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Generation of continuous-variable quadripartite square
cluster state and its entanglement improvement via quantum

feedback

Shi Gangde, Tan Huatang, Li Gaoxiang
(Department of physics, Huazhong Normal University, WuHan 430079)

Abstract: In this paper, we investigate the generation of continuous-variable quadripartite square
cluster state of optical fields and discuss the enhancement of the multipartite entanglement of the
cluster state via quantum feedback. We show that the quadripartite square cluster state can be generated
via concurrent OPO processes and the loss of the cavity will degrade the quantum correlations of the
cluster state. By introducing appropriate feedback loops, we find that the entanglement and the purity
of the cluster state can be improved significantly.

Keywords: quantum optics; continuous variable cluster state; feedback

0 Introduction

Entanglement, as one of the most striking features of quantum mechanics, has become an
essential resource for quantum information processing [1]. Now, it has been proven that
continuous variable (CV) entanglement of optical fields is very important for performing CV
guantum communication and computation [2], due to the fact that the CV optical entanglement
can be easily generated and detected relatively. Recently, CV cluster states [3], as a kind of CV
multipartite entangled states, have attracted much research interest. It was predicted that the
quantum correlations exhibited the CV cluster state are robust against the noisy environment,
compared to the CV Greenberger-Horne-Zeilinger (GHZ) state [4]. Moreover, it has also been
shown that CV cluster states can be utilized to building the so-called one-way quantum
computation which is a promising form of quantum computing [5] and the CV-cluster-states-based
one-way quantum computation can perform universal quantum computing provided that at least
one non-Gaussian detection operation is used [6]. Recently, several proposals have been put
forward for generating CV clusters states [7-13]. For example, Su et al. [13] experimentally
produced the CV quadripartite cluster state with squeezed beams of light with beam splitters.
However, due to the effects of noisy environment, the multipartite entanglement contained in the
cluster states are unavoidably decreased, which severely limits the related applications of the CV
cluster states in quantum processing. Therefore, how to suppress the decoherence and enhance the
multipartite entanglement of the CV cluster states becomes a practical research issue.

Nowadays, quantum feedback has become a quite efficient way to control quantum systems
[14-18]. By using the theory of quantum-limited feedback introduced by Wiseman and Milburn
[19], controlling noise in an open system on a quantum level has been considered extensively
[20-25]. Typically, Wiseman and Milburn showed that the homodyne-mediated feedback can
enhance intracavity squeezing of a degenerate OPO. It was also shown that the CV entanglement
generated via a non-degenerate OPO can be enhanced significantly by adding an appropriate
feedback loops. Experimentally, the feedback-enhanced squeezing from OPO has been realized
very recently [26].

In this paper, we investigate the generation of CV quadripartite square cluster state of optical
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fields and discuss the feedback-induced enhancement of the multipartite entanglement of the
cluster state. We show that the quadripartite square cluster state can be generated via concurrent
OPO processes. It is found that the loss of the cavity will degrade the multipartite entanglement of
the cluster state. By introducing appropriate feedback loops, we find that the multipartite
entanglement and the purity of the quadripartite cluster state can be improved significantly. This
paper is arranged as follows: in Section 2, the generation of the quadripartite square cluster state
and its properties of the quantum correlations are investigated. In Section 3, we discuss the
enhancement of the entanglement and purity of the cluster state by quantum feedback. In the last
Section 4, we give our main summery.

1 Generation of quadripartite square cluster state

77

vpj +
vp4 ——

Fig. 1 The schematic plot of a ;((2) nonlinear crystal inside a driven optical cavity for the generation of the CV
quadripartite square cluster state. The frequencies of the pumping lasers are denoted byvp_ (j =12,3, 4) and
J
the four cavity modes with frequencies v, can be generated via concurrent OPO processes in the cavity. The
J

squares and circles stand for the different frequencies of the cavity modes.

As shown in Fig.1, we consider an optical cavity which contains a ;(‘2) nonlinear crystal and

the optical cavity is driven by the four pumping lasers with frequencies ij and initial phases 0j .

