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Abstract

We consider random systems of linear equations over GF(2) in which every equation binds k variables.
We obtain a precise description of the clustering of solutions in such systems. In particular, we prove that
with probability that tends to 1 as the number of variables, n, grows: for every pair of solutions σ, τ , either
there exists a sequence of solutions σ, . . . , τ in which successive elements differ by O(log n) variables, or
every sequence of solutions σ, . . . , τ contains a step requiring the simultaneous change of Ω(n) variables.
Furthermore, we determine precisely which pairs of solutions are in each category. Our results are tight
and highly quantitative in nature. Moreover, our proof highlights the role of unique extendability as the
driving force behind the success of Low Density Parity Check codes and our techniques also apply to the
problem of so-called pseudo-codewords in such codes.
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1 Introduction

Random Constraint Satisfaction Problems (CSPs) have emerged as a mathematically tractable vehicle for
studying the performance of algorithms and proof systems. In the most well-studied setting, one has a set
of n variables all with the same (small) domain D and a set of m = Θ(n) constraints, each of which binds
a randomly selected subset of k = O(1) variables. Two canonical examples are random k-SAT and coloring
sparse random graphs. Such random CSPs have proven difficult for proof systems, e.g., in the seminal work
of Chvátal-Szeméredi on resolution [7], and, more recently, for some of the most sophisticated algorithms
known [5, 6].

A fundamental quantity in the study of random CSPs is the so-called constraint density, i.e., the ratio of
constraints-to-variables α = m/n. In particular, for many NP-complete CSPs there is a critical density above
which solutions provably exist, yet no known polynomial-time algorithm can find one. In [2] it was shown
that for random k-SAT and for random graph coloring this algorithmic breakdown coincides with the onset
of solution clustering: the set of solutions can be partitioned into exponentially many sets (clusters) that
have linear Hamming distance from one another. Moreover, in each cluster a large fraction of the variables
are frozen, i.e., take the same value in all solutions in the cluster. There is on-going work, see e.g., [21], to
establish that clustering is a universal phenomenon for random CSPs.

Until now there has not been a precise description of the clusters for any random CSP. The main
contribution of this paper is such a description of the clusters of k-XOR-SAT. This has long been recognized as
one of the most accessible of the fundamental random CSP models, in that researchers have managed to prove
difficult results for k-XOR-SAT that appear to be far beyond our reach for, e.g., random k-SAT and random
graph coloring. Perhaps the most notable result along these lines is Dubois and Mandler’s [9] determination of
the satisfiability threshold for random k-XOR-SAT. Before we present our results we present some background
on sparse systems of random linear equations over GF(2) that puts our results in perspective.

1.1 Random systems of linear equations

We consider systems of m = O(n) linear equations over n Boolean variables, where each equation binds a
constant number of variables k ≥ 3. (The case k ≤ 2 is trivial.) Clearly, deciding whether such a system
has satisfying assignments (solutions) can be done in polynomial time by, say, Gaussian elimination. In fact,
the set of solutions forms a subspace, so that the sum of two solutions is also a solution. At the same time,
it seems that if one fails to exploit the underlying algebraic structure everything falls apart. For example,
if the system is unsatisfiable, finding a value assignment σ that satisfies as many equations as possible, i.e.,
MAX XOR-SAT, is NP-complete. Moreover, given a satisfiable system and an arbitrary σ ∈ {0, 1}n, finding
a solution nearest to σ is also NP-complete [3]. Finally, random k-XOR-SAT (defined below) appears to
be extremely difficult both for generic CSP solvers and for SAT solvers working on a SAT encoding of the
instance. Indeed, very recent work strongly suggests that among a wide array of random CSPs, random
k-XOR-SAT is the most difficult for random walk type algorithms such as WalkSat [11].

Random k-XOR-SAT, which we study here, is the case where each equation binds exactly k variables. To
form the random system of equations Ax = b we take A to be the adjacency matrix of a random k-uniform
hypergraph H with n variables and m edges and b ∈ {0, 1}m to be a uniformly random vector. To choose
A we can either select exactly m out of the possible

(

n
k

)

edges uniformly and independently, or include
each possible edge independently with probability p. (Results transfer readily betwen the two models when
m = p

(

n
k

)

.) In this paper, we work with the latter model, which we denote Xk(n, p). We will say that a
sequence of events En holds with high probability (w.h.p.) for such a system if limn→∞ Pr[En] = 1.

We note that as n → ∞, the degrees of the variables in such a random system tend to Poisson random
variables with mean km/n. This means that for any finite α = m/n, w.h.p. there will be Ω(n) variables of
degree 0 and 1. Clearly, variables of degree 0 do not affect the satisfiability of the system. Similarly, if a
variable v appears in exactly one equation ei, then, we can always satisfy ei by setting v appropriately for
any constant bi. Therefore, we can safely remove ei from consideration and only revisit it after we have found
a solution to the remaining equations. Crucially, this removal of ei can cause the degree of other variables
to drop to 1. This leads us to the definition of the core of a hypergraph.
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Definition 1. The r-core of a hypergraph H is the maximum subgraph of H in which every vertex has degree
at least r.

Trivially, removing any vertex of degree less than r from H does not change its r-core. Therefore, the
r-core is the (potentially empty) outcome of the procedure: repeatedly remove an arbitrary vertex of degree
less than r until no such vertices remain.

As discussed above, any satisfying assignment to the 2-core variables can be readily extended to the
remaining variables. We will see in Section 2 below that there is a natural heuristic argument which would
lead one to guess that different satisfying assignments on the 2-core variables have Hamming distance Ω(n).
Indeed, in [16] rigorous but erroneous arguments were given for this. This guess motivates the following
very simple definition of clusters: each cluster consists of all possible extensions to a given 2-core satisfying
assignment. However, this guess is false, as we now describe:

Definition 2. A flippable cycle in the 2-core of a hypergraph H is a set of vertices S = {v1, ..., vt} in the
2-core with the following property: There is a set of edges e1, ..., et in the 2-core such that each vertex vi lies
in ei and in ei+1 and in no other edges of the 2-core, for all 1 ≤ i ≤ t (addition mod t).

Thus, the vertices v1, . . . , vt have degree two in the 2-core, whereas the remaining vertices in edges e1, ..., et
can have arbitrary degree (at least 2) in the 2-core. Note that these remaining vertices are not part of the
flippable cycle.

If σ is any 2-core satisfying assignment, then flipping the value of all variables in a flippable cycle
readily yields another satisfying assignment of the 2-core. It is not hard to show that the 2-core of a
random hypergraph often contains short flippable cycles, implying that 2-core satisfying assignments may
have Hamming distance Θ(1), a far cry from the heuristic argument and the definition of clusters described
above.

We note that the number of vertices in flippable cycles in the 2-core has mean Θ(1) (see Lemma 23).
In [16] it was also argued that for every pair σ, τ of extensions of the same 2-core assignment, there exists

a sequence of satisfying assignments σ, σ′, . . . , τ such that successive assigments have Hamming distance at
most d = O(1). The argument in [16], though, has a grave flaw and in fact O(log n/ log logn) is a lower
bound on d (see Observation 4 below). This leaves open the question of how different 2-core extensions
relate to one another (indeed, this was stated as an open problem in [17].) That is, is it possible to convert
one into another by small (in Hamming distance) steps? Also, what about inside the 2-core? Is it possible
to travel between different 2-core assignments by flipping a few variables at a time? In this work we give an
exact answer to both of these questions, fully resolving the cluster structure of random k-XOR-SAT.

Definition 3. Say that two solutions σ, τ :

• Are cycle-equivalent if on the 2-core they differ only on variables in flippable cycles in the 2-core (and
arbitrarily on variables not in the 2-core).

• Are d-connected if there exists a sequence of solutions σ, σ′, . . . , τ such that the Hamming distance of
every two successive elements in the sequence is at most d.

• Are d-disconnected if they are not d-connected.

Let the cluster of a solution σ consist of all its cycle-equivalent solutions.

We first prove that in a sparse random system of linear equations, flippable cycles are w.h.p. the only
source of connectivity between different 2-core assignments. That is, if two 2-core satisfying assignments
differ on even one variable not lying in a flippable cycle, they must differ in Ω(n) variables.

Theorem 1. For any constants c > 0 and k ≥ 3, there exists a constant α = α(c, k) > 0 such that in
Xk(n, p = c/n), w.h.p. every pair of solutions in different clusters is αn-disconnected.
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In [16], Mézard et al. did prove that there exists a constant γ > 0 such that for any θ ∈ (0, γ), no two
solutions differ on θn variables in the 2-core. However, they did not perform the crucial analysis for solutions
that differ on o(n) variables. This explains why they missed the fact that some solutions differ on the o(n)
vertices of a flippable cycle. The same erroneous statement appears in [17]; again the o(n) analysis is missing.
Providing that analysis, and using it to show that 2-core solutions which differ on o(n) variables must differ
only on flippable cycles, is the most difficult part of our proof of Theorem 1.

In stark contrast, we prove that internally clusters are very well-connected.

Theorem 2. For any constants c > 0 and k ≥ 3, there exists a constant Q = Q(c, k) > 0 such that in
Xk(n, p = c/n), w.h.p. every pair of solutions in the same cluster are Q logn-connected.

Our proof of Theorem 2 is algorithmic, giving an efficient method to travel between any pair of solutions
in the same cluster. Theorem 2 is nearly tight due to the following.

Observation 4. W.h.p. every cluster contains g(n)-disconnected solutions, where g(n) = Ω(logn/ log logn).

Proof. Consider any solution σ to the 2-core, and consider any two extensions σ0, σ1 of σ to the entire
formula such that, for a specific non-core variable v, we have σ0(v) = 0, σ1(v) = 1. Then σ0, σ1 must differ
in at least one additional variable in every equation containing v. Thus their Hamming distance is at least
deg(v) + 1. The observation now follows readily since w.h.p. there are variables in the tree components of
degree at least g(n) and every variable in a tree-component can take both values in extensions of any σ.

Finally, it is worth pointing out that for a large range of densities, the 2-core of a random k-uniform
hypergraph is empty. For example, for k = 3 the 2-core is empty [23, 18] for α ≤ 0.818..., while unsatisfiability
occurs [9] at α = 0.917... Since in the absence of a 2-core there is only one cluster, our Theorem 2 implies
that in this regime the entire set of solutions is well-connected. To prove Theorem 2, we draw heavily from
the linear structure of the constraints, (i) showing that it is possible to identify a set of non-core variables
to act as a basis for expressing all possible extensions to each 2-core solution, and with a lot of work (ii)
showing that changing any basis variable can only affect the value of O(log n) other variables.

