种子萌发的积温效应——以青藏高原东缘的12种 菊科植物为例

刘 文 刘 坤 张春辉 杜国祯*

兰州大学干旱与草地生态教育部重点实验室, 兰州 730000

摘 要 温度是影响种子萌发的重要的环境因素之一。该文以青藏高原东缘的12种菊科植物为研究对象,结合Logistic函数和 积温公式,通过非线性回归方法估算种子萌发的最低温度和积温,研究了种子萌发对不同温度的响应。研究结果表明: (1)青 藏高原东缘的12种菊科植物种子萌发的最低温度的平均值为0 ℃,积温的平均值为94.5 ℃·d。与前人的研究相比,该研究中 萌发的最低温度较低,积温较高,这是该区域菊科植物长期适应青藏高原特殊的温度环境的结果; (2)种子萌发的最低温度与 积温之间存在着显著的负相关关系(*p* = 0.04)。萌发最低温度较低的物种积温较高,避免了种子在多变的温度环境下较早萌发 所遇到的风险; (3)种子大小与积温之间存在着显著的正相关关系(*p* = 0.01)。在萌发最低温度差别不大的情况下,与大种子相 比,小种子萌发所需的积温较低,萌发较快,在群落演替的早期占有优势。

关键词 积温,最低温度,菊科,种子大小,种子萌发,青藏高原

Effect of accumulated temperature on seed germination—a case study of 12 Compositae species on the eastern Qinghai-Tibet Plateau of China

LIU Wen, LIU Kun, ZHANG Chun-Hui, and DU Guo-Zhen*

Key Laboratory of Arid and Grassland Ecology of Ministry of Education, Lanzhou University, Lanzhou 730000, China

Abstract

Aim Temperature is an important environmental factor influencing seed germination. Our objective was to research the seed germination response of 12 Compositae species from the eastern Qinghai-Tibet Plateau of China to different temperatures using the accumulated temperature model.

Methods All 12 species belong to four genera of Compositae. Seeds of each species were germinated at five constant temperatures (5, 10, 15, 20 and 25 °C), and germination was recorded once per day. We combined the logistic function and the accumulated temperature equation and used non-linear regression to estimate the base temperature and accumulated temperature for seed germination of each species.

Important findings The average base temperature and accumulated temperature of the 12 species were 0 °C and 94.5 °C·d, respectively. The base temperature was lower and the accumulated temperature was higher than reported by previous researchers. These are the result of long-term adaptation to the temperature environment of the Qinghai-Tibet Plateau. There was a significant negative correlation between base temperature and accumulated temperature (p = 0.04). Therefore, species with lower base temperature would avoid the risk of seeds germinating earlier in an environment with changeable temperature. A significant positive correlation existed between seed mass and accumulated temperature (p = 0.01). Under relatively constant base temperature, small-seeded species germinated faster than large-seeded ones, giving them priority of germination in early succession.

Key words accumulated temperature, base temperature, Compositae, seed germination, seed mass, Qinghai-Tibet Plateau

温度是影响种子萌发(Nyachiro *et al.*, 2002)和 控制植物生态行为的重要的环境因子之一。作为植 物生活史的重要阶段,种子萌发对植物种群动态的 控制是严格依赖于温度的(Keller & Kollmann, 1999)。温度影响着种子的萌发能力、萌发速率,以及在萌发时期内的萌发频率(Kocabas et al., 1999)。

为了描述某个特定物种种子萌发的温度范围, 研究者提出了影响种子萌发的3个重要温度:最低

收稿日期Received: 2010-10-26 接受日期Accepted: 2011-04-13

^{*} 通讯作者Author for correspondence (E-mail: guozdu@lzu.edu.cn)

