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Abstract We prove the existence and uniqueness of solutions to stochastic differential equations
dX, =F(X),dZ, ,where F is non-Lipschitz coefficient and Z is in a kind of special semimartingale.
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The theory of classical stochastic differential equation ( SDE) driven by Brownian motion has gone
through a long period development and has already achieved fruitful results. For a general d-dimensional

m

semimartingale Z with Z, =0 a.s. ,here we consider the following stochastic differential equaiton on R" ;

t

X =X0+£F(X)$dZA, (1)

where X, :00—R" is .7, /B(R") measurable such that B ( |X,1”) < o for some p=2 and F is a mapping from
the set of all m-dimensional cadlag adapted processes to the set of all d-dimensional locally bounded
predictable processes such that for each stopping time 7, F (X"~ ) coincides with F(X) on ((0,7] ], where
X' ":=Xl ., +X. I, ., There are few papers to investigate the existence and uniqueness of Eq. (1)
without assuming a Lipschitz condition (see Ref. [ 1] for Lipschitz coefficient case and Ref. [ 2] for continuous
Z).

We should bring the reader’ s attention to the paper of Taniguchi'’’ | in which he proved the existence and
uniqueness of SDE driven by Brownian motion under quite weak non-Lipschitz assumptions by successive
approximation. In fact, Taniguchi’ s method has been used by many authors'**’. Motivated by Jiang'*' and
Taniguchi®’ ,in this paper we study Eq. (1) driven by a class of special semimartingale Z under the

[4

Taniguchi’ s conditions ™ and prove the existence and uniqueness by successive approximation.

1 Main results and proofs

Define S": = {Z is a semimartingale: [Z]I?‘ is a locally integrable increasing process| for p=2. By using
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Theorems 5. 19 and 8. 6 in Ref. [6] ,it is easy to see that Z € S” if and only if it is a special semimartingale

with the canonical decomposition M + A, where M is a locally integrable martingale such that ( z (AMA,)Z)%

is a locally integrable increasing process, and A is a predictable process with finite variation. In particular, a
semimartingale with bounded jump or a predictable semimartingale is in S”.

Before presenting our main result we need the following important predictable control theorem.
Theorem 1.1 Let Z be a d-dimensional semimartingale with Z' € S, where p=2. There exists a zero initial
valued predictable process V"’ with V"’ 11 @ and a constant C, >0 such that for every stopping time 7 and

every d-tuple H of predictable process which is integrable w.r.t. Z,

E (sup fHdz ‘ )< C,,ZE(£| H1mave). (2)

IST

If Z is quasi-left-continuous , then V' is continuous.
Proof As a result of Theorem 4. 5.1 in Ref. [7],we can see that Z is a d-tuple of local L’-integrators and
there exists a strictly increasing predictable process A" (It is continuous if Z is quasi-left-continuous) such

that

P

) C max E OTI H_ | "dA,\(.”))q

q=1.2.p

ZE sup

IsT

fHdZ

where 0 < €’ <9. 5p. Moreover, by Holder inequality,

T 4 T p-1 1 P
E(f | H, | dAi”’)l - E(f LH (1 +A")5 7,,,@&”))
0 ’ 0 (1 +A5p)) >

<s[([ 1) [ o))

<(Z) E([ a1+ AY) A,
2) =] )

By the same approach,we have

E(LTI H Iszj’”)lT' < (%)

ofe

-1 E(ﬁ:l H 11 +A§p))’7'71dAf,,)).

Eq. (2) holds as long as we define V"' : J (L + A7) A" + j (1 + A(”)) LAY+ A - A+
. O
In the following we fix Z with Z' € S" and V: = V" as above. Set V' =inf {s=0:V >t}.Then V' 'is a

continuous process with V™' 1 o« and V>0,V " is a predictable time so it is a. s. foretellable. Thus we can
get the following estimation.