Then, the four cavity modes at frequencies VCj can be generated via the concurrent NOPO

processes occurring in the crystal. By adjusting the frequencies of the lasers to meet

V, =V, +V, v

b o, = Ve tVe, o Vo =V +V, , V, =V, +V, and choosing the initial

P p.

phasesas 6, =—n/2, 6,=0, 6,=n, 6, =x12, the Hamiltonian of the system is given by
H, =eai(-cc, —icc, +ic,c;+C,¢c,)+ H.C., 1)

where the annihilation operators C; denotes the cavity modes and the coupling strength

a :ap;((z) with «, being the identical amplitudes of the pumping fields. By taking into

account the dissipation of the cavity, the master equation of the cavity system is given by

d .
ap:—l[Hc,p]+(Lcl+ch+Lcs+LC4)p, 2)

where the damping term
K
Lcjp:E(ZijCjT—CjTij—pCjTCj), (3)

with the damping rate k.
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With the above master equation, one can determine the evolution of the quantum state of the
cavity fields. At First, let us briefly discuss how one could distinguish that a given state belongs to
the class of cluster states. Simply, a given state is quantified as a cluster state if the quadrature
correlations are such that in the limit of infinite squeezing, the state becomes zero eigenstate of a
set of quadrature combinations [3]

(p;—D.%)—0, (4)

ieNj
where X; and p; are the position and momentum quadrature operators of the cavity

modes C., defined as Xj=(cj+cj+)/x/§ and pj=—i(Cj+Cj+)/\/§ , and X are the

J ]
position operator of the modes C; which are the nearest neighbors Nj of the modes C; . In what

follows, we quantify a given state as a cluster state by evaluating the variances of linear
combinations of the momentum and position operators of the involved field modes. If the
variances vanish in the limit of the infinite squeezing, according to the above definition, then a
given state is a cluster state. According to Eg. (3), we can find that the

variances  V(g;) = <gf> —<gj >2 , with the combined operators g; defined
as gl = pl + X3 + \/§X4 ! gZ = pZ _\/EX?, - X4 ' 93 = p]_ + X3 _\/EXZ y and
g9,=p, +\/§X1 — X, , are equal and they are given by

S R

v(g,)= 4B+ i

()

where f = a/\/z. Ideally, if we neglect the dissipation rate of the cavity (x =0), from Eq.

(5) one can find that the variances V (g j) approaches zero in the long-time limit, namely
V(g j) —0. (6)

Therefore, according to the definition in Eq.(4), we see that the four cavity fields are indeed
prepared into a quadripartite square cluster state, as shown in Fig.2.

G C,

c, c

4

Fig.2 The CV quadripartite square cluster state. Each circle stands for a cavity mode and each line represents the
bipartite entanglement between two cavity modes

Realistically, due to the cavity loss & # O, the variances in the long-time scale are

V(gj):4,62’:i1('

(7)

With the steady-state condition x > 4 4 , the variances satisfy
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1<V(g9,)<2, (8)

which indicates that the quadripartite square cluster state in the cavity has the finite variances
below the quantum limit 2. Therefore, we show that by the concurrent NOPO processes, the
quadripartite cluster state can be generated in the four cavity modes and moreover the intra-cavity
quantum correlations of the cluster state are severely limited by the unavoidable cavity loss.

2 Quantum correlations improved by quantum feedback

Lz L1

IZ

l zﬂ)

Fig.3. The feedback loops are used to enhance the quantum correlations of the quadripartite square cluster state.
From the detection region (D), the currents | jare fed back to the modulators M jto modulate the amplitudes of

the lasers L - The output beams from the beam splitters with the amplitudes & j are used to drive the cavity

fields Cj .

In this section, we focus on the improvement of the quantum correlations of the above cluster
state via quantum feedback. To introduce the feedback loop, as shown in Fig.3, other four laser

fields (labeled by Lj) with the amplitudes ¢; are used and injected into the balanced (1:1) beam

splitters (BS). The beam splitters (BS) a and c lead to 37 / 2 phase shifts of the corresponding
reflected beams and the BS b leads to the phase shift of 7z . In this way, the output beams from the

beam splitters are used to drive the cavity modes and the amplitudes & of, which are given by
are & = (g +a, vioy +ia, )12 | & =(a,—i)IN2 | & =(ie,—ie, +ay—a,)]2

andég, = (ioz1 + a4)/\/§. So, the Hamiltonian of the system in the absence of the feedback loop
reads