温度(base temperature, T_b, 即种子能够萌发的最低 温度)、最适温度(optimum temperature, To, 即萌发 速率达到最快时的温度)和最高温度(ceiling temperature, T_c, 即允许萌发的最高温度) (Bewley & Black, 1994)。不同物种的这3个温度是不同的, 与其 环境适应范围相关,并与有利于随后幼苗生长的萌 发时间的选择相匹配(Alvarado & Bradford, 2002)。 在未达到适宜的温度时, 萌发速率(用萌发时间的 倒数表示)通常是随着萌发温度线性增加的(Bierhuizen & Wagenvoort, 1974)。Garcia-Huidobro等 (1982)首次提出了积温模型。该模型假设种子萌发 需要一定的积温,同一种群内不同个体的种子萌发 速率是不同的。积温是在萌发的Tb的基础上累积计 算的。在种群内,对所有种子来说,T,通常是固定的 值,但积温是不同的,而且是服从正态分布或对数 正态分布的(Covell et al., 1986; Dahal et al., 1990)。

不休眠的种子在一系列温度下的萌发与植物 生态或地理分布相关(Orozco-Segovia *et al.*, 1996)。 Trudgill等(2000)研究认为,热带植物比温带植物需 要更温暖的生长条件,这反映在它们的种子萌发的 T_b 上。Angus等(1981)研究发现,温带物种小麦 (*Triticum aestivum*)、大麦(*Hordeum vulgare*)和燕麦 (*Avena sativa*)萌发的 T_b 都小于3 °C,而热带植物稗 (*Echinochloa crusgalli*)和黍(*Panicum miliaceum*)种 子萌发的 T_b 都超过了10 °C。Thompson (1970)研究 发现,石竹科分布在欧洲南部的物种比分布在北部 的物种在低温下萌发快。另外,物种对萌发温度的 需求可能与系统发育有关。Grime等(1981)研究发 现,禾本科和莎草科植物分别具有较低和较高的萌 发 T_b 。

许多研究者用分布函数结合积温公式的模型 方法来研究种子萌发对温度的不同响应。Marshall 和Squire (1996)用Gompertz方程,Orozco-Segovia等 (1996)用高斯(Gaussian)分布,Larsen和Bibby (2005) 用Weibull分布的非线性方法研究了种子萌发所需 要的积温。目前国内对种子萌发所需要的积温研究 很少。黄文达等(2009)研究了3种荒漠植物种子萌发 的水热响应,其研究方法是线性的。本文通过非线 性回归分析的方法,在亚适宜温度范围内,结合 Logistic函数和积温公式,求得种子萌发所需要的 积温和T_b,比较和解释了不同物种的种子萌发对温 度的响应。考虑到所研究的物种处在青藏高原特殊 的温度条件下,我们很想探明:种子萌发所需要的 积温和T_b是否能表现出特异性,能否进一步说明所 研究植物对青藏高原特殊环境条件的适应。

1 材料和方法

1.1 研究地概况

研究区域在甘肃省甘南藏族自治州境内,位于 青藏高原东部地区(101°-103° E, 34°-35°70′ N),海 拔2 000-4 200 m。年平均降水量450-780 mm,降水 主要分布在7-9月;年平均气温为1.8 ℃,最冷月1 月平均气温在-10.7 ℃以下,最热月7月平均气温 为11.7 ℃,生长季最高气温为23.6-28.9 ℃;年平 均霜期不少于270天,无绝对无霜期。气候特点是高 寒湿润。植被以灌木和多年生草本为主(吴征镒, 1980)。

1.2 研究材料

选择了菊科的风毛菊属(Saussurea)、火绒草属 (Leontopodium)、千里光属(Senecio)和香青属(Anaphalis) 4个属,每属选取3种植物。物种名和种子大小 见表1。

1.3 实验设计

实验所用的种子于2006年6-10月采自甘南藏 族自治州境内。种子均是在其自然脱落时收集的。 将采集的种子在实验室(温度为15-20 ℃)风干。 2007年3月初,使用人工气候箱(Conviron E15 Growth Chamber, Controlled Environments Ltd.,

