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A general central limit theorem for capacity

YANG Zhi
(School of Sciences, China University of Mining and technology, JiangSu XuZhou 221008)

Abstract: In this paper,in the base of sublinear expectation space called ‘G-expectation space’ that
introduced by Peng , adapting Peng’s IID notion and applying Peng’s new CLT under sublinear
expectations, we investigate the general CLT for capacity and give an affirmative answer. For prove
Theorm?2.1,we deeply sduty the theorem of generalized G-expectation and the related results in Hu and
Zhang's paper.
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0 Introduction

The law of large numbers (LLN) and central limit theorem (CLT) is long and widely been
known as two fundamental results in theory of probability and statistics. It is very useful tool in
many other fields, such as mathematical finance, economics. Recently motivated by model
uncertainties in statistics and economics, measures of risk and superhedging in finance, Peng[l's]
introduces a new notion of sublinear expectation space called ‘G-expectation space’. Many results
are established, for example, the corresponding LLN and CLT under a sublinear expectation.
Peng'” initiated the notion of IID random variables and the definition of G-normal distribution
under sublinear expectations, he further proved law of large numbers (LLN) and central limit
theorems (CLT) under sublinear expectations. Hu and Zhang[(’] obtained central limit theorem for
capacities in the framework of Peng[z].

A furthermore question is that: Can the CLT under a sublinear expectation be generalized for
capacity in the new framework of Peng[s]? In this paper, adapting Peng’s IID notion and applying
Peng’s new CLT under sublinear expectations, we investigate the general CLT for capacity and
give an affirmative answer.

1 Preliminaries

We present some preliminaries in the theory of sublinear expectations space such as some

basic notions and results of G-expectation space and the related space of random variables. More

details of this section can be found in Peng[l's].

Definition 1.1 Let % be a given set and let H be a linear space of real valued functions
defined on *. We assume that all constants are in H and that <+@®H implies®-@@OH. H is
considered as the space of our “random variables”. A nonlinear expectation E on H is a functional
B:H— R satisfying the following properties: for all X, Y®H, we have

(a) Monotonicity: If X>Y then E[X] >E[Y].

(b) Constant preserving: E[c] =c

The triple (%, H, E) is called a nonlinear expectation space (compare with a probability space
(%, D, N)).

We are mainly concerned with sublinear expectation where the expectation I satisfies also

(c) Sub-additivity: B[X]«B[Y]{ B[X<«Y].

(d) Positive homogeneity: E[OX] = .E[X], VvV @)0.
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If only (c) and (d) are satisfied, E is called a sublinear functional.
Remark 1.1 we known H is an Stone lattice.
The following representation theorem for sublinear expectations or sublinear functional is

well-known (see Peng[s] or others books):

Lemma 1.1 Let B be a sublinear functional defined on (%,H), i.e., (c) and (d) hold for E.
Then there exists a family {Eq: 0@0®} of linear functionals on (%,H) such that

B[X] = maxoeo Eo[X]. (M

If (a) and (b) also hold, then Eqy are linear expectations for 0©0.

If we make furthermore the following assumption: (H) For each sequence {X,} .,y CHsuch
that X,, (@) | 0 for @, we have E [Xa] | 0. Then for each 6 & 0O, there exists a unique (c-additive)
probability measure Py defined on (%, o (H)) such that

Eg[X] =24 X(0) dPy(w), XOH. (2)

Remark 1.2 The above (2) is the well-known Daniell-Stone Theorem.

In this paper, we research about the following sublinear expectation:

E[]=supoen Eq[1],

where I1 is a set of probability measures.

Let % be a given set and let @ be an c-algebra defined on . Define V(A) := E [ Is] = sup ge
11 Eg [1a], V(A) :=—E[-1] = inf ey Eq [Is], VA @ @, then V and v are two capacities.

