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Abstract: In this paper,in the base of sublinear expectation space called ‘G-expectation space’ that 5 
introduced by Peng , adapting Peng’s IID notion and applying Peng’s new CLT under sublinear 
expectations, we investigate the general CLT for capacity and give an affirmative answer. For prove 
Theorm2.1,we deeply sduty the theorem of generalized G-expectation and the related results in Hu and 
Zhang's paper.  
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0 Introduction 
The law of large numbers (LLN) and central limit theorem (CLT) is long and widely been 

known as two fundamental results in theory of probability and statistics. It is very useful tool in 
many other fields, such as mathematical finance, economics. Recently motivated by model 15 
uncertainties in statistics and economics, measures of risk and superhedging in finance, Peng[1-5] 
introduces a new notion of sublinear expectation space called ‘G-expectation space’. Many results 
are established, for example, the corresponding LLN and CLT under a sublinear expectation. 
Peng[2] initiated the notion of IID random variables and the definition of G-normal distribution 
under sublinear expectations, he further proved law of large numbers (LLN) and central limit 20 
theorems (CLT) under sublinear expectations. Hu and Zhang[6] obtained central limit theorem for 
capacities in the framework of Peng[2]. 

A furthermore question is that: Can the CLT under a sublinear expectation be generalized for 
capacity in the new framework of Peng[5]? In this paper, adapting Peng’s IID notion and applying 
Peng’s new CLT under sublinear expectations, we investigate the general CLT for capacity and 25 
give an affirmative answer. 

1 Preliminaries 
We present some preliminaries in the theory of sublinear expectations space such as some 

basic notions and results of G-expectation space and the related space of random variables. More 
details of this section can be found in Peng[1-5]. 30 

Definition 1.1 Let  be a given set and let Η be a linear space of real valued functions 
defined on . We assume that all constants are in Η and that Η implies Η. Η is 
considered as the space of our “random variables”. A nonlinear expectation Ê on Η is a functional 
Ê: Η→ R satisfying the following properties: for all X, Y Η, we have 

(a) Monotonicity: If X>Y then Ê[X] >Ê[Y]. 35 
(b) Constant preserving: Ê[c] = c 
The triple ( , Η, Ê) is called a nonlinear expectation space (compare with a probability space 

( , Φ, N)). 

We are mainly concerned with sublinear expectation where the expectation Ê satisfies also 

(c) Sub-additivity: Ê[X]«Ê[Y]  Ê[X«Y]. 40 

(d) Positive homogeneity: Ê[ X] = Ê[X], ∀ 0. 
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If only (c) and (d) are satisfied, Ê is called a sublinear functional. 
Remark 1.1 we known Η is an Stone lattice. 
The following representation theorem for sublinear expectations or sublinear functional is 

well-known (see Peng[5] or others books): 45 
Lemma 1.1 Let Ê be a sublinear functional defined on ( ,Η), i.e., (c) and (d) hold for Ê. 

Then there exists a family {Eθ: θ Θ} of linear functionals on ( ,Η) such that 
Ê[X] = maxθ Θ Eθ[X].                          (1) 

If (a) and (b) also hold, then Eθ  are linear expectations for θ Θ. 
If we make furthermore the following assumption: (H) For each sequence {Xn} n 1 ⊂Ηsuch 50 

that Xn (ω) ↓ 0 for ω, we have Ê [Xn] ↓ 0. Then for each θ ∈ Θ, there exists a unique (σ-additive) 
probability measure Pθ defined on ( , σ (Η)) such that 

Eθ[X] =  X(ω) dPθ(ω), X Η.                     (2) 
Remark 1.2 The above (2) is the well-known Daniell-Stone Theorem. 
In this paper, we research about the following sublinear expectation: 55 
Ē[·] = supQ∈Π  EQ [·], 

where Π is a set of probability measures. 
Let  be a given set and let Φ be an σ-algebra defined on . Define V(A) := Ē [ IA] = sup Q∈

Π EQ [IA], v(A) := −Ē[−IA] = inf Q∈Π EQ [IA], ∀A  Φ, then V and v are two capacities. 
Let Cl, Lip (Rn) denote the space of functions ϕ satisfying 60 
|ϕ(x) − ϕ(y)|  C(1 + |x|m + |y|m)|x− y| ∀x, y  Rn,  for some C > 0, m  N depending on ϕ 

and let Cb,Lip (Rn) denote the space of bounded functions ϕ satisfying 
|ϕ(x) − ϕ(y)|  C(1 + |x|m + |y|m)|x− y| ∀x, y  Rn, for some C > 0 depending on ϕ. 
The following is the notion of IID random variables under sublinear expectations introduced 

by Peng[1-5]: 65 
Definition 1.2 Independence: Suppose that Y1, Y2, . . . , Yn is a sequence of random variables 

such that Yi  Η. Random variable Yn is said to be independent of X: = (Y1, . . . , Yn−1) under Ē, if 
for each function ϕ  Cl, Lip (Rn), we have 

Ē[ϕ(X, Yn)] = Ē[Ē[ϕ(x, Yn)] x=X]. 
Definition 1.3 Identical distribution: Random variables X and Y are said to be identically 70 

distributed, denoted by X ~Y, if for each function ϕ  Cl, Lip (Rn), we have 
Ē[ϕ(X)] = Ē[ϕ(Y)]. 