表1 物种名和种子大小

Table 1 List of species and their seed ma	SS
---	----

物种名	千粒重±标准误差			
Name of species	Thousand-grain weight			
	$\pm SE(g)$			
长毛风毛菊 Saussurea hieracioides	$1.614\ 9\pm 0.092\ 0$			
大耳叶风毛菊 Saussurea macrota	$1.766\ 3\pm 0.052\ 4$			
甘肃风毛菊 Saussurea kansuensis	$2.546\ 6\pm 0.093\ 5$			
火绒草 Leontopodium leontopodioides	$0.109\ 1 \pm 0.011\ 3$			
载叶火绒草 Leontopodium dedekensii	$0.077\;4\pm 0.002\;0$			
银叶火绒草 Leontopodium souliei	$0.077\ 2\pm 0.002\ 2$			
异羽千里光 Senecio diversipinnus	$0.515\ 8\pm 0.026\ 3$			
额河千里光 Senecio argunensis	$0.776\ 7\pm 0.011\ 4$			
密齿千里光 Senecio densiserratus	$0.556\ 7 \pm 0.009\ 9$			
淡黄香青 Anaphalis flavescens	$0.071\ 0 \pm 0.000\ 6$			
黄腺香青 Anaphalis aureo-punctata	$0.077\;6\pm 0.001\;0$			
尼泊尔香青 Anaphalis nepalensis	$0.255\ 0 \pm 0.001\ 7$			

Winnipeg, Canada)进行萌发实验。每种植物设置3 个重复,每个重复随机选取50粒完整的种子。将种 子均匀地放在90 mm玻璃培养皿中,培养皿底部垫 有两层滤纸,不定期加水保持滤纸湿润。设置5个温 度梯度(5 ℃、10 ℃、15 ℃、20 ℃、25 ℃),萌发 在黑暗条件下进行。实验过程中,每天统计萌发个 数,以胚根与种子等长作为萌发的标准,并将已萌 发的种子移除,实验持续60天。实验中菊科植物种 子的大小定义为胚和种皮的重量,不包括帮助扩散 的附属结构的重量。本实验中用千粒重度量种子大 小:随机选取实验所需的种子1 000粒,称重,重复 3次,取其平均值,精确到0.000 1 g (Vera, 1997; Steadman & Pritchard, 2004)。

1.4 研究方法

种子萌发的亚适宜温度范围用萌发速率(用达 到最终萌发率的50%所需要的时间的倒数表示)随 温度线性变化的趋势来确定。用积温模型来定量分 析研究种子萌发对亚适宜温度的响应。种子萌发过 程中累积萌发率为g时所需要的积温θ_T(g)可以用下 面的积温模型公式来计算:

$$\theta_{T}(g) = (T - T_{b}) t_{g}$$
(1)
式中, T是实验的温度, T_{b} 是萌发的最低温度, t_{g} 是累
积萌发率为 g 时所需的实验天数。

Brown和Mayer (1988)用Logistic函数对累积萌发率g和萌发时间t做非线性拟合:

$$g = m/(1 + e^{-kt + b})$$
 (2)

式中, *m*近似等于最终萌发率, *k*是萌发率的增长率, *b*是与萌发时滞相关的参数(Brown & Mayer, 1988)。 结合方程(1)和(2), $g和\theta_{T}$ (g)也同样满足Logistic函数,因此可以得到:

$$g = m/(1 + e^{-k(T - Tb)t + b})$$
(3)

式中, (*T* – *T*_b) *t*是积温, 4个定值参数*m、k、b*和*T*_b的 值通过非线性回归得到。非线性拟合过程是对累计 萌发率在积温水平上完成的。由此通过方程(3)我们 可以得出累积萌发率为*g*时所需要的积温*θ*_T (*g*)的方 程:

$$\theta_{\rm T}\left(g\right) = \frac{1}{k} \left[b + \ln\left(\frac{g}{m-g}\right) \right] \tag{4}$$