H,=H, +(glc1 +&,C, +&,C, +£,c, +H .c.)
=H, +a (X~ Y, _\/EY4)+0‘2(X1 +\/§X2 +Y,)

+a3(_Y1+\/EYZ+X3)+a4(_Y1_X3+\/§X4)- 9)

Now we discuss the feedback scheme based on the homodyne-mediated feedback theory of
Wiseman and Milburn [19], which mainly involves, in the homodyne measurement process, the
current of the homodyne measurement and the way in which the current is fed back to control the
system. Here we use four feedback loops to couple the system, as shown Fig.3, to control the
entanglement of the system. In the detection region, through the homodyne measurement on the

-4-



135

140

145

150

155

|I| E ﬂ- H iE -x.- Eﬁ http://www.paper.edu.cn

output fields from the cavity we can obtain the currents I, = (1% + 1% +21%)/2 |
L= (12 +~3212 1) 12, 1, = (12 =212 +12) /2, and 1, = (1} =1} +~/21)) /2,

where Iixj(t)=<xj>+§ij/\/g and Iiyj(t)=<yj>+§ij/\/gl Here ¢ are

measurement-induced white noises and 7 is the detect efficiency. Then, the currents are fed

back via the feedback loops to the modulators M ; tomodulate the lasers and control the system.

In this way, the feedback Hamiltonian can be found to be

H, = /11|1(y1+xa+\/§x4) (t _T) (X —Ys _‘/Ey4)
+AZ |2(y1+ﬁy2—x3) (t _ T) (X1 +\/§X2 + ys)
I (1) (-, +2y, + %))

FANETB (7)) (—y, - % +4/2X,), (10)

where ¢ is feedback loop delay time and /11. are proportional to the feedback strength. By

considering the Markovian feedback, namely the delay timez =0, which means that once the
measurement results is recorded and it immediately influences the system. In this situation, the

o 1
noises have the correlations<§; (t){;'(t’)>:55“'5ﬂ'5n“ Following the method proposed by

Wiseman and Milburn [19], the feedback-included master equation is found to be

d . 4
d—p=_'[H1vP]+2(Lcjp+ ijp), (11)
t =)
where
n . 1 -
ijp:Kj(djp'i‘pdj)'i‘ijzp. (12)

Here the super-operator IZJ. is defined as the ij =—j [Fj , p] as,

F=A(u-y=V2Y)  F=A(+V2%+y) o =y +32y,+%)
F4:/14(—y1—xs+\/§X4) \where  the  combined  operators are given by
dlz(—icl+c3+x/§c4)/2 : dZ:(—icl—x/Eicz—cs)lz dS:(cl—x/Ecz—ics)lz , and
d, =(c, +ic,~2ic, ) /2.

After obtaining the explicit master equation, we can discuss the properties of the quantum
correlations in the system under the influence of the feedback. According to the above master

equation, it is not difficult to find the variances of the operators g, , given by

2(1_e—(4ﬁ+x+21)t )(12 —4,3/(77)
kn(4B+K+24)

V(g,)= +2. (13)

For check, one can see that the above equation reduces to Eq. (5) without the feedback when
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the feedback strength A = 0. In addition, the purity P of the cavity state p can be obtained as
1

16[(m + ;)2 —n*Y?

160 P=Tr(p%)= : (14)

where
m = L
Axn(AB-K)(AB+K+24)

X [(4,8 - K) (16ﬁ](77 _ 12 ) e*(4ﬁ+K+Zﬂ)t

+4pxn (4B + e+ 24)e """ (327K +8Axn — 4BA° + KA* ],

1
N aen(4f <) (4B +x + 27)

x [(4/8 - K)(4,8](‘77 — ]2 ) e*(4ﬁ’+K+2/1)t

165 4Bk (4B +xc+24)e """ + (8 n +8BAxn +4BA° - AP ). (15)

From Eq.(15), one can find that the condition for achieving the steady state of the system is
obtained as

4+ K

k>4 and — <A<0.