Lemma 1.2 For any ¢ >0,

E sup

r<Vy

fHdZ ) I,E(J:IHV‘,,I"ds)- (3)

Proof Thanks to Eq. (2) and Lebesgue’s lemma,for each stopping time 7,

ZE sup )$ CE (LT | H. |1'de) =CE (JLT | H,_, |1’ds)-
0

r<T

fHdz

Let 7, be a sequence of stopping times such that 7, <V, " a.s. and 7, TV, "a.s. on {V,' >0} ,then V. '<7,
(i.e.s<V_) does imply s <t. It follows that

ZE sup

r<vl

):E(limsup

n—® r<T,

fHdZ

f HdZ,
0

p)s CE (LI Hyo 17 ds): O

Finally ,we can prove the following result.

Theorem 1.3 Suppose that the following Taniguchi’ s conditions hold ;
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(T1)There exists a continuous nondecreasing nonnegative function H on R , such that for any stopping
time 7,

E (I F(X)_1") < H(E (sup | X, 17)),

t
and for any constant K >0 and any initial value u, ,the differential equation u, = u, + Kj H(wu,)ds has a global
0

solution.
(T2 ) There exists a continuous nondecreasing nonnegative function G on R, such that G(0) =0, for any
stopping time 7,

E(I F(X). = F(Y)_1") < G(E (sup| X, =Y, 1)),

and for any constant K >0 ,if a nonnegative function g satisfies that g, < Kj G(g,)dsforall te R, ,then g=0.
0

Then Eq. (1) has a pathwise unique solution.

Proof Let X: =X, and for n e N ,we define the following successive approximation sequence ;
X': =X, + fF(X"’l).st_s. (4)
0
Due to Eq. (3) and (T1) ,we have

E ( sup [ X: 7)< 2/)—1 E (l X() |/)) + 2/)—1 E( sup ‘er(anl)‘dZs
0

rev;l revp!

)

<2'E( X 1) + 21’"c],j ElF(X""),. 17ds
A ;

<2 E( X 1) + 27, [ HOE Coup 1 X071 1) d

re vyl
By (T1) there is a {u,| satisfying u, =2""E (1 X, 1") + 2"_'CFJ’ H(u,)ds. By induction, we obtain
0

E (sup 1X1") =E (1X,1") <u,<u, and if E ( sup 1X""'I") <u,,then

r<Vye r<Ve

E (sup | X'17) Su0+2pilc,,fH(us)dS = u,. (5)
r<v;l 0
On the other hand, by the same way as above, (T2) yields that
E(sup | X" = XI'1") < E( sup U (F(X"), - F(X"™") ) dZ,
r<Vil | Jo ) ) ’

/-1
r<V;

)

< ch E (1 F(X™™") o = F(X"™") o 17)ds

< C,| G(E (sup | X" X)) ds.
0

/-1
r<V;

Let g, = lim B ( sup | X" = X" 1”),in virtue of Eq. (5) and Fatou’ s lemma, it can be easily seen g, <

m,n— r<‘/[—l

C"Jo G(g,)ds. By (T2),we immediately get g=0,which implies that
lim E (sup | X" =X'17) =0.
m,n— o r<V'j|

Since V™' 1 o ,by a diagonal procedure argument it is clear that there exists a subsequence X"* such that X, =

lim X"* exists for every ¢ and almost surely the convergence is uniform on [0, V') for each fixed ¢. Now

k— o

passing the limit in Eq. (4) ,we conclude that X satisfies Eq. (1). In other words, we have shown the existence
of the solutions to Eq. (1).

Let both X and X' be two solutions to Eq. (1) ,then by the same way we can obtain
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E(suplX -X ") <C, G(EsuplX - X' 17))ds.

r<Vy r<Vy
We can apply (T2) again,and deduce E ( suplX -X'1") =0. Let t— henceE(suplX -X' ") =
r<V,z-
then we have shown the uniqueness of the solution to Eq. (1). ]

Example 1.4 (See Ref.[4]) Let G be a continuous nondecreasing nonnegative function on R, such that

. G( )du =+ o ,6(u) or ( ) is a concave function and H(u) =C, + C,G(u) ,where C,,C, >0,then

we know that conditions (T1) and (T2) in Theorem 1.3 hold.
The author is very grateful to Dr. He Kai for his encouragement and valuable discussion.
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