我们用达到最终萌发率的 50% 所需要的积温 θ_T (50%)来估计各物种种子萌发所需积温的平均 值。 数据处理时,对3个重复的每日萌发种子数求 平均值,再求得每日的累积萌发率。在进行非线性 拟合时,累积萌发率是因变量,温度和时间是自变 量。用5个温度梯度下的累积萌发率和其对应的时 间通过方程(3)拟合得到积温-萌发曲线。统计分析 和非线性拟合均在R软件(version 2.10.1)中完成。R 软件是一个开放的统计分析和图形显示的程序设 计环境。

2 结果和分析

2.1 4个属物种种子萌发的T_b和积温的差异

对萌发速率的分析结果表明,本实验设置的5 个温度梯度范围(5-25℃)基本上是在所研究植物种 子萌发的亚适宜温度范围内(25℃超出了异羽千里 光的亚适宜温度,所以只在4个亚适宜温度下做其 拟合)。

通过方程(3)拟合得到的参数估计值和通过方程(4)计算得到的积温的平均值见表2。图3是每个物种在5个温度梯度下累积萌发率和拟合得到的积温-萌发曲线(异羽千里光在4个温度梯度下)。对所有物种而言,累积萌发率曲线拟合的决定系数 $R^2 \ge$ 0.92。

12种菊科植物萌发的T_b范围从-1.38 ℃到1.45 ℃,其平均值为0 ℃;积温的平均值范围是73.42 -119.62 ℃·d,其平均值为94.5 ℃·d。风毛菊属的3 个物种萌发的T_b都接近于0 ℃,积温的平均值都大 于100 ℃·d。火绒草属中的3个物种相对于其他3个 属的物种的积温平均值最低。积温平均值的范围从 75.37 ℃·d到88.98 ℃·d。千里光属中的密齿千里光 和额河千里光的积温平均值均在89 ℃·d左右,萌发 的T_b分别为0.77 ℃和0.45 ℃,相差较小。香青属中 的3个物种之间萌发的T_b和积温平均值都相差较大。

2.2 萌发的T_b与积温之间的关系

12种菊科植物的种子萌发的 T_b 范围从–1.38 ℃ 到1.45 ℃,标准偏差为0.9 ℃。如图1所示,对12种植物种子萌发的 T_b 和积温进行线性回归,得到显著的负相关关系(p = 0.04, $R^2 = 0.30$),即萌发所需积温较高的植物的 T_b 较低。

2.3 种子大小与积温和萌发Tb之间的关系

12种植物的种子大小范围为0.071 0-2.546 6 g·千粒⁻¹。如图2所示,通过相关性分析得知,本实验 中的12种植物的种子大小与萌发所需的积温之间

表2	通	过方程(3)非线性回归分析得到的参数估计值m、k、b和T _b (±标准误差)以及通过方程(4)计算得到的积温平均值θ _T (50%)
Table	2	Estimates of parameter values m , k , b and T_b through nonlinear regression analysis by equation (3) and median accumulated
tempe	erati	ure $\theta_{\rm T}$ (50%) calculated from equation (4)

