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Abstract

The method of ordinary least squares is a classical procedure extensively used to build regression models in the literature. It is
fulfilled by minimizing the ordinary residual sum of squares, the sum of squares of the differences between the true values and the
fitted values of the response variable. In 1984, Li (The American Mathematical Monthly 91(2): 135–137) put forward the method of
modified least squares, which is fulfilled by minimizing the modified residual sum of squares, the sum of squares of the perpendicular
distances from the points to the fitted line.

In this short paper, we mainly aim to appeal to readers to pay close attention to the criterion of modified least squares anddevelop
it to generalized modified least squares. The closed-form ofthe generalized modified least squares estimators for the intercept and the
slope are derived. The results are illustrated by a numerical example. The illustration shows that generalized modifiedleast squares
is an adjusting criterion such that the resulting fitted linecan be sensitive or insensitive to those outlying data values.
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1 Introduction

It is well known that the method ofordinary least squares has been widely used to make inference in the literature.
Consider the univariate linear modelE (Y |X) = β0 + β1X, whereβ0 andβ1 are the intercept and the slope, respectively.
Let (x1, y1), · · · , (xn, yn) be the observations of (X, Y) on the basis of an experiment. The method of ordinary least squares
is utilized to build estimators,̂β0 andβ̂1, for β0 andβ1 such that the ordinary residual sum of squares

Qols ,
n

∑

i=1

(yi − b0 − b1xi)2 (1.1)

is minimized. Denote

x̄ =
1
n

n
∑

i=1

xi, ȳ =
1
n

n
∑

i=1

yi, sxx =

n
∑

i=1

(xi − x̄)2, syy =

n
∑

i=1

(yi − ȳ)2, sxy =

n
∑

i=1

(xi − x̄)(yi − ȳ).

By virtue of the analytical approach, the ordinary least squares estimators (OLSEs) can be expressed as:

β̂1 =
sxy

sxx
, and β̂0 = ȳ − β̂1x̄. (1.2)

The first subfigure of Figure 1, by means of a simulated data, summarizes ordinary least squares and indicates how to
minimizeQols, which is not the sum of squares of the perpendicular distances from the points to the fitted line but the
sum of squares of the differences between the true values and the fitted values (i.e., the longitudinal coordinates of the
points of intersection of the fitted line and the plumb lines crossing the data points) of the response variable.

In 1984, Li [1] considered a new criterion, which is fulfilledby minimizing the modified residual sum of squares:

Qmls ,
Qols

1+ b2
1

=

n
∑

i=1

(yi − b0 − b1xi)2

1+ b2
1

, (1.3)
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which is the sum of squares of the perpendicular distances from the points to the fitted line. We call the criterion to be
modified least squares. The second subfigure of Figure 1 summarizes the principle ofmodified least squares. Li [1]
offered the modified least squares estimators (MLSEs) forβ0 andβ1 as below:

β∗1 =
syy − sxx +

√

(syy − sxx)2 + 4s2
xy

2sxy
, and β∗0 = ȳ − β∗1x̄. (1.4)

It is clear that both the empirical regression lines on the basis of OLSE and MLSE pass through the point ( ¯x, ȳ). In other
words, the fitted line based on MLSE can be derived by rotatingthe fitted line based on OLSE a particular angle with
the point ( ¯x, ȳ) as the center.
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Figure 1: Plots of data points and regression lines based on OLSE and MLSE

Modified least squares was then studied by Shuchat [2] for multivariate case through linear algebra techniques. The
method possesses some good aspects, which will be stated as remarks in conjunction with a numerical example in the
next section. However, it is regretful that modified least squares has not been given due attention so far. One of the
reasons we think is that the status of ordinary least squaresin the field of statistics is deep-rooted, and the other is that
the calculation of modified least squares are more complicated than that of ordinary least squares. In the paper, we
appeal to readers to pay close attention to such criterion.

The rest is as follows: The advantages of the modified residual sum of squares are firstly discussed in Section 2 with
the aid of a numerical example. Then we extend modified least squares to generalized modified least squares in Section
3. The representation of the new estimators is given. Finally, we apply the main result to the numerical example to show
that the new criterion can adjust the fitted line such it is sensitive or insensitive to those outlying data values.

2 Modified least squares

Although MLSE is nonlinear and therefore it needs complicated calculations comparing with OLSE, there are some
good aspects for it:

1. As we all know, the criterion of ordinary least squares unduly emphasizes on those large departures for a practical
problem. To overcome such defect, we need a new criterion which takes the large departures into consideration
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but also “weakens” the determinant degree of them to some extent. As a robust procedure, least absolute deviation
regression has been widely used in recent years, due to its insensitivity to those large departures. However, linear
programming techniques are required and therefore some inconveniences may occur in the process. Considering
Qmls < Qols, we believe that modified least squares can improve ordinary least squares in this sense, though
the “shrinkage” fromQols to Qmls is well-proportioned. The reason for this is thatβ∗1, as an estimator ofb1, is
not a constant before the data values are obtained, and thereafter the shrinkage factor is actually stochastic. The
numerical example given below illustrates such superiority of modified least squares.

