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Abstract

The problem of a disc and a ball rolling on a horizontal plane
without slipping is considered. Differential constrained equations are
shown to be integrated when the trajectory of the point of contact is
taken in a form of the natural equation, i.e. when the dependence of
the curvature of the trajectory is explicitly expressed in terms of the
distance passed by the point.
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1 The problem of a rolling disc

The rolling motion of a disc and a ball on a static plane was described many
times, see e.g. [1, 2], and generalized in later publications [3]-[8]. These are
the classical examples of motion of mechanical systems with non-holonomic
constraints.

Let a disc with radius R be tangent to a plane π with the system of
coordinates Oxy, let P be the point of contact between the disc and the
plane. The position of a disk is determined by five independent coordinates.
For example, it can be fixed by coordinates xP and yP , by the angle of
rotation ϕ, by the angle of precession ψ, and by the angle of nutation ϑ, see
Figure 1.
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Figure 1: Generalized coordinates of a rolling disk.

Evolution of the coordinates always satisfies the two non-holonomic con-
straints which can be written in the following form:

dxP = R cosψdϕ , dyP = R sinψdϕ . (1)

The problem above is, therefore, to integrate the given dynamical system
under applied arbitrary external forces. The problem is interesting because
the methods of the classical mechanics it requires to use are rather involved.
The solution can be essentially simplified if the rolling trajectory is known.
Such a formulation is possible, for example, under modeling of the rolling
with the help of a computer animation.
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In fact, the kinematics of the rolling motion of the disk is determined by
the three functions

ϕ = ϕ(t) , ϑ = ϑ(t) , ψ = ψ(t) . (2)

Under the rolling motion without slipping the arc coordinate s of the point
of contact of the disc and the plane is related to the angle of rotation ϕ as

ϕ = s/R . (3)

Therefore,
ψ̇

ϕ̇
= Rk(s) . (4)

Here k(s) = dψ

ds
is a curvature of the point of contact trajectory for the disc.

It is a well-known that given any function k = k(s) one can find a curve
~r = ~r (s) with the curvature equal k(s). The curve is unique up to a congru-
ence. Equation k = k(s) is known as a natural equation of the curve. The
parametric equations of the trajectory of the point of contact,

xP =
∫ s

0

cos(
∫ τ

0

k(s)ds)dτ, yP =
∫ s

0

sin(
∫ τ

0

k(s)ds)dτ , (5)

see [9], allow one to find the location of the disk on the plane at any moment
of the motion.

Equations (2) enable one to describe kinematics of the disk with equations
of the point of contact in form (5). The found solution satisfies non-holonomic
constraint equations (1).

Let us give an example of how rolling of the disc can be described by three
equations of motion (2) by using the natural equation for the trajectory of
the point of contact with a horizontal plane.

Example 1: Let rolling of the disk be determined by following equations:

ϕ = ωt, ψ =
εt2

2
, ϑ = f(t) . (6)

The curvature of the trajectory of the point of contact is

k(s) =
ψ̇

ṡ
=

εt

Rω
=

εs

(Rω)2
, (7)
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where ε and ω are some parameters, f(t) is a function. This trajectory is the

clothoid whose asymptotic point has coordinates x = y = (Rω
√

π/ε)/2.
The equations of motion of the point of contact in this case are

xP =
∫ s

0

cos
εs2

2(Rω)2
ds , yP =

∫ s

0

sin
εs2

2(Rω)2
ds ; (8)

or

xP = Rω
∫ t

0

cos
εt2

2
dt , yP = Rω

∫ t

0

sin
εt2

2
dt . (9)

A direct substitution of these functions into the equations (2) shows that
obtained solution satisfies the constraints.

Figure 2: Phases of motion of the disk along a clothoid (ω = π, ε = π
16
, t∗ = 16)

The phases of motion are shown on Fig. 2. They are obtained by using
equation (6) with f(t) = π

t∗2
(t− t∗)2.