物种名 Name of species	$m \pm SE$	$k \pm SE$	$b \pm SE$	$T_{\rm b} \pm SE$ (°C)	$\theta_{\mathrm{T}}(50\%)(^{\circ}\mathrm{C}\cdot\mathrm{d})$	R^2
长毛风毛菊 Saussurea hieracioides	0.791 ± 0.023	0.094 ± 0.021	8.936 ± 2.003	-0.361 ± 0.493	100.79	0.94
大耳叶风毛菊 Saussurea macrota	0.642 ± 0.019	0.067 ± 0.015	6.791 ± 1.351	-0.231 ± 0.573	119.62	0.92
甘肃风毛菊 Saussurea kansuensis	0.587 ± 0.015	0.090 ± 0.015	7.615 ± 1.137	-0.007 ± 0.317	104.46	0.96
火绒草 Leontopodium leontopodioides	0.878 ± 0.020	0.105 ± 0.022	7.865 ± 1.504	-1.041 ± 0.467	77.72	0.95
载叶火绒草 Leontopodium dedekensii	0.767 ± 0.017	0.106 ± 0.017	7.383 ± 1.133	0.939 ± 0.246	75.37	0.96
银叶火绒草 Leontopodium souliei	0.881 ± 0.025	0.073 ± 0.016	6.229 ± 1.314	0.792 ± 0.438	88.98	0.94
异羽千里光 Senecio diversipinnus	0.698 ± 0.011	0.082 ± 0.010	8.543 ± 0.989	-1.380 ± 0.362	115.32	0.99
额河千里光 Senecio argunensis	0.884 ± 0.027	0.095 ± 0.021	8.161 ± 1.725	0.455 ± 0.382	89.00	0.94
密齿千里光 Senecio densiserratus	0.842 ± 0.027	0.100 ± 0.019	8.589 ± 1.519	0.773 ± 0.269	89.82	0.94
淡黄香青 Anaphalis flavescens	0.892 ± 0.012	0.121 ± 0.013	8.640 ± 0.897	1.452 ± 0.119	73.42	0.98
黄腺香青 Anaphalis aureo-punctata	0.849 ± 0.016	0.070 ± 0.009	6.284 ± 0.762	-0.320 ± 0.394	94.66	0.97
尼泊尔香青 Anaphalis nepalensis	0.890 ± 0.031	0.081 ± 0.022	8.250 ± 2.154	-0.762 ± 0.548	104.59	0.92

b, 与萌发时滞相关的参数;k, 萌发率的增长率;m, 近似的最终萌发率;Tb, 最低温度。

b, a parameter related to the lag in germination; k, the rate of increase in germination; m, approximative final germination; T_b, base temperature.

图1 12种菊科植物萌发的最低温度和积温之间的关系。 **Fig. 1** Relationships between base temperature for germination and accumulated temperature of 12 Compositae species.

存在着显著的正相关关系(p = 0.01, $R^2 = 0.45$),即较大的种子萌发需要较高的积温。12种植物的种子大小与萌发的 T_b 之间相关性不显著(p = 0.62)。

3 讨论

许多研究指出:种子萌发对温度的不同响应与物种的地理分布和生态分布相关;不同物种种子萌www.plant-ecology.com

图2 12种菊科植物的种子大小和积温之间的关系。 **Fig. 2** Relationships between seed mass and accumulated temperature of 12 Compositae species.

发对温度的需求与物种不同的生活史对策相关 (Probert, 2000)。从种子到幼苗是植物一生中最脆弱 的时期(Gutterman, 1993),面临着不可预测、多变复 杂的环境,并且经历着较高的死亡风险。在多种选 择压力下,植物生活史对策的最大生态效益是增加 有利条件下幼苗定居的数量,同时减少不利条件下 个体死亡的风险(Cavieres & Arroyo, 2000)。

图3 12种植物在5个温度梯度下实验的累积萌发率和拟合得到的积温-萌发曲线(异羽千里光为4个温度梯度)。

Fig. 3 Cumulative germination and fitted accumulated temperature germination curves of 12 species at five temperature gradients (for *Senecio diversipinnus*, only four temperature gradients were tested).