2. Modified least squares can also be applied to nonlinear models, which are denoted byE (Y |X) = f (X). In this
case, we define the objective function as the sum of squares ofthe distances from eachyi to the tangent of the
fitted curve, focused onxi. That is,

Qmls ,
n

∑

i=1

[

yi − f (xi)
]2

1+
(

[

d f (x)/dx
]

∣

∣

∣x=xi

)2
.

For example, we need to estimate the corresponding parameters for

f1(X) = aX2 + bX + c, f2(X) = a exp{bX + c} + d, f3(X) = a ln(bX + c) + d,

and so on. The modeling function can be chosen by drawing the scatter plot.

3. If we assume additionally that the dependent variable,Y, has the varianceσ2 and the observationsy1, · · · , yn are
from an independent and identically distributed sample, a forthcoming naive problem is how to estimateσ2 on the
basis of modified least squares other than ordinary least squares? Considering that MLSE has no concise algebraic
properties, we structure directly an estimator forσ2, following the form ofσ̂2, which is based on ordinary least
squares, where

σ̂2 =
1

n − 2

n
∑

i=1

(yi − ŷi)2 , with ŷi = β̂0 + β̂1xi.

Let

σ∗
2
=

1
n − 2

n
∑

i=1

(

yi − y∗i
)2
, with y∗i = β

∗
0 + β

∗
1xi.

By direct operations,σ∗2 is also expressible as

σ∗
2
=

syy − 2sxyβ
∗
1 + sxxβ

∗
1

2

n − 2
. (2.1)

In the following, we will callσ∗2 to be the MLSE ofσ2. Although we can not explain from the angle of theoretical
analysis that the MLSE is better than the OLSE, the simulatednumerical example can illustrate the expected result
of us, however.

Now, we apply the result of MLSE to a dataset, which is concerned with the relationship between accounting rates on
stocks and market returns; cf. [3, Example 2.1, p. 16]. Fifth-four companies were chosen as a sample. LetX be the mean
yearly accounting rate for the period 1959 to 1974, andY be the corresponding mean market rate. The data are given
in [3, Table 2.1, p. 16]. See also Table 1, for convenience. Weassume in addition that suggesting a linear relationship,
Y ≈ β0 + β1X, between the two variables is reasonable. With the aid of Matlab 7.0, the values of the OLSEs and MLSEs
for β0 andβ1 are

β̂0 = 0.8480, β̂1 = 0.6103, and β∗0 = −9.6415, β∗1 = 1.4214,

respectively. The empirical regression equations on the basis of ordinary and modified least squares follow immediately
as below: ˆyols = 0.8480+ 0.6103x, andy∗mls = −9.6415+ 1.4214x. Figure 2 illustrates the plot of the data and the
regression lines based on ordinary and modified least squares. By the figure, we can find that the first line (based on
ordinary least squares) is sensitive to the point (32.58, 14.73), which seems to be an outlying data value. Accordingly,
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Table 1:Accounting rates and market rates from 1959 to 1974

Company Accounting Rate Market Rate
McDonnell Douglas 17.96 17.73
NCR 8.11 4.54
Honeywell 12.46 3.96
TRW 14.70 8.12
Raytheon 11.90 6.78
W.R. Grace 9.67 9.69
Ford Motors 13.35 12.37
Textron 16.11 15.88
Lockheed Aircraft 6.78 -1.34
Getty Oil 9.41 18.09
Atlantic Richfield 8.96 17.17
Radio Corporation of America 14.17 6.78
Westinghouse Electric 9.12 4.74
Johnson and Johnson 14.23 23.02
Champion International 10.43 7.68
R.J. Reynolds 19.74 14.32
General Dynamics 6.42 -1.63
Colgate-Palmolive 12.16 16.51
Coca-Cola 23.19 17.53
International Business Machines 19.20 12.69
Allied Chemical 10.76 4.66
Uniroyal 8.49 3.67
Greyhound 17.70 10.49
Cities Service 9.10 10.00
Philip Morris 17.47 21.90
General Motors 18.45 5.86
Philips Petroleum 10.06 10.81
FMC 13.3 5.71
Caterpillar Tractor 17.66 13.38
Georgia Pacific 14.59 13.43
Minnesota Mining & Manufacturing 20.94 10.00
Standard Oil (Ohio) 9.62 16.66
American Brands 16.32 9.40
Aluminum Company of America 8.19 0.24
General Electric 15.74 4.37
General Tire 12.02 3.11
Broaden 11.44 6.63
American Home Products 32.58 14.73
Standard Oil (California) 11.89 6.15
International Paper 10.06 5.96
National Steel 9.60 6.30
Republic Steel 7.41 0.68
Warner Lambert 19.88 12.22
U.S. Steel 6.97 0.90
Bethlehem Steel 7.90 2.35
Armco Steel 9.340 5.03
Texaco 15.40 6.13
Shell Oil 11.95 6.58
Standard Oil (Indiana) 9.560 14.26
Owens Illinois 10.05 2.60
Gulf Oil 12.11 4.97
Tenneco 11.53 6.65
Inland Steel 9.920 4.25
Kraft 12.27 7.30

