thus we have a Lie group homomorphism
poi SU2) > Un+1)
g—p(g) = (A(a, b)),

The representation p, of SU(2) induces an action of su(2) on V, which is described as follows

. d
X ) £
P, (X) (u,") al

- Jk(n =k + 1) yul") + (n =2k) /= lau" +

(n —k)(k+1) yul" (16)
for 0 < k < nand X € su(2). Using the matrix notation, we get a Lie algebra homomorphism p,, : su(2) —

u(n+1), X v p,, (X), which is the differential of p,. From (16), p,. (X) is given by
n /- lx - /;}7

[ny (n-2) /-1x - 2(n-1)y
p,. (X) = /2(n = 1) : : . (17)
- /ny

/ny -n /-1x
Let w = (w,) be the pull back of Maurer-Cartan forms of U(n + 1) via p, and

pCexptX) (u”)
0

a4 ada + bdb - adb + bda y -9
IR

adb - bda - ada - bdb o -

be the Maurer-Cartan form of SU(2). By a straightforward computation, we have
- /h(n—k+1) e, L=k-1,
wy = (de,, e) ={(n - 2k)y, I =k

’

(k+ 1) (n -k o, I =k +1,

where e, = p, (g)u", i.e.

nys -/ne
e (n-2)p - /2(n-1)¢
w = /2(n -1 : . (18)

/ng - ni

It was proved in Ref. [7] that ¢." given as follows
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o S*=SU(2)/T — C P

0 1

gl [f7] = [A0, Ay -, Af]

are SU(2) equivariant minimal immersions of S* in CP", which is well known as Veronese sequence in CP".
In particular, ¢;" is called Veronese surface of CP". Moreover, the Gaussian curvature K and the Kaehler
angle a of ¢," are given by

_ 4 cos _ n — 2k
- Tt 2k(n - k)

n+2k(n -k)’
Now we construct some examples of homogeneous holomorphic 2-spheres in G(2, 5).

Example 2.1 Let h: S>— G(2, 5) be spanned by the first two elements of Veronese sequence in CP*,
i.e. h maps gT to

a* 2a’b /64’ b? 2ab’ b*

-2d’b & (lal®>=310b1%) /[6ab(lal®> =101 b Blal®>=1b1%) 2ab’ '
It is well known that A is a holomorphic 2-sphere in G(2, 5) with Gaussian curvature K = 2/3.
Example 2.2 TLetp: SU(2) — U(5) be a Lie group homomorphism defined by
o(2) = (pa(g) 0)
0 1
i,e. p = p,@® p,. Let p(g), denote the A —th column of p(g). It is easy to check that the map
h: S =SU2)/T— G(2,5)

a’ a’bh ab® b’
gT — [p(g), A p(g)s] =[ & & 0

0 0 0 0 1
is a well defined holomorphic 2-sphere in G(2, 5). We set
e, =p(g)i, e =p(g)s, &5 = p(g)y,es =p(8)s, e5 = p(g)a
Then e = (e,, -+, e,) is a unitary frame along h. It is easy to see from (18) that the pull back of Maurer-
Cartan forms of U(5) via e is given by

3 0 - 0
0 O 0 0
6 0y -2p 0
w = 3 , (19)
2 _
00 T4 w9
0 0 0 b -3y

where ¢ = /3¢. By simple computation, we have the Gaussian curvature K = 4/3.
Example 2.3 Letp: SU(2) — U(5) be a Lie group homomorphism defined as follows

(g) = (pl(g) 0 )
P 0 Pz(g)

i,e. p = p,@® p,. It is also easy to check that the map
h .S =SU2)/T — G(2,5)
a b 0 0 0
[0 0 o [2ab bz]
is a well defined holomorphic 2-sphere in G(2, 5). We set

gT — [p(g), N p(g),]

€ = P(é’)l’ €, = P(g),w €; = p(g)z» €, = P(é’)w s = P(g)s-

Then e = (e,, **+, e;) is a unitary frame along h. It is easy to see from (18) that the pull back of Maurer-
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Cartan forms of U(5) via e is given by

o= [Fo 0w o o | 20

where ¢ = /3¢. By simple computation, we have the Gaussian curvature K = 4/3. We know that h, =
les N\ e ]: S G(2,5), hy= [e;]: SS—>G(1,5) = CP* are harmonic maps. Then we obtain an

example of nonde-generate pseudo-holomorphic sequence from $* to G(2, 5)"

J J J
h = h, h, h, 0

with K, = 4/3, K, = 4/5 and K, = 2, where K,, i = 0, 1, 2 are Gaussian curvatures of S* with respect to

the induced metric h," ds>.
3 Degenerate holomorphic 2-spheres in G(2, 5)

Let f be a linearly full holomorphic immersion from S* to G(2, 5). If fis degenerate (i. e. rank 9f =

1), then via the d-transform, it will generate a pseudo-holomorphic sequence

f = f = = = f =0,
where f,, f,, and f, are harmonic maps from S* to CP*. We choose a local unitary frame e = (e, , e,, ==+ ,
es) along f so that
f = spanie,, e,|, ker 8 = spanie,}, f, = span{e,}, f, = spanie,}, f, = spanie|.