萌发的*T*_b可能是物种的适应性特征,在低温环 境中萌发的物种有相对较低的萌发*T*_b (Steinmaus *et al.*, 2000)。在前人的研究中,温带物种萌发的*T*_b在 0–4 ℃之间(Angus *et al.*, 1981; Hur & Nelson, 1985; Moot *et al.*, 2000)。在Trudgill等(2000)的研究中,温 带物种萌发所需要的积温的平均值范围为15–94 ℃·d,生长在英国的牛津千里光(*Senecio squalidus*) 萌发的*T*_b为4 ℃,积温的平均值为36 ℃·d。张红香 (2008)的研究表明,生长在松嫩草原的草地风毛菊 (*Saussurea glomertat*)种子萌发的*T*_b为2 ℃,积温的 平均值为44.6 ℃·d。本研究中12个温带物种萌发*T*_b 的平均值为0 ℃,达到最终萌发率的50%的积温的平 均值为94.5 ℃·d,有7个物种萌发的*T*_b低于0 ℃,5个 物种的积温的平均值大于100 ℃·d。与其他人的研究 相比,该区域菊科物种萌发的*T*_b较低,积温较高。

萌发的T_b较低和积温较高,这是该区域物种长 期适应青藏高原特殊的气候条件的结果。青藏高原 亚高山地带气候环境复杂多变, 气温变化比较剧 烈, 平均气温低, 生长季短。由于青藏高原的生长 季短,植物就需要在春季尽早萌发。在相同的温度 条件下, 萌发的T_b较低的物种能够累积更多的热量, 较早萌发。较早地出苗就意味着拥有较长的生长期 和占有较高的优势层次(Ross & Harper, 1972)。但是 在青藏高原三四月份的春季, 气温变化很剧烈。如 果物种萌发需要的积温低,那么在早春短暂的高温 条件下,植物的种子就会快速萌发而占领生境,具 有时间和空间上的优势。然而,一旦气温剧变就会 使得刚出土的幼苗受霜冻死亡, 这对萌发速度快 (在25℃温度条件下, 3-5天的时间基本上萌发完毕) 而且集中萌发(12个物种中有9个种的最终萌发率接 近或大于80%)的菊科植物来说,会面临很大的风 险,降低了物种的适合度。所需积温较高就可避免 植物在这样特殊的气候条件下因为偶尔短暂的高 温而萌发所经历的风险。

Trudgill等(2005)指出,相对于适应温暖环境的物种,适应低温环境的物种种子萌发需要更高的积温和更低的 T_b 。本研究中的物种都为温带物种,没有热带的物种做比较来验证这一观点。但是12种菊科植物种子萌发的 T_b 与积温之间存在显著的负相关关系(p = 0.04),这与前人的研究结果相一致(Angus *et al.*, 1981; Qi *et al.*, 1999; Trudgill *et al.*, 2000)。萌发 T_b 较低的物种积温较高, T_b 较高的物种积温较低,

这是由它们适应各自所处的温度环境所导致的。生 长在低温环境下的物种种子萌发的T_b较低,根据积 温公式,*T* – T_b的值就较大。如果积温也低,那么萌 发速率就会很快,种子就有可能一遇到高温就萌 发,这在多变的温度环境下极易导致幼苗大量死 亡。萌发T_b较低的物种积温较高就避免了种子因为 短暂的高温而较早萌发。与之相反,生长在温暖环 境下的物种萌发的T_b高,如果积温也高,那么就会 萌发太晚而使幼苗失去在群落中竞争资源的优势。

已有的研究表明,种子大小和萌发速率之间存 在着显著的负相关关系,即小种子比大种子萌发得 快(Bu *et al.*, 2007; Norden *et al.*, 2009)。本研究中, 种子大小与积温之间呈显著的正相关关系(p = 0.01),种子大小对萌发的 T_b 的影响不显著(p = 0.62),而且物种之间萌发的 T_b 相差较小(标准偏差 为0.9 °C)。根据积温公式,萌发速率1/ $t = (T - T_b) / \theta_T$,因此在萌发 T_b 差别不大的情况下,大种子物种 萌发速率慢是因为需要的积温高。小种子产生的幼 苗个体小不利于其在群落中的资源竞争。如果小种 子较早萌发,就会使得其幼苗能够在竞争能力强的 大种子的幼苗出土之前占有更多的资源,从而获得 竞争上的优势。

