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Generalized modified least squares in the univariate tineadet
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Abstract

The method of ordinary least squares is a classical proeegkiensively used to build regression models in the libeeatlt is
fulfilled by minimizing the ordinary residual sum of squartse sum of squares of theffirences between the true values and the
fitted values of the response variable. In 1984, Li (The AoseriMathematical Monthly 91(2): 135-137) put forward thehmod of
modified least squares, which is fulfilled by minimizing thedified residual sum of squares, the sum of squares of thepeiqular
distances from the points to the fitted line.

In this short paper, we mainly aim to appeal to readers to fmseattention to the criterion of modified least squaresdawetlop
it to generalized modified least squares. The closed-fortineofieneralized modified least squares estimators for thecgpt and the
slope are derived. The results are illustrated by a numezi@mple. The illustration shows that generalized modiféadt squares
is an adjusting criterion such that the resulting fitted tae be sensitive or insensitive to those outlying data glue
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1 Introduction

It is well known that the method afrdinary least squares has been widely used to make inference in the literature.
Consider the univariate linear mod&(Y|X) = Bo + 81X, whereBy andg; are the intercept and the slope, respectively.
Let (X1, Y1), - - , (Xn, Yn) be the observations oX(Y) on the basis of an experiment. The method of ordinary lepsires
is utilized to build estimatorg, andja, for 8y andp; such that the ordinary residual sum of squares

Qols = Y (i = bo — b1x)? (1.1)

i=1

is minimized. Denote
Vio Se= ) (6= 0% 8y =) =95 Sy =) 06— 0 - ).
i=1 i=1 i=1

By virtue of the analytical approach, the ordinary leastesgqa estimators (OLSES) can be expressed as:

Pr=2. and po=5- X (12)
Sxx
The first subfigure of Figure 1, by means of a simulated datansarizes ordinary least squares and indicates how to
minimize Qs Which is not the sum of squares of the perpendicular dissfrom the points to the fitted line but the
sum of squares of the fiierences between the true values and the fitted values lfiedlongitudinal coordinates of the
points of intersection of the fitted line and the plumb linesssing the data points) of the response variable.

In 1984, Li [1] considered a new criterion, which is fulfilleg minimizing the modified residual sum of squares:

4 Qols Z (Vi — bo — b1xi)?

, 1.3
Qmis 1+b2 1+b2 (1.3)
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which is the sum of squares of the perpendicular distanoss fhe points to the fitted line. We call the criterion to be
modified least squares. The second subfigure of Figure 1 summarizes the principtaatfified least squares. Li [1]
offered the modified least squares estimators (MLSEs}f@ndg; as below:

Sy = St /(S = Sw)? + 4%
Itis clear that both the empirical regression lines on th&sdaf OLSE and MLSE pass through the poixty). In other

words, the fitted line based on MLSE can be derived by rotatieditted line based on OLSE a particular angle with
the point k&, y) as the center.

By . and By =y-pBX (1.4)
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Figure 1: Plots of data points and regression lines based &E@nd MLSE

Modified least squares was then studied by Shuchat [2] fotivatkte case through linear algebra techniques. The
method possesses some good aspects, which will be statethasks in conjunction with a numerical example in the
next section. However, it is regretful that modified leasiags has not been given due attention so far. One of the
reasons we think is that the status of ordinary least squiarteg field of statistics is deep-rooted, and the other is tha
the calculation of modified least squares are more complictitan that of ordinary least squares. In the paper, we
appeal to readers to pay close attention to such criterion.

The rest is as follows: The advantages of the modified rebgiuma of squares are firstly discussed in Section 2 with
the aid of a numerical example. Then we extend modified lepsires to generalized modified least squares in Section
3. The representation of the new estimators is given. Binal apply the main result to the numerical example to show
that the new criterion can adjust the fitted line such it issgam or insensitive to those outlying data values.

2 Modified least squares

Although MLSE is nonlinear and therefore it needs compéidatalculations comparing with OLSE, there are some
good aspects for it:

1. As we all know, the criterion of ordinary least squaresuipeémphasizes on those large departures for a practical
problem. To overcome such defect, we need a new criterionhnakes the large departures into consideration
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but also “weakens” the determinant degree of them to sonemeXAs a robust procedure, least absolute deviation
regression has been widely used in recent years, due teéasitivity to those large departures. However, linear
programming techniques are required and therefore sons@veaiences may occur in the process. Considering
Qmis < Qqgls» We believe that modified least squares can improve ordlileast squares in this sense, though

the “shrinkage” fromQg)g to Q|5 is well-proportioned. The reason for this is tifit as an estimator dfy, is

not a constant before the data values are obtained, andafterhe shrinkage factor is actually stochastic. The
numerical example given below illustrates such supeyi@fimodified least squares.