So, in a nutshell, we prove that before the 2-core emerges any solution can be transformed to any other
solution along a sequence of successive solutions differing in O(log n) variables. In contrast, as soon as
the 2-core emerges, the set of solutions shatters into clusters defined by complete agreement on the 2-core
variables not in flippable cycles: any two solutions that disagree on even one 2-core variable not in a flippable
cycle, differ on Ω(n) variables. At the same time, solutions in the same cluster behave like solutions in the
pre-core regime, i.e., one can travel arbitrarily inside each cluster by changing O(log n) variables at a time.

Our proof of Theorem 1 easily extends to all uniquely extendable CSPs.

Definition 5 ([8]). A constraint of arity k is uniquely extendable if for any value assignment to any k − 1
variables there is precisely one value for the unassigned variable that satisfies the constraint.

Linear equations over GF(2) and unique games are the two most common examples of uniquely extendable
(UE) CSPs, but many others exist (see, eg. [8]). Clearly, any instance of a UE CSP Φ is satisfiable iff its
2-core is satisfiable. Thus, it is natural to define clusters analogously to XOR-SAT, i.e., two solutions are in
the same cluster if and only if their 2-core restrictions differ only on flippable cycles. Our proof of Theorem 1
applies readily to any UE CSP, yielding a corresponding theorem, i.e., that, under this definition of clusters,
satisfying assignments in different clusters are Ω(n)-disconnected (see the remark following Proposition 33).
However, we do not know whether the analogue of Theorem 2 holds under this definition of clusters, i.e.,
whether it is possible to travel between cycle-equivalent solutions in small steps. Also, note that while in
XOR-SAT changing all the variables in any flippable cycle results in another solution, this is not necessarily
the case for every UE CSP Φ.
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2 Earlier work, LDPC codes, and variables of degree 2

Consider a system of linear equations over GF(2), Ax = b. Note first that if the rows of A are linearly
independent then the system has solutions for every choice of b, while if the rows are dependent, then it only
has solutions for certain choices of b. It follows that the satisfiability threshold coincides with the threshold
for the rows of A to be independent; if we are above that threshold, then it turns out that the rows are
highly dependent and only a vanishingly small proportion of the choices for b will yield a solution.

One can use this observation to get an easy upper bound of m/n ≤ 1 on the satisfiability threshold for
random k-XOR-SAT by noting that if m > n then the rows must be dependent. As one can imagine, though,
this condition is not tight since variables of degree 0 and 1 only contribute fictitious degrees of freedom. The
next most reasonable necessary condition for satisfiability then is mc ≤ nc, where nc,mc is the number
of variables and equations in the 2-core, respectively. In [9] Dubois and Mandler proved that this simple
necessary condition is also sufficient by proving that the (exponential in expectation) number of solutions
for the 2-core is strongly concentrated around its expectation.

Random sparse systems of linear equations are the backbone of modern coding theory as they underlie
Low Density Parity Check codes (LDPC). To form such a code one first decides on its block length (the
number of variables n), its rate (via the number of equations m), the fraction, λi, of variables of degree
i, i.e., that will appear in i equations, and the fraction, ρi, of equations that will bind i variables (unlike
k-XOR-SAT, different equations can bind different numbers of variables). Then, to get a concrete code, one
chooses a uniformly random hypergraph satisfying these requirements using the configuration model (see
Section 5), and sets its adjacency matrix to be A. The codewords then are the solutions to Ax = 0, since
for any useful set of parameters, the equations are w.h.p. linearly independent, and so every choice of b is
equivalent, making b = 0 a convenient choice.

Returning momentarily to random k-XOR-SAT we note that, by standard results, the 2-core of a random
k-uniform hypergraph is itself a random k-uniform hypergraph conditional on its degree sequence. Moreover,
w.h.p. the number of variables of each degree i ≥ 2 in the 2-core is γi ·n+o(n), where γi is a well-understood
deterministic function [23, 18]. Therefore, we see that the 2-core of a random k-XOR-SAT instance is itself
an LDPC code with λi = γi and ρi = k for all i.

To get an idea of how systems of random linear equations give rise to codes with good (typical) distance
properties, it suffices to make two basic observations.

• Say that σ is a solution to a system as above, e is an equation in the system and v is a variable in e. If
we flip v, in order to satisfy e we must now change (at least) one other variable u in e. Consider now
any other equations containing u, v. In each of these, if we change u or v, at least one other variable
must change. And so on. This propagation of forced changes stops only when all relevant loops close.

• If we insist that every variable appears in at least 3 equations, i.e., has degree at least 3, then the
bipartite (factor) graph between variables and equations is an excellent expander. In particular, it is
easy to prove that after changing a single variable the loops mentioned above close only after another
Ω(n) variables have been changed (see, eg. [15]).

Clearly, in an error-correcting code there should be no variables of degree 0 or 1 since such variables do
not carry any information about the message being sent (as any assignment to the remaining variables can
be extended to them, they terminate any propagation sequence reaching them).

At the same time, it is natural to guess that if the minimum degree is 2, then the chains of propagations
above will all be sufficiently large, motivating the (incorrect) definition of k-XOR-SAT clusters as the sets
of solutions that agree on the 2-core. However, that guess is wrong. Degree 2 variables complicate matters
by reducing the explosiveness of the propagation process, giving rise to a small number of pseudo-codewords
(solutions near the 0 vector, ruining the code’s worst-case distance). Moreover, we must tolerate this, because
having a non-trivial fraction of degree 2 variables is crucial in making LDPC codes rate-efficient [17]. As we
discuss in the next section, degree 2 variables also play a crucial and completely analogous role in the setting
of this paper. Our flippable cycles give rise to pseudocodewords and Theorem 1 establishes that they are the
only source of flaws in the distance properties of this code. To prove this theorem, we develop machinery
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that can be applied to hypergraphs with arbitrary degree sequences of minimum degree 2. This yields a
quantitative analysis of pseudocodewords which we will present in another paper.

3 Proof Outline

3.1 Theorem 1: Cluster separation

Given a satisfying assignment σ, a flippable set is a set of variables S such that flipping the value of all
variables in S yields another satisfying assignment τ . Proving Theorem 1 boils down to proving that w.h.p.
every flippable set in the 2-core other than a flippable cycle has linear size.

A common approach to proving analogous statements is to establish, deterministically, that every flippable
set must induce a dense subgraph. In particular, if one can prove that for some constant ǫ > 0, every such
set is at least 1 + ǫ times as dense as a flippable cycle, then standard arguments yield the desired conclusion.
Here, though, this is not the case, due to the possibility of arbitrarily long 2-linked paths (see Definition
31 below). Specifically, it is easy to see that by replacing every edge of a flippable set by a long 2-linked
path, one can create a new flippable set whose density is arbitrarily close to that of a flippable cycle. Thus,
controlling the number and interactions of 2-linked paths, an approach similar to that of [1, 20], is crucial
to our argument. Carrying out this analysis on hypergraphs with a given degree sequence, as we do here,
requires the introduction of a number of technical innovations.

The key to controlling 2-linked paths is to bound a parameter governing the degree to which they tend
to branch. Lemma 20 shows that this parameter is bounded below 1, so while arbitrarily long 2-linked paths
will occur, their frequency decreases exponentially with their length. This enables us to tame them.

We note that if we were working on hypergraphs with minimum degree at least 3, then there would be
no 2-linked paths, and the proof would have been very easy. All of our innovations were designed to deal
with the problem of degree 2 vertices and our approach readily applies to arbitrary degree sequences of
minimum degree 2. In particular, since our analysis is developed for arbitrary degree sequences it provides
a new tool to attack the issue of pseudocodewords in LDPC codes, which we do in a separate work. This is
an important point since, as mentioned above, having a linear number of vertices of degree 2 is an essential
requirement for any such code to approach channel capacity.

3.2 Theorem 2: Connectivity inside clusters

Recall that we can reach the r-core of a hypergraph by repeatedly removing any one vertex of degree less
than r, until no such vertices remain.

Definition 6. An r-stripping sequence is a sequence of vertices that can be deleted from a hypergraph,
one-at-a-time, such that at the time of deletion, each vertex has degree less than r.

It is often useful to consider stripping the vertices in several rounds.

Definition 7. The parallel r-stripping process consists of iteratively removing all vertices of degree less than
r at once along with any hyperedges containing any of those vertices, until no vertices of degree less than r
remain.

It is easy to show using standard facts about r-cores of random hypergraphs that for every constant
ǫ > 0, there is a constant T = T (ǫ) such that in a random k-uniform hypergraph, all but ǫn of the non-core
vertices can be removed by a stripping sequence of length at most T . What is significantly harder, and our
main technical contribution in order to establish Theorem 2, is proving that w.h.p. all non-core vertices can
be removed by a stripping sequence of length O(log n). (See Section 4 for a description of why this suffices
to prove Theorem 2.) We note that this result is of independent interest in random hypergraph theory and
for that reason we prove it for arbitrary r ≥ 2, even though we only need the case r = 2 case for Theorem 2.

To prove that all non-core vertices can be removed by a stripping sequence of length O(logn), our
approach is significantly different below and above the threshold, c∗k,r for the emergence of an r-core in
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random k-uniform hypergraphs. In both cases, we begin by stripping down to HB for a sufficiently large
constant B. A simple argument shows that for any non-core vertex v, the number of vertices removed during
this initial phase that are relevant to the removal of v, is bounded. What remains is to show that every
non-core vertex in HB can be removed from HB by a stripping sequence of length O(log n).

For c < c∗k,r, we prove that there exists a sufficiently large constant B = B(c, k, r) such that after B
rounds of the parallel r-stripping process, all connected components of the remaining hypergraph HB have
size at most W = O(log n); therefore, all remaining vertices can be removed with an additional W strips.
To do this we establish analytic expansions for the degree sequence of HB as B grows and then apply a
hypergraph extension of the main result of Molloy and Reed [19] regarding the component sizes of a random
k-uniform hypergraph with a given degree sequence.