Definition 1.4 IID random variables: A sequence of random variables {Xn}n 1 is said to be 
IID, if Xn ~X1 and Xn+1 is independent of Y := (X1, . . . , Xn) for each n 1. 

Definition 1.5 (G-normal distribution, see Definition 10 in Peng[2]). A random variable ξ  Η 75 
under sublinear expectation Ẽσ with σ2 = Ẽσ [ξ2], σ2 = − Ẽσ [−ξ2] is called G-normal distribution, 
denoted by Ν (0; [σ2,σ2]), if for any function ϕ  Cl, Lip (Rn), write u(t, x) := Ẽσ [ϕ(x+√tξ)], (t, x)  
[0,∞)× R, then u is the unique viscosity solution of PDE: 

∂t u − G (∂2
xx u) = 0, u(0, x) = ϕ (x), 

where G(x) := (σ2x+ −σ2x−)½ and x+ := max{x, 0}, x− := (−x)+. 80 
Definition 1.6 (G-distribution, see Definition 4.5 in Peng[5]). A random variable (ξ, ζ)  Η 

under sublinear expectation Ẽ with μ = Ẽ [ζ], μ = − Ẽ [−ζ]; σ2 = Ẽ [ξ2], σ2 = − Ẽ [−ξ2] is called 
G-distribution, denoted by Ν ([μ, μ]; [σ2, σ2]), if for any function ϕ  Cl, Lip (Rn), write 

u(t, x) := Ẽ [ϕ(x+ tζ+√tξ)], (t, x)  [0,∞)× R, then u is the unique viscosity solution of PDE: 
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∂t u − G (∂xu, ∂2
xx u) = 0, u(0, x) = ϕ (x), 85 

where G(x, y) := (σ2y+ −σ2y−)½ +(μx+−μx−)and a+ := max{a, 0}, a− := (−a)+. 
With the notion of IID under sublinear expectations, Peng shows central limit theorem under 

sublinear expectations (see Theorem 5.1 in Peng[5]). 
Lemma 1.2 (Central limit theorem under sublinear expectations). Let {(Xi,Yi)} i 1 be a 

sequence of IID random variables. We further assume that Ē[X1] =Ē[−X1] = 0. Then the sequence 90 
{Sn} n 1 defined by Sn :=(∑i=1

n Xi )/ n^½+(∑i=1
n Yi )/ n converges in law to ξ+ζ, i.e., 

limn→∞Ē [ϕ(Sn)] = Ẽ [ϕ(ξ+ζ)], 
for any continuous function ϕ satisfying linear growth condition, where (ξ,,ζ) is a 

G-distribution. 

2 Main result 95 

The following lemma is very useful in this paper: 
Lemma 2.1 Suppose that (ξ, ζ) is G- distributed by Ν ([μ, μ]; [σ2, σ2]). Let P be a probability 

measure and ϕ be a bounded continuous function. If {Wt} t 0 is a P-Brownian motion, then 
Ẽ [ϕ(ξ+ζ)] = sup(θ,μ)  Θ×ΜEP [ϕ( [0,1] (θsdWs+ sds) )], 
where Θ :={θt}t 0: θt is Φ t-adapted process such that σ θt σ, 100 
Μ :={μt}t 0: μt is Φ t-adapted process such that μ μt μ, 
Φt := σ{Ws, 0  s  t}  Ν, Ν is the collection of P-null subsets. 
Proof. By Theorem 3.3 in Su[7], we have: for each ϕ  Cb, Lip (Rn), 
Ẽ [ϕ(ξ+ζ)] = sup(θ,μ)  Θ×ΜEP [ϕ( [0,1] (θsdWs+ sds) )].               (3) 
Furthermore by Theorem 3.3 in Su[7], we known the family {Pθ,μ}(θ,μ)  Θ×Μ of law of the 105 

processes [0,t](θsdWs+ sds) is tight. So if ϕ is a bounded continuous function, we also get 
Ẽ [ϕ(ξ+ζ)] = sup(θ,μ)  Θ×ΜEP [ϕ( [0,1] (θsdWs+ sds) ). 
Remark 2.1 The above lemma generalizes the lemma 2.2 in Hu and Zhang[6]. 
Now we give our main result: 
Theorem 2.1 (Central limit theorem for capacities). Let {(Xi,Yi)} i 1 be a sequence of IID 110 