2. Modified least squares can also be applied to nonlineatetspwhich are denoted b§(Y|X) = f(X). In this
case, we define the objective function as the sum of squartee afistances from eagh to the tangent of the
fitted curve, focused or. That s,

A 5 - f(x| ]
Qmils = )
mis Z;‘ 1+ df(x)/dx]|x_ )

For example, we need to estimate the corresponding parestiete
f1(X) = axX?+bX +c, f(X)=aexp(bX+c)+d, fi(X)=aln(bX+c)+d,

and so on. The modeling function can be chosen by drawingcthites plot.

3. If we assume additionally that the dependent variajldias the variance? and the observationg, - - - , y, are
from an independent and identically distributed samplertn€oming naive problem is how to estimatéon the
basis of modified least squares other than ordinary leaareg@ Considering that MLSE has no concise algebraic
properties, we structure directly an estimator ddr following the form of¢™?, which is based on ordinary least
squares, where

n
5% = Z )%, with § = fBo + B1x.
i=1
Let

1 < - . g
o= SN G-y with v =+ i

i=1
By direct operationsr*? is also expressible as

-2 45, %2
o2l W S:ljlz iy (2.1)

In the following, we will callo*? to be the MLSE ofr2. Although we can not explain from the angle of theoretical
analysis that the MLSE is better than the OLSE, the simulatederical example can illustrate the expected result
of us, however.

Now, we apply the result of MLSE to a dataset, which is coneérmith the relationship between accounting rates on
stocks and market returns; cf. [3, Example 2.1, p. 16]. Fifilr companies were chosen as a sample XUa¢ the mean
yearly accounting rate for the period 1959 to 1974, #ruk the corresponding mean market rate. The data are given
in [3, Table 2.1, p. 16]. See also Table 1, for conveniencea¥g¢ime in addition that suggesting a linear relationship,
Y ~ By + B1X, between the two variables is reasonable. With the aid ofd#dat.0, the values of the OLSEs and MLSEs
for o andp, are

Bo=0.848Q B =06103 and B =-9.6415 B; = 1.4214

respectively. The empirical regression equations on thesled ordinary and modified least squares follow immedyatel

as below:yos = 0.8480+ 0.610%, andy;, . = —9.6415+ 1.4214x. Figure 2 illustrates the plot of the data and the
regression lines based on ordinary and modified least sequdy the figure, we can find that the first line (based on
ordinary least squares) is sensitive to the point§8214.73), which seems to be an outlying data value. Accordingly,
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Table 1:Accounting rates and market ratesfrom 1959 to 1974

Company Accounting Rate ~ Market Rate
McDonnell Douglas 17.96 17.73
NCR 8.11 4.54
Honeywell 12.46 3.96
TRW 14.70 8.12
Raytheon 11.90 6.78
W.R. Grace 9.67 9.69
Ford Motors 13.35 12.37
Textron 16.11 15.88
Lockheed Aircraft 6.78 -1.34
Getty Oll 9.41 18.09
Atlantic Richfield 8.96 17.17
Radio Corporation of America 14.17 6.78
Westinghouse Electric 9.12 4.74
Johnson and Johnson 14.23 23.02
Champion International 10.43 7.68
R.J. Reynolds 19.74 14.32
General Dynamics 6.42 -1.63
Colgate-Palmolive 12.16 16.51
Coca-Cola 23.19 17.53
International Business Machines 19.20 12.69
Allied Chemical 10.76 4.66
Uniroyal 8.49 3.67
Greyhound 17.70 10.49
Cities Service 9.10 10.00
Philip Morris 17.47 21.90
General Motors 18.45 5.86
Philips Petroleum 10.06 10.81
FMC 13.3 5.71
Caterpillar Tractor 17.66 13.38
Georgia Pacific 14.59 13.43
Minnesota Mining & Manufacturing 20.94 10.00
Standard Oil (Ohio) 9.62 16.66
American Brands 16.32 9.40
Aluminum Company of America 8.19 0.24
General Electric 15.74 4.37
General Tire 12.02 3.11
Broaden 11.44 6.63
American Home Products 32.58 14.73
Standard Oil (California) 11.89 6.15
International Paper 10.06 5.96
National Steel 9.60 6.30
Republic Steel 7.41 0.68
Warner Lambert 19.88 12.22
U.S. Steel 6.97 0.90
Bethlehem Steel 7.90 2.35
Armco Steel 9.340 5.03
Texaco 15.40 6.13
Shell Ol 11.95 6.58
Standard Oil (Indiana) 9.560 14.26
Owens lllinois 10.05 2.60
Gulf Oil 12.11 4.97
Tenneco 11.53 6.65
Inland Steel 9.920 4.25
Kraft 12.27 7.30