For c > c∗k,r , a lot more work is required. Once again, 2-linked paths are a major problem. Indeed, it is
not hard to see that a long 2-linked path with one endpoint of degree 1, can create a long stripping sequence
leading to the removal of its other endpoint.

We first establish that for any ǫ > 0, after a finite number B = B(ǫ) of r-stripping rounds we are
sufficiently close to the r-core for two important properties to hold in the remaining hypergraph HB: (i)
there are at most ǫn vertices of degree less than r, and (ii) the “branching” parameter for 2-linked paths,
mentioned above, is bounded below 1. Property (ii) allows us to control long 2-linked paths. However, this
does not suffice as we need to control, more generally, for large tree-like stripping sequences. To do so, we
note that any large tree must either have many leaves, or long paths of degree 2 vertices. Such long paths
will correspond to 2-linked paths in the random hypergraphs, and so (ii) allows us to control the latter case.
Leaves of the tree will have degree less than r, and so (i) enables us to control the former case.

4 Selecting a basis for intra-cluster travel

Given an r-stripping sequence that removes every vertex outside of the r-core, we associate with it a directed
graph as follows: (i) let v be the next vertex in the sequence; (ii) remove the (no more than r− 1) edges Ev

containing v; (iii) add arcs to v from every vertex other than v in Ev. Note that if Ev contains a variable
w 6= v of current degree 1, w will end up having in-degree 0, as the edges in Ev are erased by the processing
of v. More generally, no arcs are associated with the removals of degree 0 variables. So the digraph will
include all vertices that are not in the r-core, as well as any r-core vertex that shares an edge with a vertex
not in the r-core.

For every vertex v in the digraph, we define R+(v) to be the set of vertices that can be reached from v.
The following lemma is the heart of our proof of Theorem 2 and its proof occupies Sections 7 and 8, after
we set out some basic facts about cores in Section 5 and some basic calculations in Section 6.

Lemma 8. Fix integers k, r and let H = Hk(n, p) be a random k-uniform hypergraph on n vertices with
p = c/nk−1. There exists a constant Q > 0 such that w.h.p. there is an r-stripping sequence of H culminating
with the r-core such that in the digraph D associated with the sequence:

(a) For every vertex v, |R+(v)| ≤ Q logn.

(b) For r = 2, for every flippable cycle C,

∑

v∈C

|R+(v)| ≤ Q logn .

We note that, via standard arguments, a number of earlier works implicitly establish that for any fixed
θ > 0, there exists Z = Z(θ) such that |R+(v)| ≤ Z for all but θn vertices v. The difficulty here lies in
proving a bound on |R+(v)| that holds for all vertices.

Remark: For our purposes, we only need Lemma 8 for the case r = 2, k ≥ 3. However, this lemma is of
independent interest to the study of random hypergraphs, and so we prove it for all r, k ≥ 2.

Remark: The proof of Lemma 8 can be extended to show that w.h.p. for every vertex v ∈ D, the
subgraph induced by |R+(v)| has at most as many arcs as vertices.
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Proof of Theorem 2. Given an arbitrary system of linear equations consider any 2-stripping sequence v1, ..., vt,
of its associated hypergraph which strips all the way to the 2-core. Let D be the digraph associated with
the sequence. Let e1, e2, . . . , et be the corresponding sequence of removed hyperedges, i.e. ei was the only
edge containing vi when vi was removed. Let B be the set of non-core vertices with indegree zero in D.

We will perform Gaussian elimination in an manner such that for any satisfying 2-core assignment, σ,
B is a basis for the subspace formed by all satisfying extensions of σ. Specifically, we consider the removed
hyperedges in reverse removal order, i.e., et, et−1, . . . , e1. Each time we consider a hyperedge ei, we express
vi in terms of the other variables in ei. Each of these other variables is either in B or in the 2-core, or is
already expressed in terms of variables in B and the 2-core. So, in the end, each non-core variable u /∈ B is
expressed in the form u =

∑

w∈χ(u) w, where χ(u) is a set containing variables from the 2-core and B that
have a path to u in D.

More specifically, for each v ∈ B and for each v in the 2-core, we set χ(v) = {v}. Every non-core variable
not in B has indegree at least 1 and so is vi for some removed hyperedge ei. For each other u ∈ ei, either
u ∈ B, or u is in the 2-core, or u = vj for some j > i. When processing the edges in reverse removal order,
i.e. et, . . . , e1, to process ei we set χ(vi) to the disjoint union of the sets χ(u), over all u ∈ ei other than vi.
That is, a variable z ∈ χ(vi) iff z ∈ χ(u) for an odd number of variables u ∈ ei other than vi. Since ei is the
equation vi =

∑

u∈ei;u6=v u, by induction, vi =
∑

w∈χ(vi)
w. Note also that, by induction, χ(vi) contains only

vertices that are in B or the 2-core. Finally, note that possibly χ(vi) = ∅; in that case, vi =
∑

w∈χ(vi)
w = 0

in every satisfying assignment.
Remark: It is not hard to adapt the proof of Lemma 8 to show that w.h.p. for every i, χ(vi) 6= ∅. But

that is not required for the purposes of this paper.
If at this point we fix any satisfying assignment σ to the 2-core variables, the variables in B will remain

unrestricted. Moreover, since all non-core variables not in B are expressed in terms of some subset of
variables in the union of the 2-core and B, the variables in B form a basis for the subspace corresponding
to all possible extensions of σ.

Since B is a basis, there are exactly 2|B| extensions of σ to the non-core variables, one for each assignment
to B. We can move between any two such extensions by changing the assignments to the variables of B,
one-at-a-time. Each time we change a variable v ∈ B, in order to get to another satisfying assignment, we
only need to change a subset of R+(v) in the digraph D, because only variables u ∈ R+(v) can have v ∈ χ(u).
Thus, by Lemma 8(a), we can move between any two such solutions changing at most Q logn variables at a
time.

To complete the proof of Theorem 2, we show that we can move between any two cycle-equivalent
solutions to the 2-core by changing a small number of variables. We move between any two such solutions
by switching one flippable cycle at a time. Switching a flippable cycle, S, may require also changing some
non-core variables in ∪u∈SR

+(u). By Lemma 8(b), this requires switching at most Q logn variables.

4.1 Frozen variables

We close this section by showing how the digraph D can also be used to determine all of the frozen variables.
Recall that a variable is said to be frozen in a cluster, if it takes the same value in all assignments of the
cluster. In general, e.g., in random k-SAT, the set of frozen variables can differ from cluster to cluster. In
random k-XOR-SAT, though, the set of frozen variables depends only on the underlying hypergraph, i.e.,
is the same for all clusters. Specifically, the 2-core variables not in flippable cycles are frozen by definition,
whereas all 2-core variables in flippable cycles are not frozen. Below, we determine which non-core variables
are also frozen and, we will see, the answer is independent of the 2-core assignment.

To obtain a basis for all core-solutions, prior to seeking a basis for the extensions we form a basis for
the possible assignments to the flippable cycles. To do this, we first choose, for each flippable cycle C, one
variable vC arbitrarily and use |C|− 1 edges of the cycle to eliminate all variables in C other than vC . Thus,
for every variable v ∈ C other than vC , we have v = vC + z, where z ∈ {0, 1} depends on the cluster; we
set χ(v) = {vC}. Clearly, for any cluster, the set of chosen variables forms a basis S for the subspace of its
core solutions. Next, we apply the method, from the proof of Theorem 2, for finding a basis for the set of
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all extensions. The result is a set B containing S and non-core variables.

Theorem 3. In every cluster, the frozen variables consist of the 2-core variables not in flippable cycles, and
the non-core variables whose set χ does not contain any variable from B.

Proof. It suffices to prove that B is a basis for all solutions in the cluster. This follows trivially from the
fact that S is a basis for the core solutions of the cluster, and the fact that our procedure in the proof of
Theorem 2 yields a basis for all possible extensions of any 2-core solution.

5 Random hypergraphs and their cores

We will use the configuration model of Bollobás [4] to generate a random k-uniform hypergraph H with a
given degree sequence. Suppose we are given the degree d(v) for each vertex v; thus

∑

d(v) = kE where E
is the number of hyperedges. We take d(v) copies of each v, and we take a uniformly random partition of
these kE vertex-copies into E sets of size k. This naturally yields a k-uniform hypergraph, by mapping each
k-set to a hyperedge on the vertices whose copies are in the k-set. Note that the hypergraph may contain
loops (two copies of the same vertex in one hyperedge) and multiple edges (two identical hyperedges). It
is well-known that the probability that this partition yields a simple hypergraph (i.e., one with no loops or
multiple edges) is bounded below by a constant for degree sequences1 satisfying certain conditions:

Definition 9. Say that a degree sequence S is nice if E = Θ(n) and
∑

v d(v)(d(v) − 1) = O(n).

Every degree sequence we will consider will correspond to some subgraph of Hk(n, p) with a linear
expected number of edges. Since, as is well-known, the degree sequence of such random hypergraphs is nice
w.h.p., all the degree sequences we will consider will be nice. With this in mind, we will make heavy use of
the following standard proposition and corollary as working in the configuration model is technically much
easier than working with uniformly random hypergraphs with a given degree sequence.

Proposition 10. If S is a nice degree sequence, then there exists ǫ > 0 such that the probability that a
random hypergraph with degree sequence S in the configuration model is simple is at least ǫ.

This immediately yields:

Corollary 11. If S is a nice degree sequence then:

• If property Q holds w.h.p. for k-uniform hypergraphs with degree sequence S in the configuration model,
then Q holds w.h.p. for uniformly random simple hypergraphs with degree sequence S.

• For any random variable X, if E(X) = O(1) for k-uniform hypergraphs with degree sequence S in the
configuration model, then E(X) = O(1) for uniformly random simple hypergraphs with degree sequence
S.

The following lemma will be very useful. Its exponential term is not tight, but will suffice for our purposes.

Lemma 12. Consider a random k-uniform configuration with E edges, i.e., with total degree kE. For each
i = 2, ..., k, specify ℓi sets of i vertex-copies, and set L =

∑k
i=2 ℓi. The probability that each of these sets

appears in some hyperedge, and no two appear in the same hyperedge is less than

exp

(

kL2

E − L

) k
∏

i=2

(

(k − 1)(k − 2)...(k − i + 1)

(kE)i−1

)ℓi

.