The local unitary frames e, are defined up to the change e,— e, =exp( /-17,)e,, 7, real, i.e. to a
transformation of the group U(1) x -+ x U(1). Then the pull back of Maurer-Cartan forms under such frames

are

0w, w, —-¢ 0 0
w, w, 0 0 0
é 0 wy; wy, 0, (21)
0 0 wy; oy w4
0 0 0 wy wss
where ¢ is a local unitary coframe of bidegree (1,0) with respect to the induced metric.
The harmonicity condition for f implies
p = Wy~ 0, (22)
W, = PP, Wy = 4@, Wsy = TP, (23)
where p, ¢ and r are local defined smooth functions, while Ipl >, 1¢1*, and Ir1* are globally defined on S°.
We assume f is totally unramified, i.e. l¢1>#0, Ir1>% 0. Taking the exterior derivatives of (22) and using

(2), (3),(23) , we get

do= (2 -1p1*=1q1De N =2¢N
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which gives

K=4-2(lpl>+1ql?). (24)

By differentiating (23) and using the Maurer-Cartan structure equations again, we get
dp = p(p + wp — w,,) mod ¢, (25)
dg = q(p + w;; — w,,) mod ¢, (26)
dr = r(p + w, — wss) mod ¢. (27)

Making use of Lemma 1.1 to (26) and (27), we get

Alogl ¢l = K +2(1 =21 q1>+1r1%), (28)
Alogl rl = K +2(1 ¢g1* =21r17%). (29)

By a lemma in Ref. [8], p is of analytic type, which implies that either p vanishes identically or it vanishes at

finitely many points. Combining (28) and (29), together with (24), we have

Alog | g1?1rl = 6K -8 +61 pl°. (30)
If p is identically zero, the above equation reduces to
Alog | ¢1*1 rl = 6K - 8. (31)
If p is not identically zero, then away from its zeros we get from (25) that
Alog | pl = K +2(1 =21 pl?). (32)
Combining (28), (29), and (32), together with (24), we have
Alog | p1P 1 ¢g1* 1 r1? = 5(3K - 2). (33)

Thus, we have the following pinching theorem about Gaussian curvature K.
Theorem 3.1 Let f be a degenerate holomorphic immersion from S* to G (2, 5) and K the Gaussian
curvature.

1) fK = 4/3, then K = 4/3;

2) If2/3 < K < 4/3, then K = 2/3 or 4/3.

Proof 1) By using (30), K = 4/3 implies that Alog I¢l *Irl = 0. So log I¢!”Irl is a subharmonic
function on S*. Since S is compact, log I¢!” 17| then must contain a maximum in S°. Hence it is constant by
the maximum principle for subharmonic functions. Thus K = 4/3 and Ipl = 0.

2) If p is identically zero, then 2/3 < K < 4/3 together with (31) says that Alog l¢!°1rl < 0.
Making use of the minimum principle and analogous argument of 1), we have K = 4/3. If p is not
identically zero, similarly, we get K = 2/3 by (33) and the maximum principle. ]

Furthermore,, we show that any two degenerate holomorphic 2-spheres with constant Gaussian curvature
K=4/3 or2/3 in G(2, 5) must be U(5) equivalent.

Theorem 3.2 1) Any degenerate linearly full holomorphic 2-spheres with constant Gaussian curvature of 2/3
in G(2,5) is U(5) equivalent to h; S* =CP'— G(2, 5) defined by
a’ 2a’b /64’ b’ 2ab’ b
-2a’b & (lal?>=31b1%) /f6ab(l al”>=10b1%) °Blal>-15b1%) 2ab’

2) Any degenerate linearly full holomorphic 2-spheres with constant Gaussian curvature of 4/3 in

G(2,5) is U(5) equivalent to h: S = CP'— G(2, 5) defined by
h([a,b] = > Ba’b Bab® b 0
0 0 0 0 1
Proof 1) Assume K = 2/3. It is easy to see that [e, ] describes a linearly full holomorphic curve in CP*

;0 (34)

(35)

with [e,e e e,es] as its Frenet frames. Here f is first osculating curve of [e, ]. Then it follows directly from

Theorem 6.2 of Ref. [9] that [e, ] is Veronese surface up to a holomorphic isometry of CP*. Thus f is
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equivalent to h which is spanned by the first two elements of Veronese sequence in CP*.