the second line (based on modified least squares) is not verysensitive to that point. In this sense, we think that the
method of ordinary least squares has been improved by that ofmodified least squares.

Another improvement is with respect to the MLSE of error variance. By Matlab 7.0, the values of the OLSE and the
MLSE are given as ˆσ2 = 25.8644 andσ∗2 = 41.8321, respectively. In the following, we make two simulation studies
based onx1, · · · , x54, the data values of the mean yearly accounting rates of the fifth-four companies, and the normal
distribution. The first one is to generate stochastically fifty-four “observations” ofY (each observation is derived by
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Figure 2: Plots of data points and regression lines based on ordinary and modified least squares

generating three points and averaging them) by means ofx1, · · · , x54, β̂0, β̂1. Then calculate the simulated OLSE and the
simulated MLSE. Finally, we get the absolute errors of them.Repeat the above procedures fifty times. Replacingβ̂0, β̂1

with β∗0, β
∗
1 in the first simulation study gives the second one. Figure 3 shows the plots of the two simulations. It is seen

that the absolute error of MLSE is not larger than that of OLSE.

3 Generalized modified least squares

By the previous section, the fitted line based on MLSE can be derived by rotating the fitted line based on OLSE a
particular angle with the point ( ¯x, ȳ) as the center. A natural problem is that: if each line located between the two lines
(as shown in the third subfigure of Figure 2) can be used as the fitted line or not. The answer is YES, since one can
choose a line which is “closer” to the fitted line based on OLSEif inclining to ordinary least squares and choose a line
which is “closer” to the fitted line based on MLSE if incliningto modified least squares. The direct consequence is
that the estimators ofβ1 andβ0 can be writtenλβ̂1 + (1− λ)β∗1, the convex combination of OLSE and MLSE, for some
λ ∈ [0, 1] andȳ− [λβ̂1+ (1−λ)β∗1] x̄ = λβ̂0+ (1−λ)β∗0. Adjusting the value ofλ gives different results and corresponding
fitted lines. Further, the fitted line passes though the point(x̄, ȳ) inherently. In that way, what is the criterion the resulting
estimators follow?

By the third subfigure of Figure 1, we consider minimizing thesum of squares of suchAD, which is not larger than
AB and also not smaller thenAC. We call the criterion to begeneralized modified least squares. Denote by

Qgmls,
Qols

1+ b2
1τ
=

n
∑

i=1

(yi − b0 − b1xi)2

1+ b2
1τ

the residual sum of squares based on generalized modified least squares, whereτ ∈ [0, 1] is any fixed arbitrary real
scalar. Clearly,Qgmls reduces toQols if τ = 0 andQmls if τ = 1. We callβ̃0 andβ̃1 thegeneralized modified least

squares estimators (GMLSEs) forβ0 andβ1, if β̃0 andβ̃1 minimizeQgmlswith respect tob0 andb1, for givenτ ∈ (0, 1).
We mention here that the GMLSEs yielded by generalized modified least squares may have different version from that
of λβ̂1 + (1 − λ)β∗1 andλβ̂0 + (1 − λ)β∗0. Without loss of generality, we assume thatsxy , 0 andsxx , syy. By direct
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Figure 3: Plots of the absolute errors of OLSE and MLSE

operations (by manual or with the aid of Matlab 7.0), we have

∂Qgmls
∂b0

= 0 ⇔ b0 + b1x̄ = ȳ, and

∂Qgmls
∂b1

= 0 ⇔
(

sxx + nx̄2 − syyτ − nȳ2τ − nb2
0τ + 2nb0ȳτ

)

b1 +
(

sxy + nx̄ȳ − nb0x̄
) (

b2
1τ − 1

)

= 0.

Further, we obtain

sxyτb
2
1 +

(

sxx − syyτ
)

b1 − sxy = 0. (3.1)

It follows thatb0 = ȳ − b1x̄, with b1 = b(+)
1 (τ) or b1 = b(−)

1 (τ), where

b(+)
1 (τ) ,

syyτ − sxx +

√

(syyτ − sxx)2 + 4s2
xyτ

2sxyτ
, b(−)

1 (τ) ,
syyτ − sxx −

√

(syyτ − sxx)2 + 4s2
xyτ

2sxyτ
.