4



2 The problem of a rolling ball

Let us now discuss a similar problem for a ball. We assume that the ball rolls
on a plane and spins simultaneously. Like in case of the disc, the position of
a ball (see Fig. 3) can be determined by three functions. To introduce these

functions we decompose the vector of angular velocity of the ball ~Ω into two
parts, as shown on Fig. 3,

~Ω = ~ωs + ~ωr . (10)

The vector of angular velocity related to the spinning, ~ωs, is a orthogonal to
the plane. The vector of the angular velocity associated to the rolling, ~ωr, is
parallel to the plane.
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Figure 3: The rolling and spinning angular velocity vectors of the ball.

Evolution of the velocity vectors at the center of the ball is determined
by the same angle ψ. By taking this into account one can find the complete
set of functions which describe the motion of the ball:

ϕ =
∫ t

0

ωr(t)dt , χ =
∫ t

0

ωs(t)dt , ψ = ψ(t) . (11)

Angles ϕ, χ, ψ are quasi-coordinates, they do not enable one to establish
position of the ball in different moments of time. The position can be fixed
by integrating constraint equations which are identical to (1). A solution to
these equations formally coincides with equalities (5).

It allows one to find the position of the ball at any moment of motion.
For the motion without spinning the position of the ball is determined by
only two functions ϕ(t) and ψ(t). Consider again an example.
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Example 2: Let the ball of the radius R roll according to the following
equations:

ϕ = ω1t, ψ = ω2t , (12)

where ω1 and ω2 are the corresponding angular velocities which are assumed
to be some constants. The curvature of the trajectory of the point of contact
with the plane is a constant,

k =
ψ̇

ṡ
=

ω2

Rω1

. (13)

This means that the point of contact of the ball with the plane and its center
moves along a circle with the radius Rω1/ω2. The equations of the circle are

xP =
Rω1

ω2

sinω2t, yP =
Rω1

ω2

(1− cosω2t). (14)

The motion of other points of the ball can be determined by the Euler formula
which defines a velocity ~v for a point of a ball

~v = [~ωr, ~r − ~rp] , (15)

where ~ωr = {− sinω2t, cosω2t, 0}.
By using (14), (15) one finds

dr

dt
= ω1









z cosω2t

z sinω2t

−x cosω2t− y sinω2t +
Rω1

ω2

sinω2t









. (16)

In coordinates with the origin at the center of the circle trajectory (of the
point of contact) this equation takes the form

dr

dt
= ω1









z cosω2t

z sinω2t

−x cosω2t− y sinω2t









. (17)

One immediately checks that one of the integrals of this equation is expressed
as

x
ω1

ω2

sinω2t− y
ω1

ω2

cosω2t + z = C . (18)

Fig. 4 shows the behavior of x, y, z coordinates of a point of the ball being
initially a ”south” pole of the ball.

6



Figure 4: The behavior of the ”south” pole of the ball under rolling along the
circle (ω1 = π , ω2 =

π
3
, R = 1).

3 Conclusions

Our analysis shows that in problems of a disk and a ball rolling on a plane
it is a sofficient to choose three functions to determine the laws of motion
(5), (11). (The choice of other parameters is also possible.) For the disc
these functions are xP = xP (t), yP = yP (t), and ϑ = ϑ(t). For the ball they
are xP = xP (t), yP = yP (t), and χ = χ(t). Other coordinates which fix
orientations of the given bodies are determined by coordinates of the point
of contact

ψ = arccos
ẋP

√

ẋ2P + ẏ2P
, ϕ =

1

R

∫ t

0

√

ẋ2P + ẏ2Pdt . (19)

This form of kinematic equations of motion is essentially convenient when
the trajectories of the rolling are given.

The following statement is an important consequence of the considered
kinematic description: a vertical rolling of a disc or a (non spinning) ball on
a plane is completely determined by (or equivalent to) the motion of a point
(of the same mass) on a plane under the force equal to the main vector of
external forces applied to rolling bodies.

The validity of this statement is based on Eq. (19) and on the equivalence
of equations of motion of a point on a plane to equations of motion of the
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center of mass of a disc or a ball under the action of the same system of
forces.
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