2) If K = 4/3, then Ipl”> = 0 and I¢!”> = 4/3 by (24). Then using (28) ,we get |r1* = 1. Since e is
uniquely determined up to U(1) x -+ x U(1) transformations, rotations e,— e, = exp( /—17,)e,, 7,
real, induce the change

0y, > o, = /-, + o, (36)
on the Maurer-Cartan forms. Since w,, and w,, —3ws; are closed and purely imaginary by the Maurer-Cartan

structure equations, we can take suitable local functions 7, and 7, such that

w, =0, w, - 3wy,; = 0. (37)
Furthermore , we can specify e, and e, so that ¢ = 2//3 and r = 1. Then it follows from (26) and (27) that
P = Wy — Wy = W55 Wy (38)
Combining (22), (37), (38), the pull back of Maurer-Cartan forms are
39 0 -¢ 0 0
0 0 o0 0 0
6 0 ¥ -4 0
/3 ) (39)
2 .
0 0 /3415 -y -9
0 0 o0 b -3y

where y = w,;. In this case fis U(5) equivalent to h defined in Example 2. 2 by comparing with (19).
U

4 Non degenerate holomorphic 2-spheres in G(2, 5)

Let f be a non degenerate linearly full holomorphic immersion from S* to G (2, 5). It will generate a
pseudo-holomorphic sequence

a a ad

f:fo fl fz 0,

where £, is harmonic map from S* to G(2, 5) and f, is an anti-holomorphic map into CP*. We choose a local

unitary frame e = (e,, e,, -+ , e5) along f so that
f = spanie,, e,}, f, = spanie,, e,|, f, = {es}.
We can further specify the frames by demanding that 9 take [e, ] to [e,] and [e,] to [e;]. This means that
w,; =0, 0, =0, 0, =0, w3 =0. (40)
Then the local unitary frames e, are defined up to a transformation of the group U(1) X -+ x U(1). The
pull back of Maurer-Cartan forms under such frames have the form
0, 0, -ad 0 0

Wy W, -a,d -a;d 0

a,d a,d  wy s, 0|, (41)
0 a¢ W5 W,y Wys
0 0 0 Oy @y
with
aa, #0, La 1> +1a,1?+1a,1” =1, (42)

where ¢ is a local unitary coframe of bidegree (1,0) with respect to the induced metric.

By taking the exterior derivatives of (40) and the harmonicity condition of f, we have
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wy = pd, 0wy = qb, w5, = 1, (43)
and
da, = a,(p + 0, - w;;) mod ¢, (44)
da; = a,(p + 0y - w,,) mod ¢, (45)
da, = a,(p + 0y, - ®y;) + a0, — a;0; mod ¢, (46)

where p, ¢, and r are local defined smooth functions, while Ipl*, I¢|”> and Ir|* are globally defined on S°.

By differential the last equation of (43), we have

dr = r(p + w, - wss) mod ¢. (47)
By using Lemma 1. 1 again to (44), (45) and (47), we obtain
Alogl a, | = K =212l a, 1> +1a, 1> =1 ¢l +1pl?), (48)
Alogl ay | = K =2(la, 1> +21 a1+ 1 ¢q1°> =1pl?), (49)
Alogl rl = K +2(la, 1> +1ql>=217r1%), (50)
outside of their zero points. Combining (48), (49) and (50), together with (42), we have
Alog | ajair’ |l = 9K =12 =21 a, 1> +2(1 p1? + 1 ¢g17). (51)

Under some assumption, we have the following Proposition.
Proposition 4. 1  Let f be a non-degenerate holomorphic immersion from S to G (2, 5) and K be the
Gaussian curvature. If la, 1> = 0 and K = 4/3. Then K = 4/3 and fis U(5) equivalent to h defined in
Example 2. 3.
Proof By the same argument of the proof of Theorem 3.1(1) and the equation (51), we obtain K = 4/3
and Ipl° = lql? = 0. It is easy to see that ¢, = [e, ] and ¢, = [e, ] describe two holomorphic maps from S°
to CP* and f = [e, A\ e,]. The induced metric by ¢, and ¢, are

o ds’ =1 a, 1°dpd, ¢, ds® = | a; | *pd
with Gaussian curvature K(¢,) and K(¢,). Then by a Lemma in Ref. [10], K(¢,) and K(¢,) are also
constant, which implies that la,1* and la,|” are constant. From (48) ~ (51), we get

la, 1> =1/3, La, 1> =273, 1 r1? = 2/3.
By the Maurer-Cartan equations, we know that w,, and w,, + w,; are closed and purely imaginary. Since e is
uniquely determined up to rotations e,—e, = exp( /—17,)e,, 7, real, which induces the change (36), we
can take suitable local functions 7, and 7, such that
0wy =0, 0, + wy; =0.

Furthermore, we can specify e, , e, and e, so that @, = /1/3, a; = /2/3 and r = /2/3. By (44), (45)
and (47), we have

P =Wy — W T Wy~ Wy T Wss — Wy

So the pull back of the Maurer-Cartan forms via such frame are

b0y
0 24 0 —E& 0
0

0 = ;T‘i’ 0 —y o | (52)
2 2
0 0 0 iqb - 24
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where y = w,,. Thus comparing with (20) , we know that fis U(5) equivalent to h defined in Example 2. 3.

Remark 4.2 We make a conjecture that without the assumption la, 1> = 0, the Proposition 4. 1 is still
valid.

The authors would like to express appreciation to Professor Jiagui Peng for his helpful guidance.
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