Let Cy, 1ip (R") denote the space of functions ¢ satisfying

lo(x) — (Y C(1 + [x|™ + |y|)x—y| Vx,y®R", for some C>0, m@® N depending on ¢
and let Cy, 15, (R") denote the space of bounded functions ¢ satisfying

lp(x) — (Y C(1 + x|™ + [y|x—y| Vx,y® R", for some C > 0 depending on ¢.

The following is the notion of IID random variables under sublinear expectations introduced
by Peng[l's]:

Definition 1.2 Independence: Suppose that Y, Yy, . . ., Y, is a sequence of random variables
such that Y; ® H. Random variable Y, is said to be independent of X: = (Y1, . .., Y1) under E, if
for each function ¢ ® C; 1;, (R"), we have

E[o(X, Yo)] = E[E[o(x, Yo)] «x].

Definition 1.3 Identical distribution: Random variables X and Y are said to be identically
distributed, denoted by X ~Y, if for each function ¢ ® C, 1;, (R"), we have

E[o(X)] = E[o(Y)].

Definition 1.4 IID random variables: A sequence of random variables {X,} is said to be
IID, if X, ~X; and X,+; is independent of Y = (X4, . . ., X,) for each n}1.

Definition 1.5 (G-normal distribution, see Definition 10 in Peng™®’). A random variable £€@ H
under sublinear expectation E, with o = E, [£], o = — B4 [-€7] is called G-normal distribution,
denoted by N (0; [6%,6%]), if for any function ¢ @ Ci,Lip (R, write u(t, x) := B, [(xHVEE)], (t, X) @
[0,00)x R, then u is the unique viscosity solution of PDE:

dru—G (0 1) =0, u(0, x) = ¢ (x),

where G(x) = (cszx+ —gzxf)l/z and X = max{x, 0}, x :=(-x).

Definition 1.6 (G-distribution, see Definition 4.5 in Peng[s]). A random variable (&, {)® H
under sublinear expectation E with u = E [{], u = — E [-(]; o’ =R [£], 0" =— E [-€] is called
G-distribution, denoted by N ([, p]; [6% &%), if for any function ¢ @ C, 1, (R"), write

u(t, x) == E [p(x+ ttHVtE)], (t, x) @ [0,00)x R, then u is the unique viscosity solution of PDE:
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8u—G (81, Oxcu) = 0, u(0, X) = ¢ (x),

where G(x, y) = (6’y —c”y )% +(ux —ux )and a’ := max{a, 0},a :=(-a)".

With the notion of IID under sublinear expectations, Peng shows central limit theorem under
sublinear expectations (see Theorem 5.1 in Peng[s]).

Lemma 1.2 (Central limit theorem under sublinear expectations). Let {(X;,Y;)} y be a
sequence of IID random variables. We further assume that E[Xl] =E[—X1] = 0. Then the sequence
{Su} w1 defined by S, :=(Yi-1" Xi )/ "4 +(Yi-1" Y )/ n converges in law to £+, i.e.,

limy o E [@(S)] = E [(&0)],

for any continuous function ¢ satisfying linear growth condition, where (,,0) is a
G-distribution.

2 Main result

The following lemma is very useful in this paper:

Lemma 2.1 Suppose that (&, ) is G- distributed by N ([, p]; [6% 6°]). Let P be a probability
measure and @ be a bounded continuous function. If {W} y is a P-Brownian motion, then

E [0(E+0)] = sup(o,me oxMEp [9(Dp0,17 (BdW+Ogds) )1,

where O :={0,}o: 0, is ®-adapted process such that (0, (o,

M :={w}o: W is O-adapted process such that pfp (1,

@ :=c{W, 0{s(t} # N, N is the collection of P-null subsets.

Proof. By Theorem 3.3 in Sul”), we have: for each ¢ O Cyp ip (R,

E [@(&+0)] = supo,we o-MEp [9(D10,17 (B,dW+O4ds) )]. (3)

Furthermore by Theorem 3.3 in Sum, we known the family {Pg,}@o e oxm Of law of the
processes Dpo,(0:dW+Oids) is tight. So if @ is a bounded continuous function, we also get

E [0(&+0)] = supowe omEr [0(Dj0,17 (B:dW+Ouds) ).