the second line (based on modified least squares) is notsesrgitive to that point. In this sense, we think that the
method of ordinary least squares has been improved by tmabdified least squares.

Another improvement is with respect to the MLSE of error &ade. By Matlab 7.0, the values of the OLSE and the
MLSE are given ag? = 25.8644 andr-*? = 41.8321, respectively. In the following, we make two simulatgiudies
based orxy, - - - , Xs4, the data values of the mean yearly accounting rates of tteféitir companies, and the normal
distribution. The first one is to generate stochastically-fibur “observations” ofY (each observation is derived by
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Data and regression line based on OL SE

Data and regression line based on ML SE

Data and regression linesbased on OL SE and ML SE

25 T 40 40
35 35F
20+ B
30+ 30
15+ B 25r 25
8 & 20F & 20}
3 3 3
210 I 5
s T 15F s 15F
5r 1 101 10f
5r 5r 1
O | M
or 1 of 1
s o ‘ . ‘ ‘ ‘ . ‘ ‘
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

X: Accounting rate X: Accounting rate X: Accounting rate

Figure 2: Plots of data points and regression lines baseddnasy and modified least squares

generating three points and averaging them) by meagrs of- , Xs4, ,éo,/?l. Then calculate the simulated OLSE and the
simulated MLSE. Finally, we get the absolute errors of thR@peat the above procedures fifty times. Replaging:
with g, 87 in the first simulation study gives the second one. Figuredvstthe plots of the two simulations. It is seen
that the absolute error of MLSE is not larger than that of OLSE

3 Generalized modified least squares

By the previous section, the fitted line based on MLSE can bivetkby rotating the fitted line based on OLSE a
particular angle with the poini(y) as the center. A natural problem is that: if each line loddtetween the two lines
(as shown in the third subfigure of Figure 2) can be used astthd fine or not. The answer is YES, since one can
choose a line which is “closer” to the fitted line based on OLifS&clining to ordinary least squares and choose a line
which is “closer” to the fitted line based on MLSE if inclining modified least squares. The direct consequence is
that the estimators ¢f; andg, can be writteni; + (1 — A)B;, the convex combination of OLSE and MLSE, for some
A€[0,1]andy—[A31+ (1 - DBIX = ABo+(1- A)By. Adjusting the value oft gives diferent results and corresponding
fitted lines. Further, the fitted line passes though the gainy) inherently. In that way, what is the criterion the resugtin
estimators follow?

By the third subfigure of Figure 1, we consider minimizing sun of squares of suchD, which is not larger than
AB and also not smaller theiC. We call the criterion to bgeneralized modified least squares. Denote by

k()

— bp — byX;)?
1+ b%T

N Qols
Qgmis = 17 e

the residual sum of squares based on generalized modifst $guares, where € [0, 1] is any fixed arbitrary real
scalar. ClearlyQqym|sreduces tQqs if 7 = 0 andQpsif 7 = 1. We callpo andp, the generalized modified least
squares estimators (GMLSES) forB, andpy, if Bo andp; minimizngm|SWith respect tdy, andby, for givenr € (0, 1).
We mention here that the GMLSEs yielded by generalized reatiieast squares may havefdrent version from that
of 481 + (1 - A)B; andABo + (1 — 2)B;. Without loss of generality, we assume tisgt # 0 ands,x # Sy. By direct
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operations (by manual or with the aid of Matlab 7.0), we have

3ngls
dbo

3ngls a
oby

Further, we obtain

Sy7b? + (S — Sy7) b1 = Sy = 0,

It follows thatbg = ¥ — byX, with by = b{"(z) orby = b{(7), where

Errorsof OLSE and ML SE based on OLSE Errorsof OLSE and ML SE based on MLSE

Figure 3: Plots of the absolute errors of OLSE and MLSE

=0 & bo+b1)?=y_,

() £

SyT — Sux + \/(syyr - S)2 + 4s§yr

(Swc + N3 = s,y7 = NyP7 — b + 2nlbgyr) by + (S, + NXy — NiboX) (b7 - 1) = 0.