random variables. We further assume that Ē[X1] =Ē [−X1] = 0. Denote Sn :=(∑i=1
n Xi )/ 

n^½+(∑i=1
n Yi )/ n.  Then 

if z is a point at which V is continuous, we have 
limn→∞ V(Sn z) =VG (z), 
if z is a point at which v is continuous, we have 115 
limn→∞ v(Sn z) = vG (z), 
where VG (z) = sup(θ,μ)  Θ×Μ EP [I{ [0,1] (θs dWs+ sds) z}] 
and   vG (z) = inf(θ,μ)  Θ×Μ EP [I{ [0,1] (θsdWs+ sds) z}]. 
Proof. Suppose that z is a point at which VG is continuous. Let ε be any positive number, and 

take δ small enough that VG (z+δ) − VG (z−δ) ε. 120 
Construct two bounded continuous functions f, g such that 
f(x) =1 for x  z − δ, f (x) =0 for x z, 0 < f (x) 1 for z −δ < x < z; 
g(y) =1 for y  z, g(y) =0 for y  z +δ, 0 < g(y) 1 for z < y < z + δ. 
Then VG(z −δ)  sup θ Θ EP [f( [0,1] (θs dWs+ s ds)]  VG(z) 
 sup θ Θ EP [g( [0,1] (θs dWs+ s ds))]  VG(z + δ),                                 (4) 125 

and for each n, 
Ē[f(Sn)]  V (Sn  z)  Ē[g(Sn)].                          (5) 
Obviously, f and g are bounded continuous functions. By Lemmas 2.1 and 1.2, we have 
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limn→∞Ē[f(Sn)] = sup θ Θ EP [f( [0,1] (θs dWs+ s ds))], 
limn→∞Ē[g(Sn)]= sup θ Θ EP [g( [0,1] (θs dWs+ s ds))]. 130 
So that 
sup θ Θ EP [f( [0,1] (θs dWs+ s ds))]  limn→∞ inf V(Sn  z)  limn→∞ sup V (Sn  z) 
 sup θ Θ EP [g( [0,1] (θs dWs+ s ds))].                           (6) 

Hence 
VG(z) − ε  limn→∞ inf V (Sn  z)  limn→∞ sup V (Sn  z)  VG(z) +ε. 135 
Since this is true for every ε, limn→∞ V (Sn  z) = VG(z). 
In a similar manner as in the above, we can obtain limn→∞ v (Sn  z) = vG (z). 
Remark 2.1. (1) Obviously, V is an increasing function, then V is continuous in R except in, 

at most, countable points. Similarly, v is continuous in R except in, at most, countable points. 
(2) The above proof of Theorem 2.1 follows Hu and Zhang[6],but the result generalizes theirs. 140 

For Hu and Zhang prove their result under the represent theorem of G-expectation in Denis, Hu 
and Peng[8]. 

(3) In Theorem 3.1, if Ē [Y1] = −Ē [−Y1] =μ , Ē [X1
2] = −Ē [−X1

2] = σ2 > 0, then for each z  
R, 

limn→∞ V (Sn  z) = limn→∞ v (Sn  z) = (z). Where ( ) is the distribution function of 145 
normal distribution with mean μ and variance σ2 

Corollary2.1 (Law of large numbers for capacities) Let {Yi} i 1 be a sequence of IID random 
variables. We further assume that μ = Ẽμ [ζ], μ = − Ẽμ [−ζ]. Denote Sn := (∑i=1

n Yi )/ n. 
Then 
(1)if z is a point at which V is continuous, we have 150 
limn→∞ V(Sn z) =Vμ (z), 
(2)if z is a point at which v is continuous, we have 
limn→∞ v(Sn z) = vμ (z), 
where Vμ (z) = supμ Μ EP [I{ [0,1] sds z}] and vμ(z) = infμ Μ EP [I{ [0,1] sds z}]. 

3 Conclusion 155 

In this paper we get the generalize results than Hu and Zhang[6]. We also find the condition 
about capacity V is continuous is essential; in the following we will study other better condition.  
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关于容度的一般中心极限定理 
杨志 

（中国矿业大学理学院，江苏 徐州 221008） 180 
摘要：本文在次线性期望空间-G-期望空间的大数定律与中心极限定理基础之上，利用推广

的 G-期望的表示定理与现有的关于容度的大数定律与中心极限定理等相关结论得到了关于

容度的一个一般的中心极限定理，进一步还得到相应的关于容度的大数定律。 
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