Remark 2.1 The above lemma generalizes the lemma 2.2 in Hu and Zhang[(’].

Now we give our main result:

Theorem 2.1 (Central limit theorem for capacities). Let {(X;,Y;)} iy be a sequence of IID
random variables. We further assume that E[X;] =E [-X;] = 0. Denote S, =(X " X; )/
n™Aa+(Y" Yi )/ n. Then

if z is a point at which V is continuous, we have

lim, ., V(Sufz) =V (2),

if z is a point at which v is continuous, we have

limyo V(Silz) = v (2),

where V¢ (z) = supo,me exm Ep [Li500,1] 0s dwWs+osds) 2}

and  vg (z) = infig e xm Ep [L1500,1] 0saws+osds) 2} -

Proof. Suppose that z is a point at which Vg is continuous. Let € be any positive number, and
take & small enough that Vg (z+3) — Vg (z—9) (e.

Construct two bounded continuous functions f, g such that

fix)=1 forx{z—9, f(x)=0forx)z, 0 <f(x)({l forz—d<x <z

g(y)=1forylz, g(y)=0fory)z+5,0<g(y){l forz<y<z+3.

Then V(z —6) { sup ege Er [{(Z)0,171(0s dW+O4 ds)] { V(2)

{ sup see Ep [8(>10,17(0s dAW+O4 ds))] { Vg(z + 9), @)

and for each n,

E[f(Sn)] ( V (Sa { 2) (E[g(Sh)]. (5)

Obviously, fand g are bounded continuous functions. By Lemmas 2.1 and 1.2, we have

_3-
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hmnawE[f(Sn)] = SUp 0e0 EP [f(D[O,l] (es dWs+Os ds))]a
limy, . E[g(Sn)]= sup eee Ep [2(D(0.1](0s dW+Oy ds))].

So that

sup eee Ep [f(2[0,17 (0s AW +O; ds))] { lim, ., inf V(S, ( z) (lim, o sup V (Sa ( 2)
{sup eee Ep [2(20.11 (0s dWH+O5 ds))]. (6)
Hence

Vg(z) — e {limy 0 inf V (S, { 2) { limy o sup V (Sy ( 2) { V(2) te.

Since this is true for every ¢, lim, ., V (S, { z) = Vg(2).

In a similar manner as in the above, we can obtain lim,_,., v (S, { z) = vg (2).

Remark 2.1. (1) Obviously, V is an increasing function, then V is continuous in R except in,
at most, countable points. Similarly, v is continuous in R except in, at most, countable points.

(2) The above proof of Theorem 2.1 follows Hu and Zhang[(’],but the result generalizes theirs.
For Hu and Zhang prove their result under the represent theorem of G-expectation in Denis, Hu
and Peng[g].

(3) In Theorem 3.1, if E [Y,] =B [-Y] =n, B [X,’] = —E [-X,%] = 6" > 0, then for each z ®
R,

lim, ., V (Sp ( 2) = limy_., v (Sy { z) = #(z). Where 4(0) is the distribution function of
normal distribution with mean p and variance ¢

Corollary2.1 (Law of large numbers for capacities) Let {Y;} i be a sequence of IID random
variables. We further assume that p = E,, [{], u = — E, [-{]. Denote S, := (3i-1" Y; )/ n.

Then

(1)if z is a point at which V is continuous, we have

lim, . V(Sufz) =V, (2),

(2)if z is a point at which v is continuous, we have

limy o v(Sulz) = v, (2),

where V,,(z) = supuem Ep [11370,17 0sds 23] and vy(z) = infuem Ep [1iz70,17 0sds 3]

3 Conclusion

In this paper we get the generalize results than Hu and Zhang'®. We also find the condition
about capacity V is continuous is essential; in the following we will study other better condition.
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