1Clearly, we are referring to a sequence of degree sequences Sn so that asymptotic statements are meaningful. We suppress

this point though, throughout, to streamline exposition.
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Proof. We choose the hyperedges of the configuration by processing the specified sets one-at-a-time. To
process one of the ℓi sets of size i, we first choose one set member γ arbitrarily and then randomly select
the remaining k − 1 vertex-copies of the hyperedge containing γ. Every time we do this there are at least
kE−kL yet unselected vertex-copies. Thus, the probability we chose all other i−1 members of the specified
set is at most

(k − 1)(k − 2)...(k − i + 1)

(kE − kL)i−1
<

(k − 1)(k − 2)...(k − i + 1)

(kE)i−1
×
(

E

E − L

)i−1

<
(k − 1)(k − 2)...(k − i + 1)

(kE)i−1
× ekL/(E−L),

since i ≤ k. So the probability that all L tuples are chosen to be in a hyperedge is less than

k
∏

i=2

(

(k − 1)(k − 2)...(k − i + 1)

(kE)i−1

)ℓi

× e(kL/(E−L))ℓi = ekL
2/(E−L) ×

k
∏

i=2

(

(k − 1)(k − 2)...(k − i + 1)

(kE)i−1

)ℓi

5.1 Cores

It is well-known that the r-core of a random k-uniform hypergraph is uniformly random conditional on its
degree sequence. See [22] for the case k = 2, and [18] for the nearly identical proof for general r. In fact,
the same is true of the graph remaining after any number of iterations of the parallel stripping process. It
is also straightforward (see e.g., [18]) to show the following propositions.

Proposition 13. Let H = Hk(n, p) be a random k-uniform hypergraph and let H = H0, H1, . . . be the
sequence of hypergraphs produced by the parallel stripping process.

(a) For every i ≥ 0, Hi is uniformly random with respect to its degree sequence.

(b) There exist functions ρ0, ρ1, . . . such that for any fixed integer s, w.h.p. Hs contains ρj(s)n + o(n)
vertices of degree j and 1

k (
∑

j≥1 jρj(s))n + o(n) edges.

The following is a bit stronger than Proposition 13(a).

Proposition 14. Let H = Hk(n, p) and for any i ≥ 0, let Hi be the hypergraph produced by i rounds of the
parallel stripping process. Expose V (Hi), and for each 0 ≤ j ≤ r − 1, expose Vj , the set of vertices of degree
j in Hi. Thus V≥r = V (Hi)−∪r−1

j=0Vi is the set of vertices of degree at least r in Hi. Finally, expose E, the
number of edges in Hi. The hypergraph Hi is uniformly random conditional on these parameters.

Proof. Consider any two hypergraphs A,A′ on V (Hi) which satisfy these parameters. Consider any hyper-
graph H such that, if we apply the parallel stripping process for i rounds, then Hi = A. Create H ′ by
replacing A, the graph induced by V (Hi), with A′. Since A,A′ agree on V0, ..., Vr−1, it is easy to see that
applying the parallel stripping process to H ′ for i rounds will leave H ′

i = A′. Furthermore, H,H ′ are both
equally likely to be chosen as Hk(n, p), since they have the same number of edges. Thus A,A′ are equally
likely to be Hi.

Proposition 13 allows us to use the configuration model to study Hi. We will begin by bounding the
contribution of the highest degree vertices to the sum of the degrees.

Lemma 15. For every θ > 0 there exists J = J(θ) such that for all i,

∣

∣

∣

∣

∣

∣

∑

v∈Hi

degHi
(v) −

J
∑

j=1

jρj(i)

∣

∣

∣

∣

∣

∣

< θn .
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Proof. By Proposition 13, the difference is o(n) +
∑

v:degHi
(v)>J degHi

(v). Since Hi ⊆ H0 = H , this sum is

bounded by the corresponding sum in H , i.e.,
∑

v:degH (v)>J degH(v). The fact that this sum can be made

arbitrarily smaller than θn for any θ > 0 by taking J = J(θ) sufficiently large, is well-known and follows from
the facts that (i) for each constant i, the number of vertices of degree i in H is w.h.p. λin+o(n) for a particular
λi = λi(c, k) and (ii) the number of hyperedges in H is highly concentrated around ( 1

k

∑

i≥1 iλi)n.

The following similar bound will also be useful:

Lemma 16. For every constant d and θ > 0 there exists J = J(d, θ) such that for all i,
∣

∣

∣

∣

∣

∣

∑

v:degHi
(v)≥d

degHi
(v)!

(degHi
(v) − d)!

−
J
∑

j=d

j!

(j − d)!
ρj(i)

∣

∣

∣

∣

∣

∣

< θn .

Proof. The proof is almost identical to that of Lemma 15 but exploits the concentration of the number of
d-stars in H , rather than of the number of edges. (Recall that a d-star is a set of d edges which contain a
common vertex.) The concentration of the number of d-stars in H is easily established, e.g., by the Second
Moment Method or Talagrand’s Inequality. (Indeed, Lemma 15 and its proof are special cases of this lemma
and its proof for d = 1.)

For any fixed integers k, r and real number λ > 0, we write

Ψr(λ) = e−λ
∑

i≥r−1

λi/i! and fk,r(λ) = f(λ) =
(k − 1)!λ

Ψr(λ)k−1
.

See [18, 14, 10, 12] for proofs that the threshold for the appearance of an r-core in a random k-uniform
hypergraph Hk(n, p) with p = c/nk−1 is

c∗k,r = min
λ>0

fk,r(λ).

We will see that f ′ has a unique 0 and, thus, for c > c∗k,r the equation f(λ) = c has two solutions.

Definition 17. For c > c∗k,r, let µ = µ(c) denote the larger of the two solutions of f(λ) = c.

The following two propositions are well-known; see eg. [18] for proofs.

Proposition 18. For every fixed j ≥ r, w.h.p. the r-core contains (e−µµj/j!)n + o(n) vertices of degree j.
Furthermore, w.h.p. the r-core contains (µ/k)Ψr(µ)n + o(n) edges.

Proposition 19. For every θ > 0, there exists B = B(θ) such that w.h.p.

(a) HB contains fewer than θn vertices not in the r-core;

(b) For each j ≥ r, |ρj(B) − e−µµj/j!| < θ.

The following lemma will be critical for our analysis.

Lemma 20. For every c > c∗k,r, there exists ζ = ζ(k, r, c) > 0 such that

(k − 1)
µr−1

(r − 2)!
< (1 − ζ)

∑

i≥r−1

µi

i!
, (1)

where µ is the largest of the two roots of the equation fk,r(λ) = c.

Proof.

f ′(λ) = 0 ⇐⇒ Ψr(λ) = λ(k − 1)Ψr(λ)k−2Ψ′
r(λ) ⇐⇒

∑

i≥r−1

λi

i!
= (k − 1)

λr−1

(r − 2)!
. (2)

Equation (2) yields c∗k,r = f(λ∗) for some λ∗ satisfying the last equation in (2). For c > c∗k,r, since µ = µ(c)
is the largest of the two roots of f(λ) = c, it follows that µ > λ∗. The lemma now follows by noting that the

RHS of (1) divided by the LHS is proportional to
∑

i≥r−1
µi−r+1

i! , which is clearly increasing with µ.
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6 Preliminaries to the proof of Lemma 8

As we said above, we will choose a sufficiently large constant B, strip down to HB, and then focus on
R+(u) ∩HB, making use of the fact that HB is very close to the 2-core (by Proposition 19). The following
will be used to bound the number of vertices that are removed from R+(u) when stripping down to HB. For
integer s ≥ 0, we use Ns(v) to denote the s-th neighborhood of v, i.e., the set of vertices within distance s
from v. For any set of vertices A, Ns(A) =

⋃

v∈A Ns(v). We consider a single vertex to be a connected set.
A straightforward induction yields the following.

Proposition 21. For any integer i and vertex u ∈ Hi, R
+(u) ⊆ N i(R+(u) ∩Hi).

Lemma 22. For any c, s ≥ 0, there exists Γ = Γ(c, s) such that in a random graph G(n, p) with p = c/n,
w.h.p. for every connected subset A of vertices |Ns(A)| ≤ Γ(|A| + logn).

Proof. We prove this for the case s = 1, i.e., that there is a constant γ > 1 such that w.h.p. every connected
subset of vertices A satisfies |N(A)| ≤ γ(|A| + logn). By iterating, we obtain that for every s ≥ 1, every
connected subset of vertices A satisfies |Ns(A)| ≤ fs(|A|) where

f1(x) = γ(x + logn)

fi+1(x) = γ(fi(x) + logn), for i ≥ 1.

A simple induction yields fi(x) ≤ γi(x + i logn) and that yields the lemma with Γ = sγs.
Given any set A of size a, the probability that A is connected is at most the expected number of spanning

trees which is aa−2(c/n)a−1. After conditioning that A is connected, the number of neighbors outside of A
is distributed as Bin(a(n− a), c/n). The probability that this exceeds z is at most

(

a(n− a)

z

)

( c

n

)z

<
(eca

z

)z

< 2−z, for z > 2eca.

For any γ > 2, if |N(A)| > γ(|A| + logn), then we must have |N(A)\A| > 1
2γ(|A| + log n). Taking γ > 4ec,

the expected number of connected sets A satisfying this last inequality is at most

(

n

a

)

aa−2
( c

n

)a−1

2−
1
2
γ(a+logn) <

en

a2
(ec)

a−1
2−

1
2
γ(a+logn) <

en

a2

( ec

2γ/2

)a−1

2−
1
2
γ logn = n−Θ(γ) ,

for γ sufficiently large. Multiplying by the n choices for a yields the lemma.

Lemma 23. Fix k ≥ 3 and let H = Hk(n, p) be a random k-uniform hypergraph with p = c/nk−1, where
c > c∗k,2. The expected number of vertices in flippable cycles in the 2-core of H is O(1).

Proof. Let D be the degree sequence of the 2-core of H . By Corollary 11, we can work in the configuration
model. Recalling Definition 17, Proposition 18 and Lemma 20, w.h.p.

(i) D has total degree γn + o(n), where γ = µΨr(µ),

(ii) D has λ2n + o(n) vertices of degree 2, where λ2 = e−µµ2/2,

(iii) there exists ζ > 0 such that 2(k − 1)λ2 < (1 − ζ)γ.