萌发T_b相近的物种之间积温也是不同的,这与 物种固有的发育速度有关(Trudgill *et al.*, 2005)。图1 中12个物种萌发的T_b只能解释积温变异的30% (*R*² = 0.30),这是由于萌发的T_b对积温的影响受到物种 固有的萌发速度的限制。图2中12个物种的种子大 小只能解释积温变异的45% (*R*² = 0.45),这表明种 子大小不是解释积温变异的唯一因素,积温还受到 物种的起源地、系统发育水平和所处的生境 (Probert, 2000; Trudgill *et al.*, 2000)等其他因素的影 响。图3直观地展示了每个物种的积温-萌发曲线对 该物种在亚适宜温度下的累积萌发率的拟合程度。 另外,本文模型分析结果的准确性还需要今后实验 数据的进一步验证。

综上所述,本研究采用结合Logistic函数和积 温公式的非线性方法,研究了青藏高原东缘12种菊 科植物种子萌发的T_b和积温。与前人的研究相比, 本研究中的物种种子萌发的T_b较低,积温较高。萌 发的T_b较低表明这一区域的物种能在较低温度条件 下萌发。积温普遍较高,使得萌发需要较长的时间 以躲过不利于幼苗建植的温度环境条件。这是该区 域菊科植物长期适应青藏高原特殊环境条件的结果。萌发T_b较低的植物所需积温较高,T_b较高的植物 所需积温较低,避免了种子在多变的温度环境下较 早萌发所遇到的风险。在萌发的T_b差别不大的情况 下,与大种子相比,小种子萌发所需的积温较低, 萌发较快,在群落资源的竞争早期占有优势。这说 明,所研究的12种植物的种子在不同温度条件下的 萌发对策在一定程度上反映了植物对温度环境的 适应。

致谢 国家自然科学基金重点项目(40930533)资助。

参考文献

- Alvarado V, Bradford KJ (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. *Plant, Cell & Environment,* 25, 1061–1069.
- Angus JF, Cunningham RB, Moncur MW, MackKenzie DH (1981). Phasic development in field crops. I. Thermal response in the seedling phase. *Field Crops Research*, 3, 365–378.
- Bewley JD, Black M (1994). Seeds: Physiology of Development and Germination 2nd edn. Plenum Press, New York.
- Bierhuizen JF, Wagenvoort WA (1974). Some aspects of seed germination in vegetables. II. The determination and application of heat sums and minimum temperature for germination. *Scientia Horticulturae*, 2, 213–219.
- Brown RF, Mayer DG (1988). Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. *Annals of Botany*, 61, 127–138.
- Bu HY, Chen XL, Xu XL, Liu K, Jia P, Du GZ (2007). Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet Plateau. *Plant Ecology*, 191, 127–149.
- Cavieres LA, Arroyo MTK (2000). Seed germination response to cold stratification period and thermal regime in *Phacelia secunda* (Hydrophyllaceae). *Plant Ecology*, 149, 1–8.
- Covell S, Ellis RH, Roberts EH, Summerfield RJ (1986). The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soyabean and cowpea at constant temperatures. *Journal of Experimental Botany*, 37, 705–715.
- Dahal P, Bradford KJ, Jones RA (1990). Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. I. Germination at suboptimal temperature. *Journal of Experimental Botany*, 41, 1431–1439.
- Garcia-Huidobro J, Monteith JL, Squire GR (1982). Time, temperature and germination of pearl millet (*Pennisetum typhoides* S. & H.). I. Constant temperature. Journal of Experimental Botany, 33, 288–296.