In the steady-state regime, the steady variances and the purity can be found as

" 2k’ +2Akn + A%)
1o Vi) = k(4B + Kk +24) (16)
o) — nk-4p)A4B+x+24) 5 _ ,» 4By 1
Pe) =1 K277+21K77+12 I'=ad K) Vz(oo)' (17)

From Eq.(16), we can find that the steady variances becomes minimal (quantum squeezing
becomes maximal)

VL (05) = — (4B + k) —16 sy — (45 + &) + 20)
" (18)

(%)
77K

4B+ K)* —16Bxn — (45 +
175 when the feedback strength 4 = 4, =\/( p+K) prn ~ (45 K). Evidently, when

2

the feedback strength |l| £|ﬁo| , the quantum correlations are improved with the increase of

|l| , while the quantum correlations decrease as the feedback strength increases in the range of

|ﬁo|<|l|<4'82+’(. When |i|=f;’i’;, we have V”(0,)=V,"(9;), where V,°(9;)

denotes the steady squeezing in the absence of the feedback. Therefore, only the feedback strength

8
180 0<|)b|<4,787i the squeezing will be increased by the feedback. Ideally, for the perfect
+K

detection (77 =1) and near the threshold 45 — i, the steady-state variance
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V*(g;)—0, (19)

with the feedback strength A — —4 . This means that the feedback can lead the cavity state
to be in a cluster state with the perfect correlations. In addition, one can find from Eq.(17) that the

maximal purity P, (0) = [%]2 for the feedback strength A = A;. When the strength
+ K7

+4
_Kk+4p <A <4, the purity increases as the feedback strength A increases. For 7 =1 and

A=-4p, we have P(o) =1, meaning the pure the quantum state can be resulted by the

feedback. Therefore, here we see explicitly that the feedback can not only enhance the quantum
correlations of the quadripartite cluster state in the cavity but also improve the purity of the cluster
state. This is clearly shown in Fig.4 where the dependence of the steady variances and purity of
the quadripartite square cluster state on the feedback strength is plotted. From it we see that the
steady-state squeezing and purity are improved by the feedback when the feedback strength is

chosen appropriately.
2.0

1.5

Fig.4. The dependence of the steady-state variances V *(Q;) and the purity P(0) on the feedback strength
A for f=0.1, k=05, ana n=1.

In Fig.5, the temporal evolution of the variances V(gi) in presence of the feedback is
plotted. It shows that the squeezing can be enhanced by the feedback in the long-time regime. In
addition, the time for achieving the steady-state of the system is prolonged when the feedback is

involved. In Fig.6, the effect of the detection efficiency77 on the variance is also plotted. From it

we see that the increase of the detection efficiency can enhance the improvement of the squeezing.
2.0

0.0
0 5 10 15 20 25 30

t

Fig.5. The time evolution of the variances V(gi) for ,B=0.l’ K:0-5, nzl,and A=-0.36 (solid
line), 4 =0 (dashed line).

-7-
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2.0
L5} %
A,
= AL
1.0
> \‘h ............................................
0.5
0.0
0 5 10 15 20 25 30

t
Fig.6. The time evolution of the variances V (g;) for f=0.1, x=0.5, 1=-0.3, 7=0.8 (dotted

line), 77 =0.9 (dashedline), 77 =1(solid line).

In Fig.7, the time evolution of the purity P of the CV quadripartite cluster state in the
presence of the feedback is plotted. It is clearly shown that the purity is enhanced by feedback in

the long-time scale.
1.0

0.8\
0.6 ’
0.4

-
-
.........................

0.2

0.0

0 26 46 60 80 100
t
Fig.7. The time evolution of the purity P for f# =0.1, x =0.5, 7 =1, anda A =-0.1(solid line),

A =—0.2 (dashed line), A =—0.3(dotted line).

3 Conclusions

In conclusions, we investigate the generation of quadripartite square cluster state of optical
fields and discuss the use of the quantum feedback to enhance the multipartite entanglement of the
cluster state. It is shown explicitly that the quadripartite square cluster state can be generated via
concurrent OPO processes and further the loss of the cavity will degrade the multipartite
entanglement of the cluster state. By introducing appropriate feedback loops, we find that the
multipartite entanglement and the purity of the quadripartite cluster state can be improved
significantly.
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