We first bound the expected number of flippable cycles of size a in the 2-core. Let Λ = γn + o(n) be the
total number of vertex copies, and let L = λ2n + o(n) be the number of copies of degree 2 vertices.

There are
(

L
a

)

choices for the connecting vertices, (a−1)!
2 ways to order them into a cycle, and 2a ways to

align their vertex-copies. This yields a pairs {y1, z1}, ...{ya, za} of vertex copies, each of which must land in
a hyperedge. We process these pairs one-at-a-time, halting if we ever find that the pair does not land in a
hyperedge. To process pair i, we ask only whether zi lands in the same hyperedge as yi; if it does we do not
expose the other vertex-copies in that hyperedge. Thus, prior to processing pair i, we have exposed exactly
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2i − 2 vertex-copies, all of degree 2. There are k − 1 other copies appearing in the same hyperedge as yi.
Each of the Λ − (2i− 1) unexposed copies (not including yi) is equally likely to be one of those copies (and,
for k ≥ 3, the exposed copies also have positive probability). So the probability that zi is one of them is at
most (k − 1)/(Λ − 2i + 1). So the expected number of flippable cycles of length a is at most:

(

L

a

)

(a− 1)!

2
2a

a
∏

i=1

k − 1

Λ − 2i + 1
< 1

2a

a
∏

i=1

2(k − 1)(L− i + 1)

Λ − 2i + 1
.

By condition (iii) above, 2(k−1)L/(Λ−1) < 1− 1
2ζ, and so 2(k−1)(L− i+1)/(Λ−2i+1) < 1− 1

2ζ for each
i, since L ≤ 1

2 (Λ − 1). So the expected number is at most 1
2a (1 − 1

2ζ)a, and so the expected total number of
vertices on flippable cycles is at most 1

2

∑

a≥1(1 − 1
2ζ)a = O(1).

7 Proof of Lemma 8 above the r-core threshold

Let H = Hk(n, p) be a random k-uniform hypergraph with p = c/nk−1 and let H = H0, H1, . . . be the
sequence of hypergraphs produced by the parallel r-stripping process. We will choose a stripping sequence
that is consistent with the parallel process; i.e., in our stripping sequence: for every i < j, the vertices
deleted in round i of the parallel process come before the vertices deleted in round j of the parallel process.

Let D be the digraph associated with this r-stripping sequence for H and recall that R+(u) denotes the
set of vertices reachable from a vertex u in D.

7.1 Proof of part (a)

Our main challenge is to prove the following lemma. The idea is that we will take B large enough so that by
stripping down to HB, Proposition 19 gives us control of the degree sequence that remains, and Lemma 20
allows us to prove that a certain branching process involving long paths in a graph constructed from HB

dies out.

Lemma 24. For every c > c∗k,r there exists B = B(c) and Q = Q(B, c) such that w.h.p. for every vertex u,

|R+(u) ∩HB| ≤ Q logn.

Proof of Lemma 8(a). Consider any vertex u. If u /∈ HB, then by Proposition 21, R+(u) ⊆ NB(u) in which
case Lemma 22 immediately implies that |R+(u)| < Γ(1 + logn) for some constant Γ = Γ(c, B).

If u ∈ HB, then R+(u) ⊆ NB(R+(u) ∩ HB), by Proposition 21. Since, by Lemma 24, |R+(u) ∩ HB| ≤
Q logn, Lemma 22 now implies that |R+(u)| < Γ(Q logn + logn) = Z logn for Z = ΓQ + 1 = Z(c, B).

For any i, we define Di to be the subdigraph of D induced by the vertices in Hi. We also define:

Definition 25. For any vertex u ∈ Di, let Si(u) denote R+(u) ∩Hi.

Let T be a BFS tree in Di rooted at u, thus spanning the vertices of Si(u). Since T is a BFS tree, each
vertex has indegree at most 1 in T implying that no two arcs of T were formed during the removal of the
same hyperedge. From this point on, we will treat T as an undirected graph.

The following technical lemma bounds the density of small subgraphs of Hk(n, p). Lemmas of this flavour
are very common in random graph theory. Given a subset S of the vertices of Hk(n, p), we let ℓj(S) denote

the number of hyperedges that contain exactly j of the vertices of S, and we let L(S) =
∑k

j=2(j − 1)ℓj.

Lemma 26. For every ζ > 0, there is θ > 0, such that w.h.p. every S with |S| ≤ θn has L(S) < (1 + ζ)|S|.

Proof. Rather than working in the Hk(n, p) model with p = c/nk−1, where the expected number of edges is
(c/k!)n + o(n), it will be convenient to work in the HR(n,m) model, where exactly m = (c/k!)n edges are
selected uniformly, independently and with replacement. Since m = O(n), standard arguments imply that
high probability properties in this model transfer to the Hk(n, p) model.
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Let Ya = Ya(ζ) denote the number of sets S with |S| = a and L(S) = (1 + ζ)|S|. We will bound E(Ya)
as follows. Define

La =







(ℓ2, ..., ℓk) :

k
∑

j=2

(j − 1)ℓj ≥ (1 + ζ)a







.

Choose a vertices and some (ℓ2, ..., ℓk) ∈ La, pick ℓj edges for each j, and then multiply by the probability
that each edge chooses (at least) the appropriate number of vertices from S. This yields

E(Ya) ≤
(

n

a

)

∑

(ℓ2,...,ℓk)∈La

k
∏

j=2

(

m

ℓj

)[(

k

j

)

( a

n

)j
]ℓj

<
(en

a

)a ∑

(ℓ2,...,ℓk)∈La

( a

n

)

∑k
j=2

(j−1)ℓj
k
∏

j=2

(Ja)ℓj

ℓj !
, for some constant J = J(c, k) > 0

<
(en

a

)a (a

n

)(1+ζ)a k
∏

j=2





∑

ℓj≥0

(Ja)ℓj

ℓj!





< ea
(a

n

)ζa

e(k−1)Ja

=

(

∆a

n

)ζa

, for some constant ∆ = ∆(c, k, ζ) > 0

Choosing θ = 1
2∆ , it is standard and straightforward to show E

(
∑

a<θn Ya

)

= o(1).

The following key lemma will allow us to bound the expected number of large trees T .

Lemma 27. For every vertex u ∈ Di, if T is the BFS tree in Di rooted at u, then

• For every i,

(a) For every v ∈ Si(u), v 6= u we have degHi
(v) ≤ degSi(u)(v) + r − 2.

(b) For every leaf v 6= u of T , degHi
(v) ≤ degT (v) + r − 2.

• For any δ > 0, we can choose i = i(δ) such that

(c) w.h.p. degSi(u)(v) = degT (v) for all but at most δ|Si(u)| + 2 vertices v ∈ Si(u).

Proof.
Part (a): Consider v 6= u. At the point in the stripping sequence that v will be removed, it will have

degree at most r − 1. One of those r − 1 edges is in Si(u), since v has indegree 1. Every other edge of Hi

containing v will be removed before v, therefore resulting in a directed edge out of v in Si(u).
Part (b): Since v is a leaf in T , and v 6= u, v was initially deletable. Thus, it has degree at most r− 1 in

Hi and it has degree at least 1 in T .
Part (c): For 2 ≤ j ≤ k, let ℓj denote the number of hyperedges with j vertices in Si(u). All vertices

of Si(u), except possibly u itself, are not in the r-core. So, by Lemma 19(a), we know that for any θ > 0
we can select i = i(θ) such that |Si(u)| < θn. If we pick θ sufficiently small in terms of δ, then Lemma 26

implies that w.h.p.,
∑k

j=2(j − 1)ℓj < (1 + δ/2)|Si(u)|. So

∑

v∈Si(u)

degSi(u)(v) =
k
∑

j=2

jℓj ≤ 2
k
∑

j=2

(j − 1)ℓj < (2 + δ)|Si(u)|.
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Now the total T -degree of the vertices in T is 2|Si(u)| − 2. So

∑

v∈Si(u)

degSi(u)(v) − degT (v) ≤ (2 + δ)|Si(u)| − (2|Si(u)| − 2) = δ|Si(u)| + 2.

This proves part (c).

In the following we will need to take B sufficiently large for various bounds to hold. Let Xa = Xa(B)
be the number of BFS trees T in DB with a vertices. Since we only need to show that there exists some
constant Q > 0 such that w.h.p. Xa = 0 for a > Q logn, in the following we will allow ourselves to assume
that a is greater than some sufficiently large constant.

To prove Lemma 24 we first observe that, by Proposition 19, we can assume that HB is uniformly random
conditional on its degree sequence. Since Lemma 24 asserts a property to hold with high probability, it suffices
to establish this property in the configuration model for HB. Moreover, recall that by Proposition 19(b) as
B is increased, w.h.p. the degree sequence of HB tends to that of the core.

Let v1, ..., va be the vertices of T . We first specify di = degT (vi) for each i, noting that these degrees
must sum to 2a − 2. The number of ways to arrange these a vertices into a tree with a specified degree
sequence is (a− 2)!/

∏

(di − 1)! and there are a choices for the root, u, of the tree.
Next we choose the vertices of T . Then for each edge of T , we choose a vertex-copy of each of its

endpoints. To do so, for each vi, we choose a copy of vi for each of the di edges in T incident with vi. If
degHB

(vi) = j, then there are j!/(j − di)! choices for the di copies of vi. Since degHB
(vi) ≥ di, the number

of choices corresponding to vi is at most
∑

w:degHB
(w)≥di

degHB
(w)!/(degHB

(w) − d)!. Applying Lemma 16

with θ =
√
δ, and replacing J with ∞, we obtain that this number is at most (Y (di) +

√
δ)n where

Y (d) = YB(d) =
∑

j≥d

j!

(j − d)!
ρj(B) .

Note that this bound holds uniformly, even when di grows with n.
Furthermore, if degSB(u)(vi) = degT (vi), and if vi 6= u, then by Lemma 27(a), di ≤ degHB

(v) ≤ di+r−2.
So in this case we can use Y ′(di) rather than Y (di) where

Y ′(d) = Y ′
B(d) =

d+r−2
∑

j=d

j!

(j − d)!
ρj(B) .