- Grime JP, Mason G, Curtis AV, Rodman J, Band SR, Mowforth MAG, Neal AM, Shaw S (1981). A comparative study of germination characteristics in a local flora. *Journal of Ecology*, 694, 1017–1059.
- Gutterman Y (1993). Seed Germination in Desert Plants. Springer-Verlag, Berlin.
- Huang WD (黄文达), Wang YR (王彦荣), Hu XW (胡小文) (2009). Germination responses of three desert plants to temperature and water potential. *Acta Prataculturae Sinica* (草业学报), 18(3), 171–177. (in Chinese with English abstract).
- Hur SN, Nelson CJ (1985). Temperature effects on germination of birds foot trefoil and seombadi. *Agronomy Journal*, 77, 557–560.
- Keller M, Kollmann J (1999). Effects of seed provenance on germination of herbs for agricultural compensation sites. *Agriculture, Ecosystems & Environment*, 72, 87–99.
- Kocabas Z, Craigon J, Azam-Ali SN (1999). The germination response of Bambara groundnut (*Vigna sublerrannean* (L.) Verdc.) to temperature. *Seed Science and Technology*, 27, 303–313.
- Larsen SU, Bibby MBM (2005). Differences in thermal time requirement for germination of three turfgrass species. *Crop Science*, 45, 2030–2037.
- Marshall B, Squire GR (1996). Non-linearity in the ratetemperature relations of germination in oilseed rape. *Journal of Experimental Botany*, 47, 1369–1375.
- Moot DJ, Scott WR, Roy AM, Nicholls AC (2000). Base temperature and thermal time requirements for germination and emergence of temperate pasture species. *New Zealand Journal of Agricultural Research*, 43, 15–25.
- Norden N, Daws MI, Antoine C, Gonzalez MA, Garwood NC, Chave J (2009). The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. *Functional Ecology*, 23, 203–210.
- Nyachiro JM, Clarke FR, DePauw RM, Knox RE, Armstrong KC (2002). Temperature effects on seed germination and expression of seed dormancy in wheat. *Euphytica*, 126, 123–127.
- Orozco-Segovia A, Gonzáalez-Zertuche L, Mendoza A, Orozco S (1996). A mathematical model that uses Gaussian distribution to analyze the germination of *Manfreda brachystachya* (Agavaceae) in a thermogradient. *Physiologia Plantarum*, 98, 431–438.
- Probert RJ (2000). The role of temperature in the regulation of seed dormancy and germination. In: Fenner M ed. Seed: The Ecology of Regeneration in Plant Communities 2nd edn. CAB International, Wallingford, UK. 261–291.
- Qi A, Wheeler TR, Keatinge JDH, Ellis RH, Summerfield RJ, Craufurd PQ (1999). Modelling the effects of temperature on the rates of seedling emergence and leaf appearance in legume cover crops. *Experimental Agriculture*, 35, 327– 344.

- Ross MA, Harper JL (1972). Occupation of biological space during seedling establishment. *Journal of Ecology*, 60, 77–88.
- Steadman KJ, Pritchard HW (2004). Germination of *Aesculus hippocastanum* seeds following cold-induced dormancy loss can be described in relation to a temperature-dependent reduction in base temperature (T_b) and thermal time. *New Phytologist*, 161, 415–425.
- Steinmaus SJ, Prather TS, Holt JS (2000). Estimation of base temperatures for nine weed species. *Journal of Experimental Botany*, 51, 275–286.
- Thompson PA (1970). Characterization of the germination responses to temperature of species and ecotypes. *Nature*, 225, 827–831.
- Trudgill DL, Honek A, Li D, van Straalen NM (2005). Thermal

time—concepts and utility. *Annals of Applied Biology*, 146, 1–14.

- Trudgill DL, Squire GR, Thompson K (2000). A thermal time basis for comparing the germination requirements of some British herbaceous plants. *New Phytologist*, 145, 107–114.
- Vera ML (1997). Effects of altitude and seed size on germination and seedling survival of heathland plants in North Spain. *Plant Ecology*, 133, 101–106.
- Wu ZY (吴征镒) (1980). Vegetation of China (中国植被). Science Press, Beijing. (in Chinese)
- Zhang HX (张红香) (2008). Research on Seed Germination Ecology (种子发芽生态研究). PhD Dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract)

责任编委:黄振英 责任编辑:王 葳