Insertingb0 = ȳ − b(+)
1 (τ)x̄, b1 = b(+)

1 (τ) andb0 = ȳ − b(−)
1 (τ)x̄, b1 = b(−)

1 (τ) into Qgmls, it follows that

Q(+)

gmls− Q(−)

gmls= −
1
τ

√

(syyτ − sxx)2 + 4s2
xyτ < 0,

and therefore ¯y − b(−)
1 (τ)x̄ andb(−)

1 (τ) are definitely not the MLSEs ofβ0 andβ1. Denote now

β̃1(τ) = b(+)
1 (τ), and β̃0(τ) = ȳ − b(+)

1 (τ)x̄, (3.2)

respectively. We have the following theorem:

Theorem 3.1 β̃0(τ) and β̃1(τ) are the GMLSEs for β0 and β1, respectively.

Proof. On the basis of the above analysis, it suffices to justifya > 0 andb2 − ac < 0, where

a =
∂2Qgmls

∂b2
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b0 = β̃0(τ)
b1 = β̃1(τ)

, b =
∂2Qgmls
∂b0∂b1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b0 = β̃0(τ)
b1 = β̃1(τ)

, c =
∂2Qgmls

∂b2
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b0 = β̃0(τ)
b1 = β̃1(τ)

.
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With the aid of Matlab 7.0, it can be concluded thata = 2n
/ [

1+ τ
(

β̃1(τ)
)2
]

> 0 and

b2 − ac =
4n

(

1+ τ
(

β̃1(τ)
)2
)4

[

2sxyτ
2
(

β̃1(τ)
)3
+ 3τ

(

sxx − syyτ
) (

β̃1(τ)
)2
− 6sxyτβ̃1(τ) −

(

sxx − syyτ
)

]

=
4n

(

1+ τ
(

β̃1(τ)
)2
)4

{

[

sxyτ
(

β̃1(τ)
)2
+

(

sxx − syyτ
)

β̃1(τ) − sxy

]

(

2τβ̃1(τ) +
sxx − syyτ

sxy

)}

−
4n

(

1+ τ
(

β̃1(τ)
)2
)4
·

(

syyτ − sxx

)2
+ 4s2

xyτ

sxy
· β̃1(τ),

which combined with (3.1) yields that

b2 − ac = −
4n

(

1+ τ
(

β̃1(τ)
)2
)4
·

[

(

syyτ − sxx

)2
+ 4s2

xyτ

]

·

(

syyτ − sxx +

√

(syy − sxx)2 + 4s2
xyτ

)

2s2
xyτ

< 0

holds inherently. The proof is thus completed.❙

We mention two facts, one of which is that lim
τ→0+
β̃k(τ) = β̂k holds fork = 0, 1, and therefore ordinary and modified

least squares are extended in this sense. The other is that Li[1] did not give the strict proof forβ∗1 andβ∗0 to be the
MLSEs ofβ1 andβ0. We have offered the supplement here.

Table 2:GMLSEs for τ = 0, 0.1, 0.2, · · · , 0.9, 1.0

τ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
β̃0(τ) 0.8480 −0.0517 −1.0649 −2.1746 −3.3475 −4.5400 −5.7083 −6.8181 −7.8482 −8.7894 −9.6415
β̃1(τ) 0.6103 0.6799 0.7582 0.8441 0.9348 1.0270 1.1173 1.2031 1.2828 1.3556 1.4214

Let us now apply the result of 3.1 to the dataset considered inSection 2. We still assume that suggesting the seemingly
linear relationshipY ≈ β0 + β1X is reasonable. With the aid of Matlab 7.0, the values of the GMLSEs forβ0 andβ1 are
given in Table 2. Figure 4 illustrates the plot of the data andthe regression lines based on generalized modified least
squares. By the figure, we can find that generalized modified least squares is indeed an adjusting criterion.

4 Concluding summary

In the short paper, we developed the method of modified least squares. The illustration of Figure 2 shows that modified
least squares is not very sensitive to those outlying data values, while the illustration of Figure 4 reflects that generalized
modified least squares can adjust the fitted line such it is sensitive or insensitive to those outlying data values. As a
adjusting criterion, we think that, generalized modified least squares should be used widely in practical problems by
choosing conformable value ofτ in the range from 0 to 1.

As we can see, univariate regression models have relativelylimited value in some practical applications. However, as
a trigger, this paper may lead to more better means that couldbe sprang out as it should be. Finally, we mention that one
potential possible direction of the paper is to generalize the results to multivariate regressions.
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