Using Y ′(di) instead of Y (di) will be particularly useful when di ≤ 2.
By Lemma 27(c), for any δ > 0 we can take B = B(δ) > 0 sufficiently large, so that we must use Y (d)

for at most δa + 2 vertices vi 6= u, none of which have degHB
= 1 (since if degHB

= 1, by Lemma 27(b), we
can use Y ′). For convenience, we will assume a > 2/δ so we can take δa + 2 ≤ 2δa. Then we overcount by
using Y (d) for exactly 2δa degree 2 vertices, even if the number for which it is required is smaller.

We will upper bound E(Xa) by using Y (d) for u and for every vertex vi with di ≥ 3. Let t1, t2, t3
denote the number of vertices vi for which di = 1, di = 2, di ≥ 3, respectively. We note that (Y (degT (u)) +√
δ)/(Y ′(degT (u)) +

√
δ) ≤ (Y (1) +

√
δ)/(Y ′(1) +

√
δ). Also, for sufficiently large d, Y (d) is decreasing and

so there is a constant d∗ such that for all d ≥ 3, Y (d) ≤ Y (d∗). So, if we were to use Y ′(2) for every degree
2 vertex, then the overall contribution of the Y, Y ′ terms would be at most

Y (1) +
√
δ

Y ′(1) +
√
δ

[(Y ′(1) +
√
δ)n]t1 · [(Y ′(2) +

√
δ)n]t2 · [(Y (d∗) +

√
δ)n]t3 .

However, to account for the 2δa vertices for which we use Y (2), we multiply by the
(

t2
2δa

)

≤
(

a
2δa

)

choices
for those vertices, and we multiply by Υ2δa where

Υ = 2
Y (2)

Y ′(2)
>

Y (2) +
√
δ

Y ′(2) +
√
δ

,
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for δ sufficiently small. This brings the overall contribution of the Y, Y ′ terms to at most:

Y (1) +
√
δ

Y ′(1) +
√
δ

[(Y ′(1)+
√
δ)n]t1 ·

(

a

2δa

)

Υ2δa[(Y ′(2)+
√
δ)n]t2 · [(Y (d∗)+

√
δ)n]t3

= O(n)[(Y ′(1) +
√
δ)n]t1−1

(

a

2δa

)

Υ2δa[(Y ′(2) +
√
δ)n]t2 · [(Y (d∗) +

√
δ)n]t3 .

Finally, we multiply by the probability that each of the a − 1 pairs of vertex-copies corresponding to
edges of T , lands in a hyperedge of the configuration and divide by the a! rearrangements of the vertices.
Because T is a BFS tree rooted at u, each vertex has indegree in T at most 1. Thus, no two edges of T were
formed from the same hyperedge. So, we can apply Lemma 12 to the a− 1 specified pairs of vertex-copies

and multiply by
(

k−1
kE

)a−1
eka

2/(E−a) to get an overall bound, where E is the number of edges in HB .
Recall that for c > c∗k,r, µ = µ(c) denotes the larger of the two solutions of f(λ) = c. By Proposition 19

and Lemma 15 for any δ > 0, we can take B sufficiently large so that
∣

∣

∣

∣

∣

∣

kE − µ
∑

j≥r−1

e−µµj

j!
n

∣

∣

∣

∣

∣

∣

≤ δn .

Our key Lemma 20 now yields that by taking B sufficiently large, we can have δ sufficiently small in
terms of ζ that various bounds below hold, including

(

e−µµr

(r − 2)!
+ δ

)

k − 1

kE/n
< 1 − ζ

2
. (3)

By Lemmata 16 and 19, for any δ > 0, we can take B sufficiently large so that Y ′(1) ≤ δ/2 and

Y ′(2) ≤ e−µµr

(r−2)! + δ/2. So, Y ′(1) +
√
δ, Y ′(2) +

√
δ are bounded above by δ and e−µµr

(r−2)! + δ, respectively. We

let Ψ = 2Y (d∗) > Y (d∗) +
√
δ for δ sufficiently small.

Putting all this together yields

E(Xa) ≤ O(n)

(

a

2δa

)

Υ2δa

(

k − 1

kE

)a−1

eka
2/(E−a)

×
∑

d1+...+da=2a−2

(δn)t1−1

[(

e−µµr

(r − 2)!
+ δ

)

n

]t2

(Ψn)t3
a(a− 2)!

a!
∏a

i=1(di − 1)!
(4)

≤ O(n/a)eka
2/(E−a)

(

1

(2δ)2δ(1 − 2δ)1−2δ

)a

Υ2δa

(

k − 1

kE/n

)a−1
∑

d1+...+da=2a−2

δt1
(

e−µµr

(r − 2)!
+ δ

)t2

Ψt3

= O(n/a)eka
2/(E−a)

(

Υ2δ

(2δ)2δ(1 − 2δ)1−2δ

)a(
k − 1

kE/n

)a
∑

d1+...+da=2a−2

δt1
(

e−µµr

(r − 2)!
+ δ

)t2

Ψt3 .

For δ sufficiently small in terms of ζ,

Υ2δ

(2δ)2δ(1 − 2δ)1−2δ
< 1 +

ζ

10
.

Since this is the degree sequence of a tree, we have t1 > t3, and so since δ < 1,

E(Xa) < O(n/a)eka
2/(E−a)

(

1 +
ζ

10

)a

×
∑

d1+...+da=2a−2

(√
δ
k − 1

kE/n

)t1 ([ e−µµr

(r − 2)!
+ δ

]

k − 1

kE/n

)t2 (√
δΨ

k − 1

kE/n

)t3

.
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We choose δ sufficiently small in terms of ζ so that

√
δ
k − 1

kE/n
,
√
δΨ

k − 1

kE/n
<

ζ

100
.

This and (3) yield

E(Xa) ≤ O(n/a)eka
2/(E−a)

(

1 +
ζ

10

)a
∑

d1+...+da=2a−2

(

1 − ζ

2

)t2 ( ζ

100

)a−t2

.

Now we fix t2 and count the number of choices for d1, ..., da. There are
(

a
t2

)

choices for the values of i
with di = 2. The remaining a − t2 degrees sum to 2a − 2 − 2t2. The number of choices for sequences of
y non-negative integers that sum to z is

(

y+z−1
y−1

)

, so the number of choices for these degrees is bounded by
(

2(a−t2)−3
a−t2−1

)

< 22(a−t2)−3 < 4a−t2 . Thus,

E(Xa) ≤ O(n/a)eka
2/(E−a)

(

1 +
ζ

10

)a a
∑

ℓ2=0

(

a

t2

)

4a−t2

(

1 − ζ

2

)t2 ( ζ

100

)a−t2

= O(n/a)eka
2/(E−a)

(

1 +
ζ

10

)a(

1 − ζ

2
+

ζ

25

)a

< O(n/a)eka
2/(E−a)

(

1 − ζ

4

)a

< O(n/a)

(

1 − ζ

16

)a

, (5)

where the last inequality holds for all a such that ka/(E − a) = ka/(ρn+ o(n) − a) is sufficiently small that

eka/(E−a) < 1 + ζ
4 . Thus, there are constants Q, ξ > 0 such that E(

∑ξn
a=Q logn Xa) = o(1) and, therefore,

w.h.p. there are no trees of size between Q logn and ξn. Note now that ξ depends only on ζ which, in turn,
depends only on c, r. Therefore, we can always select δ < ξ. Recalling that, using Proposition 19(a), we
chose B large enough that HB contains fewer than δn vertices outside of the r-core, this implies that there
are no trees of size at least ξn.

�

7.2 Proof of part (b)

Consider any flippable cycle C with vertices u1, ..., uℓ. In our directed graph D, add edges from uj to uj+1

for each j (addition mod ℓ). Thus, R+(u1) = ∪ℓ
j=1R

+(uj). We modify the arguments from the proof of part
(a) for this setting.

Again, we let T be a BFS tree, this time rooted at u1. Note that since each uj has degree exactly 2 in
the 2-core, it follows that for degHB

(uj) = degSB
(uj) for each j, and for j = 1, ℓ, degSB

(uj) = degT (uj) + 1.
Thus Lemma 27(a) still holds. The only members of C that can be leaves of T are u1, uℓ, so at most one leaf
of T violates Lemma 27(b). Finally, by Lemma 23, we can restrict our attention to ℓ = o(n). Since u1, ..., uℓ

are the only 2-core vertices in SB(U1), we can maintain |SB(u1)| ≤ θn and the proof of Lemma 27(c) still
holds.

As in part(a), we bound the expected number of such trees of size a; u1 is the root and hence plays the
role of u from part (a). This time, T has the additional property that there is an edge in D from a vertex of T
(i.e. uℓ) to u1. To account for this additional property, We adjust (4) as follows: (i) multiply by the number
of choices of one of the a−1 other vertices to be uℓ; (ii) account for the fact that degSB

(ui) = degT (ui)+1, for

i = 1, ℓ; (iii) choose vertex-copies for the extra edge from uℓ to u1; (iv) adjust the term
(

k−1
kE

)a−1
eka

2/(E−a)

which, by Lemma 12, bounded the probability that the a− 1 pairs of vertex-copies corresponding to edges
of T each landed in a hyperedge of the configuration.
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For (ii) and (iii), we use Y (d(uj) + 1) instead of Y (d(uj)) or Y ′(d(uj)) for j = 1, ℓ. Recall that in
part (a), we used Y (deg(u)) instead of Y ′(deg(u)); since Y (d(u1) + 1) < Y (deg(u1)), the adjustment for u1

is a decrease. The adjustment for uℓ is an increase of a multiplicative factor of at most (Y (d(uℓ) + 1) +√
δ)/(Y ′(deg(uℓ)) +

√
δ) < (Y (d∗) +

√
δ)/(Y ′(1) +

√
δ) = O(1).

For (iv), the hyperedge containing u1, uℓ is in the 2-core and so is distinct from the other a−1 hyperedges.
This results in another multiplicative factor of k−1

kE to account for that edge, when applying Lemma 12.

The net result is to multipy E(Xa) by O(a/n), and so the bound on E(Xa) in (5) becomes O(1)
(

1 − ζ
16

)a

.