(3.1)

J SyT — Sxx — \/(s),yr—s(x)2+4s§yr
T) = .

Insertingby = y — b{)(r)%, by = b{"(r) andby = y - b’ (1)x, by = b{(x) into Qgmis it follows that

Q(+) _ Q(*)

gmls~ ~gmls ~

and therefore — b(l‘)(r)i andb(l‘)(r) are definitely not the MLSEs ¢ andp;. Denote now
Bix) = b7(@)., and fo(r) = y- b (0
respectively. We have the following theorem:

Theorem 3.1 Bo(r) and B1(r) are the GMLSEs for 8y and j1, respectively.

Proof. On the basis of the above analysis, iffzes to justifya > 0 andb? — ac < 0, where

3 32ngls

Toa2 | bo = fo(r)

1
- \/(Syy‘r— Sxx)? + 47 < 0,

= “obodby | bo =,éo(T) T bo =,éo(T) :

(3.2)
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With the aid of Matlab 7.0, it can be concluded that 2n [ |1+ 7 (3:(r))

>0 and

Bac = —— |25 (Bi(0)) + 3 (S 5y7) (Br0)’ - 6597 - (5w~ 547)|

(1 + T(ﬁl(‘r)) )

4an { ~ 2 ~ ~ S — SyT
= 3|57 (Bu(®) + (Sec = Sy7) Bul) - S| | 27Bu(7) +
(1 + T(El(T))2)4 [ ]( Sxy )}
2
s (o= o) 4%
(1 + ‘r(ﬁl(‘r)) ) S
which combined with (3.1) yields that
2
P (57— )" + 457 (57 = S+ (flsy = 502 + 457 | Y

(1 it (Bl(r))2)4 25T

holds inherently. The proofis thus completéd.

We mention two facts, one of which is thatojﬁu(r) = j3¢ holds fork = 0,1, and therefore ordinary and modified

least squares are extended in this sense. The other is tiii did not give the strict proof fop; andg; to be the
MLSEs of; andBy. We have @fered the supplement here.

Table 2:GMLSEsfor 7 =0,0.1,0.2,---,0.9,1.0

T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Bo(r) 0.8480 -0.0517 -1.0649 -21746 -3.3475 -45400 -57083 -6.8181 -7.8482 -8.7894 -9.6415
Bi(r) 0.6103  0.6799 0.7582 0.8441 0.9348 1.0270 1.1173 1.20312828. 1.3556 1.4214

Let us now apply the result of 3.1 to the dataset consider8aation 2. We still assume that suggesting the seemingly
linear relationshipy ~ By + B1X is reasonable. With the aid of Matlab 7.0, the values of theLGHk forBy andp; are
given in Table 2. Figure 4 illustrates the plot of the data Hraregression lines based on generalized modified least
squares. By the figure, we can find that generalized modifaest Ejuares is indeed an adjusting criterion.

4 Concluding summary

In the short paper, we developed the method of modified lgastres. The illustration of Figure 2 shows that modified
least squares is not very sensitive to those outlying ddteesawhile the illustration of Figure 4 reflects that gefieeal
modified least squares can adjust the fitted line such it isithemor insensitive to those outlying data values. As a
adjusting criterion, we think that, generalized modifiedstesquares should be used widely in practical problems by
choosing conformable value ofin the range from 0 to 1.

As we can see, univariate regression models have relatiwg@ted value in some practical applications. However, as
a trigger, this paper may lead to more better means that d@usghrang out as it should be. Finally, we mention that one
potential possible direction of the paper is to generalizerésults to multivariate regressions.
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Data and regression linesbased on OL SE and ML SE
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Figure 4: Plots of data points and regression lines based & EOMLSE and GMLSE