Summing over all a yields that the expected number of flippable cycles C such that |∪u∈CR
+(u)∩HB | > ω(n)

is o(1) for any ω(n) → ∞. Proposition 21 and Lemma 22 complete the proof. �

8 Proof of Lemma 8 below the r-core threshold

As in the case for c > c∗k,r, we will carry out a large but fixed number, I, of rounds of the parallel r-stripping
process, ending up with a hypergraph HI . Because we are below the r-core threshold, this will delete all
but a very small, albeit linear, number of vertices. Proposition 13 asserts that the remaining hypergraph
is uniformly random conditional on its degree sequence. We will determine this degree sequence and apply
the technique from [19] to show that the maximum component size in the remaining hypergraph has size
O(log n). Thus, for every v, we must have |R+(v) ∩ HI | = O(log n). Proposition 21 and Lemma 22 then
implies that |R+(v)| = O(log n) as required.

In what follows, we will describe the proof for the case r = 2 and k ≥ 3, as this is all that is required for
Theorem 2, and we write c∗k,2 = c∗k. The proof for general r is a straightforward adaption.

We first focus on determining the degree sequence, ρ0, ρ1, ... of Proposition 13. Let Po(µ) denote a Poisson
variable with mean µ and recursively define the following quantities:

φ(0) = 1

λi =
cφk−1

i

(k − 1)!

φi+1 = Pr[Po(λi) ≥ 1]

zi = Pr[Po(λi−1) ≥ 2] .

Lemma 28.

ρ1(i) = Pr[Po(λi) = 1] · Pr

[

Po

(

c(zi−1 − zi)

(k − 1)!

)

≥ 1

]

(6)

ρj(i) = Pr[Po(λi) = j] , for j ≥ 2 . (7)

Proof. For j ≥ 2, a vertex v has degree j in Hi iff it has exactly j neighbours that survived the first i rounds.
As proven, for example, in [18] this occurs with probability that tends to Pr[Po(λi) = j] as n → ∞.

A vertex v has degree 1 in Hi iff it has exactly one neighbour that survived the first i rounds and at
least one neighbour that survived the first i− 1 rounds but not the ith round (otherwise v would have been
deleted during round i or earlier). Arguing very similarly to the proof of (7) in [18], it follows that this
occurs with probability that tends to the right hand side of (6) as n → ∞.

A simple adaptation of the proof of the main result of [19] provides a hypergraph version. Proposition 13
and Lemma 16 allow us to apply that hypergraph version to deduce that if

(k − 1)
∑

j≥1

j(j − 1)ρj(I) <
∑

j≥1

jρj(I), i.e., ρ1(I) >
∑

j≥3

((k − 1)j(j − 1) − j)ρj(I) ,

then w.h.p. all components of HI have size O(log n).
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As discussed in [18], if c < c∗k then limi→∞ φ(i) = 0. (Indeed, it is not hard to see that c∗k is defined
to be the largest c for which the limit of φ is 0.) Thus, by taking i sufficiently large, we can take φi to be
arbitrarily small. It will be useful to develop the following asymptotics as λi−1 ≡ λ → 0:

zi = 1 − e−λ(1 + λ)

= 1 − [1 − λ + λ2/2 −O(λ3)](1 + λ)

=
λ2

2
+ O(λ3) .

φi = 1 − e−λ

= λ + O(λ2) .

zi−1 =
λ2
i−2

2
+ O(λ3

i−2)

=
φ2
i−1

2
+ O(φ3

i−1)

= Θ(φ
2/(k−1)
i )

= Θ(λ2/(k−1)) .

From the above, for k > 2, it easily follows that for λ sufficiently small, zi−1 − zi ≥ 1
2zi−1 = Θ(λ2/(k−1)),

and so

ρ1(i) = λie
−λi

(

1 − exp

(

−c(zi−1 − zi)

(k − 1)!

))

= λie
−λi × Θ(λ2/(k−1)) .

At the same time, since λi → 0, a series expansion easily gives the second equality below

∑

j≥3

((k − 1)j(j − 1) − j)ρj(i) =
∑

j≥3

j(j − 2) Pr[Po(λi) = j] = Θ(ρ3(i)) = Θ(λ3
i )e−λi .

Thus, for any ǫ > 0, if i is sufficiently large, we have ρ1(i) > (1 + ǫ)
∑

j≥3((k − 1)j(j − 1) − j)ρj(I), since

λiλ
2/(k−1) ≫ λ3

i .

9 Proof of Theorem 1

Given a satisfying assignment, we say that a set S of variables is flippable if changing the assignment of every
variable in S results in another satisfying assignment. A flippable set is minimal if it does not contain a
flippable proper subset. Note that flippable sets can be characterized in terms of the underlying hypergraph.

Proposition 29. S is flippable iff every hyperedge contains an even number of members of S.

Thus, recalling Definition 2, a flippable cycle is a flippable set. Theorem 1 follows from the following.

Lemma 30. Let H be a random k-uniform hypergraph Hk(n, p), where p = c/nk−1. For every c > c∗k,2 there
exists α > 0 such that w.h.p. every minimal flippable set in the 2-core of H either is a flippable cycle or has
size at least αn.

If we could show (deterministically) that the hypergraph induced by any minimal flippable set in a 2-core
that is not a flippable cycle is sufficiently dense, then Lemma 30 would follow by a rather standard argument.
Unfortunately, there is no useful lower bound on the density, mainly because of the possibility of very long
2-linked paths in S (defined below). Instead, we follow an approach akin to that of [20], forming a graph
Γ(S) by contracting those long paths, and making use of the fact that Γ(S) is dense (Lemma 35). While the
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basic idea is similar to [20], the computations are significantly more challenging as we have to carry out the
proof in the configuration model.

To prove Lemma 30, we first require a few definitions. Note that these concern any hypergraph, not just
a random one.

Definition 31. Let H be a k-uniform hypergraph. A 2-linked path of a set S ⊆ V (H) is a set of vertices
v0, ..., vt ∈ S and hyperedges e1, ..., et such that

(i) v0, ..., vt are all distinct except that possibly v0 = vt.

(ii) Each ei contains vi−1, vi and no other vertices of S.

(iii) v1, ..., vt−1 all have degree 2 in H.

(iv) Each of v0, vt either has degree 6= 2 in H, or lies in a hyperedge not containing exactly 2 members of
S.

We call v0, vt the endpoints of the path and v1, ..., vt−1 its connecting vertices.

Note that if v0 = vt then (iv) implies that degH(v0) > 2 and hence v0, ..., vt do not form a flippable cycle.
Note also that a loop, i.e., a hyperedge containing a vertex v twice, can yield a 2-linked path with t = 1 and
v0 = v1 = v if v ∈ S, no other vertices of the edge are in S, and degH(v) > 2. If degH(v) = 2 then v is a
flippable cycle.

Definition 32. We say that S ⊆ V (H) is a linked set if (i) S does not contain a flippable cycle as a subset,
(ii) no hyperedge of H contains exactly one element of S and (iii) every hyperedge e of H with |e ∩ S| = 2
is in a 2-linked path of S.

Proposition 33. Suppose S is a flippable set which does not contain a flippable cycle as a subset. Then S
is a linked set.

Proof. By Proposition 29, we only need to check condition (iii). Consider any hyperedge e with |e ∩ S| = 2.
Either e itself forms a 2-linked path in S, or it is easily seen that e can be extended into such a path, unless
e lies in a flippable cycle.

Remark: It is easy to see that in any Uniquely Extendible CSP, the set of disagreeing variables of any
two solutions must be a flippable set. Since Proposition 33 was derived by only considering the underlying
hypergraph (and not the specific constraints), it applies to any UE CSP. Therefore, our Theorem 1 extends
readily to all UE CSP since its proof amounts to proving that for some constant α > 0, all linked sets are
either flippable cycles or contain at least αn variables.

Given a linked set, S, we consider the mixed hypergraph Γ(S) formed as follows:

(a) The vertices of Γ(S) are the endpoints of the 2-linked paths in S along with all vertices of S that do
not lie in any 2-linked paths.

(b) There is an edge in Γ(S) between the endpoints of each 2-linked path in S.

(c) For every hyperedge e of H with |e ∩ S| > 2, e ∩ S is a hyperedge of Γ(S).

Thus V (Γ(S)) ⊆ S, and since no hyperedge of C contains exactly one element of S, for every v ∈ V (Γ(S))
we have degΓ(S)(v) = degH(v). Any vertex of S that is not in Γ(S) is a connecting vertex of a 2-linked path
in S.

Proposition 34. If S is a non-empty linked set, then Γ(S) has at least one vertex.

Proof. Any vertex of S that is not in Γ(S) is a connecting vertex of a 2-linked path in S. The endpoints of
that 2-linked path are in Γ(S).
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Note that Γ(S) contains hyperedges of size between 2 and k. For each 2 ≤ i ≤ k, we define ℓi to be the
number of i-edges in Γ(S).

Lemma 35. If every vertex in H has degree at least 2 then
∑k

i=2(i− 1)ℓi ≥ (1 + 1
2k )|V (Γ(S)|.

Proof. As we said above, every v ∈ V (Γ(S)) has the same degree in Γ(S) as it does in H. Thus Γ(S) has
minimum degree at least 2. Consider any v of degree 2 in Γ(S). Then v has degree 2 in H and hence cannot
be the endpoint of a 2-linked path in S, unless v lies in at least one hyperedge of H containing more than
2 members of S. It follows that v lies in at least one hyperedge of Γ(S) of size greater than 2. Therefore,

at most
∑k

i=3 iℓi < k
∑k

i=3 ℓi vertices of Γ(S) have degree 2, and so letting Z denote the number of vertices
with degree at least 3 in Γ(S), we have

|V (Γ(S))| ≤ Z + k

k
∑

i=3

ℓi ≤ k

(

Z +

k
∑

i=3

ℓi

)

.

By the handshaking lemma,
∑k

i=2 iℓi =
∑

v degΓ(S)(v). Therefore,

k
∑

i=2

(i− 1)ℓi =
1

2

∑

v

degΓ(S)(v) +
k
∑

i=2

(i/2 − 1)ℓi

≥ 1

2

∑

v

degΓ(S)(v) +
1

2

k
∑

i=3

ℓi

=
∑

v

1 +
∑

v

1

2
(degΓ(S)(v) − 2) +

1

2

k
∑

i=3

ℓi

≥ |V (Γ(S))| +
1

2
Z +

1

2

k
∑

i=3

ℓi , since degΓ(S)(v) ≥ 2 for all v

≥
(

1 +
1

2k

)

|V (Γ(S))| .

Let C be the 2-core of H = Hk(n, p). We will apply Lemma 35 with H = C to prove:

Lemma 36. There exists α > 0 such that w.h.p. C has no linked set of size less than αn.

Lemma 30 follows immediately from Lemma 36. The proof of Lemma 36 will be reminiscent of the proof
of Lemma 26, but significantly more complicated because (i) we are working in the configuration model and
(ii) where we had ℓ2 2-edges in Lemma 36, we have ℓ2 2-linked paths here. First, we provide a technical
lemma.

Lemma 37. For any integers a, t, given a set of a vertices in H = Hk(n, p), with p = c/nk−1 the probability
that their total degree exceeds tkca is at most (e/t)act.

Proof. Given a set A of a vertices, let EA denote the number of hyperedges containing at least one member
of A. The total degree in A is at most kEA. The number of potential edges in EA is at most a

(

n
k−1

)

< ank−1,

and so EA is dominated from above by Bin(ank−1, c/nk−1) and using
(

n
z

)

≤ (ne/z)z we get

Pr
[

Bin(ank−1, c/nk−1) > act
]

<

(

ank−1

act

)

( c

nk−1

)act

< (e/t)act.
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Proof of Lemma 36. By Corollary 11, we can work in the configuration model. Let D be the degree
sequence of C. Recalling Definition 17, Proposition 18 and our key Lemma 20, we have w.h.p.

(i) D has total degree γn + o(n), where γ = µΨr(µ),

(ii) D has λ2n + o(n) vertices of degree 2, where λ2 = e−µµ2/2,

(iii) there exists ζ > 0 such that 2(k − 1)λ2 < (1 − ζ)γ.

For each a ≥ 1, let Xa denote the number of linked sets S in C for which |Γ(S)| = a and let X =
∑αn

a=1 Xa.
Define

La =

{

(ℓ2, ..., ℓk) :

(

1 +
1

2k

)

a ≤
k
∑

i=2

(i− 1)ℓi ≤
(

1 +
1

2k

)

a + (k − 1)

}

.

By Lemma 35, for any linked set S in C of size a, there is some (ℓ2, ..., ℓk) ∈ La so that Γ(S) contains at
least ℓi i-edges for each i.

To bound E(Xa), we begin by choosing a vertices, A ⊆ V (C) and sum over all t ≥ 0 of the probability
that their total degree in C lies in the range (tkca, (t+1)kca]. For each t, we upper bound this last probability
by the probability that their total degree in H lies in (tkca,∞]. Moreover, to sum over all subsets A ⊆ V (C)
we overcount by summing instead over all such A ⊆ V (H), and using Lemma 37. Of course, if such a set is
not a subset of C then the probability of it contributing to Xa is zero. So this provides an upperbound on
E(Xa).

Given A, we sum over all possibilities for the values of (ℓ2, ..., ℓk) ∈ La. For each r ≥ 2, we choose ℓr
r-sets of vertex-copies belonging to vertices of A. If the total degree of A is in (tkca, (t + 1)kca] then the
number of choices for these ℓr r − sets is at most

(

((t + 1)kca)r

r!

)ℓr

/ℓr! <
((t + 1)kca)rℓr

ℓr!
.

Denote the ℓ2 2-sets as {u1, w1}, ..., {uℓ2, wℓ2}. For each i = 1, ..., ℓ2, we select ji ≥ 0, the number of
connecting variables in the 2-linked path from ui to wi, we choose the ji degree two connecting variables for
that path, and we choose one of the two possible orientations of the vertex-copies of each of those connecting
variables. Let J = j1 + ... + jℓ2 , be the number of connecting variables selected. Let L = λ2n + o(n) be
the number of degree 2 vertices in C. Then the total number of choices for the connecting vertices and the
orientations of their copies is at most

∏J
i=1 2(L− i + 1).

Next, we apply Lemma 12 to bound the probability that the ℓ3 + ... + ℓk sets of size at least 3 all land
in hyperedges of the configuration and that for each i = 1, ..., ℓ2, the first pair in the 2-linked path, i.e., ui

and the first copy of the first of the ji connecting variables, lands in a hyperedge of the configuration. Note
that ℓ2 + ... + ℓk ≤ ∑k

i=2(i − 1)ℓi < 2a + o(n). By assuming a < αn for some sufficiently small α, we get
γn− 2a + o(n) > 1

2γn. Therefore, Lemma 12 yields that this probability is at most

exp

(

k(ℓ2 + ...ℓk)2

1
2γn

) k
∏

i=2

(

(k − 1)(k − 2)...(k − i + 1)

(γn + o(n))i−1

)ℓi

= exp

(

8ka2 + o(n)

γn

) k
∏

i=2

(

(k − 1)(k − 2)...(k − i + 1)

(γn + o(n))i−1

)ℓi

< exp

(

8ka2

γn

) k
∏

i=2

(

k

γn

)(i−1)ℓi

.

Following the analysis of Lemma 12, we have now exposed ℓ2 + ... + ℓk hyperedges of the configuration.
Let Λ be the number of unmatched vertex-copies remaining. Since ℓ2 + ... + ℓk < 2a + o(n), we have
Λ ≥ γn− 2ka+ o(n). If the other vertex-copies required for the 2-linked paths are still unmatched, then we
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continue; else we halt observing that in this case, the set of choices made so far cannot lead to a linked set
on the chosen vertices.

There are J pairs of vertex copies that each need to be in a hyperedge of the configuration in order
to complete the 2-linked paths. Following the same argument as in Lemma 23, the probability of this
happenning is at most

∏J
i=1

k−1
Λ−k(i−1) . Applying (iii) above, we obtain the second inequality below

2(k − 1)L

Λ
<

2(k − 1)λ2n + o(n)

γn− 2ka + o(n)
< 1 − ζ

2
,

if a < αn for α sufficiently small in terms of γ, λ2. Since 2(k − 1)L ≤ Λ and k ≤ 2(k − 1), we have
2(k−1)(L−(i−1))

Λ−k(i−1) < 1 − ζ
2 for each i, leading to

E(Xa) <

(

n

a

)

∑

t≥0

(
e

t
)tca

∑

ℓ2,...,ℓk∈La

∑

j1,...,jℓ2≥0

e8ka
2/(γn)

(

k
∏

i=2

((t + 1)kca)iℓi

ℓi!

)

×
(

k
∏

i=2

(

k

γn

)(i−1)ℓi
)(

J
∏

i=1

2(k − 1)(L− (i− 1))

Λ − k(i− 1)

)

<
(en

a

)a∑

t≥0

(
e

t
)tca

∑

ℓ2,...,ℓk∈La

e8ka
2/(γn)

(

k
∏

i=2

(kca)ℓi

ℓi!

(

k2ca

γn

)(i−1)ℓi

(t + 1)iℓi

)

×
∑

j1,...,jℓ2≥0

(1 − ζ/2)J .

Since J = j1 + ... + jℓ2 , we have
∑

j1,...,jℓ2≥0(1 − ζ/2)J =
(

∑

j≥0(1 − ζ/2)j
)ℓ2

= (2/ζ)ℓ2 , we get

E(Xa) <
(en

a

)a

e8ka
2/γn

∑

ℓ2,...,ℓk∈La

(

k2ca

γn

)

∑k
i=2

(i−1)ℓi
(

k
∏

i=2

(kca)ℓi

ℓi!

)

(
2

ζ
)ℓ2
∑

t≥0

(
e

t
)tca(t + 1)

∑k
i=2

iℓi .

By our choice of La

ℓ2 ≤
k
∑

i=2

(i − 1)ℓi ≤ (1 + 1
2k )a + k − 1,

k
∑

i=2

iℓi ≤ 2

k
∑

i=2

(i− 1)ℓi ≤ 3a + 2k,

we obtain (2/ζ)ℓ2 < Za
1 and

∑

t≥0

(e/t)tca(t + 1)
∑k

i=2
iℓi <

∑

t≥0

(e/t)tca(t + 1)
3a+2k

<
∑

t≥0

(

(e/t)tc(t + 1)
3+2k

)a

<Za
2 ,

for constants Z1 = Z1(c), Z2 = Z2(c), since (e/t)tc(t + 1)3+2k is decreasing for large t. Also using a ≤ n we
obtain

E(Xa) <
(en

a

)a

e8ka/γ(Z1Z2)a
(

k2ca

γn

)

(

1+
1
2k

)

a+k−1
∑

ℓ2,...,ℓk≥0

k
∏

i=2

(kca)ℓi

ℓi!

= O(1)



eZ1Z2e
8k/γ

(

k2c

γ

)1+
1
2k





a
(a

n

)a/2k





∑

ℓ≥0

(kca)ℓ

ℓ!





k−1
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Applying
(

∑

ℓ≥0
(kca)ℓ

ℓ!

)k−1

= ekca(k−1) we get

E(Xa) < O(1)

(

eZ1Z2e
8k/γ(k2c/γ)1+

1
2k eck(k−1)

)a
( a

n

)a/2k

< Y a
( a

n

)a/2k

,

for a constant Y = Y (γ, λ2, ζ, b, ξ) that does not depend on a, so long as a < αn for sufficiently small

α > 0. This yields E(
∑

√
n

a=1 Xa) = o(1). Moreover, for all α sufficiently small, E(Xa) < 2−a. Therefore,
E(
∑

a≥√
n Xa) = o(1) and, thus, E(X) = o(1). �
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[7] V. Chvátal and E. Szemerédi. Many hard examples for resolution. J. ACM, 35(4), 759-768 (1988).

[8] H. Connamacher and M. Molloy. The exact satisfiability threshold for a potentially intractable random
constraint satisfaction problem. In Proc. 45th of FOCS (2004).

[9] O. Dubois and J. Mandler. The 3-XORSAT threshold. In Proc. 43rd FOCS (2002), p 769.

[10] D. Fernholz and V. Ramachandran. Cores and Connectivity in Sparse Random Graphs. The University
of Texas at Austin, Department of Computer Sciences, technical report TR-04-13 (2004).

[11] M. Guidetti and A.P. Young. Complexity of several constraint-satisfaction problems using the heuristic
classical algorithm WalkSAT. Phys. Rev. E, 84 (1), 011102, July 2011.

[12] S. Janson and M. Luczak. A simple solution to the k-core problem. Random Structures Algorithms 30

(2007) 50 - 62 (2007).
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