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The Hubble constant and dark energy
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ABSTRACT

The Hubble Constant measured from the anisotropy in the cosmic microwave

background (CMB) is shown to be independent of small changes from the stan-

dard model of the redshift dependence of dark energy. Modifications of the

Friedmann equation to include phantom power (w < –1), textures (w = –2/3)

and curvature are considered, and constraints on these dark energy contributors

from supernova observations are derived. Modified values for the density of mat-

ter inferred from cosmic density perturbations and from the CMB under these

circumstances are also estimated, as exemplified by 2df and SDSS.

Subject headings: galaxies: distances and redshifts – cosmology: distance scale

1. Introduction

Turner (1999) coined the term dark energy to name the power source of the accelerating

Universe (Garnavich et al. 1998; Perlmutter et al. 1999).

For the first time, there was a plausible, complete accounting of matter and energy in

the Universe. Expressed as a fraction of the critical density there are: neutrinos, between

0.3% and 15%; stars, 0.5%; baryons (total), 5%; matter (total), 40%; smooth, dark energy,

60%; adding up to the critical density. This accounting is consistent with the inflationary

prediction of a flat Universe and defines three dark-matter problems: Where are the dark

baryons? What is the nonbaryonic dark matter? What is the nature of the dark energy? The

leading candidate for the (optically) dark baryons is diffuse hot gas; the leading candidates

for the nonbaryonic dark matter were slowly moving elementary particles left over from the

earliest moments (cold dark matter), such as axions or neutralinos; the leading candidates for

the dark energy involve fundamental physics and include a cosmological constant (vacuum

energy), a rolling scalar field (quintessence), and light, frustrated topological defects.

Gooding et al. (1992) considered a Universe in which density fluctuations are produced

in an initally smooth Universe by the ordering dynamics of scalar fields following a symmetry
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breaking phase transition at the grand unified scale. Such transitions lead to the formation

of an unstable topological defect known as “global texture.”

Carroll 1 points out that for some purposes it is useful to pretend that the −ka−2R−2
0

term in the Friedmann equation represents an effective “energy density in curvature”, and

define ρk −(3k/8πGR2
0)a

−2.

Caldwell (1999 astro-ph 8168) remarks that most observations are consistent with mod-

els right up to the w = –1 or cosmological constant limit, and so it is natural to ask what

lies on the other side at w < –1. He termed this phantom energy.

In this paper we outline how a dark energy program will constrain these elements and,

in particular, how they affect the measurement of the Hubble Constant by means of the

anisotropy in the cosmic microwave background. Section 2 extends the Friedmann equation;

§3 shows that supernova data are currently tolerant of small values of Ω1 and Ω2; §4 explores

the degeneracies in CMB data; §5 examines how matter density experiments like 2dF (Pea-

cock et al. 2001) are affected; §6 broadly explores the parameter space of Ωn as it applies to

SN and CMB data. Our conclusions are in the final section.

2. The Expansion Rate

An observer confronted with data like that in Figure 1 might respond by fitting a

polynomial to the expansion rate as a function of redshift. But a physical equation already

exists, namely the Friedmann equation.

(H/H0)
2 = Σ4

−1a
−nΩn = h2 (1)

From the point of view of fitting the data the observer might be surprised at the emphasis

placed by physics on the higher order coefficients. This was not rectified until the discovery

of dark energy, based on earlier versions of Figure 1 by the High z Supernova and Supernova

Cosmology teams, although the zeroth order coefficient was considered and discarded by

Einstein.

According to Gooding et al. (1992) the textures source term is

ST = 4πG(ρT + 3PT )τ
2
∗
a2/(1 + a) (2)

1 (http://ned.ipac.caltech.edu/level5/Carroll2/Carroll2 1.html)

http://ned.ipac.caltech.edu/level5/Carroll2/Carroll2$_$1.html
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where τ∗ is a time constant equal to (8πGρeq/3)
−1/2 and the scale factor, a, is taken to

be unity at the equality of matter and radiation. The quantities ρT and PT are the density

and pressure of textures respectively. The time constant is just the age of the Universe at

equality. When a >> 1, S scales like ρa, and textures will contribute to Ω1. When a << 1,

S scales like ρa2, and textures will contribute to Ω2.

The Ω coefficients are normalized by the Friedmann equation, so that

Σ4
n=−1Ωn = 1 (3)

where

n = 3(1 + wn) (4)

specifies the equation of state for matter and radiation components etc.

3. Fitting the Supernova Observations

The current supernova data (Conley et al. 2011) have been processed by Ned Wright

and are shown in Figure 1. A value of Ωk = 0.05 does not violate the data. GRB data are

also shown in Figure 1 (Schaefer 2006). The data are reproduced in Figure 2. Assuming

Ω−1 = Ω2 = 0, a value of Ω1 = 0.1 does not violate the data. The data are reproduced

again in Figure 3, where we consider the case w = –4/3. Assuming Ω1 = Ω2 = 0, a value

of Ω−1 = 0.1 does not violate the data. Larger doses of textures, curvature, and phantom

power would violate the data. We revisit these data to place firm constraints in §6.

4. Fitting the CMB

Some constraints on Ω±1 and Ω2 are imposed by the small scale anisotropy of the

cosmic microwave background. Komatsu et al. (2009) deduced –0.0179 < Ωk < 0.0081

(95% confidence).

We can derive similar constraints on Ωn generally by requiring that the acoustic scale

and shift parameter, R, (Komatsu et al. 2011) are conserved. We also invoke equation (3).

For small values of the textures and curvature contributions, writing δR = Σ∂R/∂ΩnδΩn

and a similar expression for the acoustic scale,
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Σ2
n=0fnδΩn = 0; δΩ3 = 0; Σ2

n=0δΩn = 0 (5)

where 2

fn =

∫ z

0

(1 + z′)nh−3(z′)dz′ (6)

The acoustic scale and shift parameter are conserved when introducing Ω1 = δ to the

WMAP model provided δΩn = cnδ where cn are coefficients of order unity and c1 = 1, c3 =

0, c0 = (f1−f2)/(f2−f0), and c2 = −(f1−f0)/(f2−f0) are computed in a simple numerical

integration. Values are given in Table 1. For example, if Ω1 = 0.1, Ω0 = 0.73 – 0.08 = 0.65,

and Ω2 = –0.02. Similar equations can be written for Ω−1 if we adopt Ω1 = 0. The change

in the Hubble Constant deduced by WMAP is proportional to Σfncn which is zero.

5. Density perturbations

Density perturbations in the Universe evolve as

δgrow ∝ H

∫ a

0

da/ȧ3 (7)

By requiring changes in δgrow relative to those detected by 2dF and SDSS to be zero in

response to δΩn, we can follow the formalism of the previous section to obtain

Σ3
n=0gnδΩn = 0; Σ3

n=0δΩn = 0 (8)

where

gn =

∫ 1

0.001

a−(n+3)h−5(a)da (9)

.

Calculating the gn values numerically (see Table 1), we find that the growth factor is

conserved when δΩ1 and δΩ2 are introduced to the 2dF/SDSS model provided

δΩ3 = −0.127δΩ1 − 0.384δΩ2 (10)

.

2Equation (5) is simply derived for drs/dΩ3 = 0 and dz∗/dΩ3 = 0, but is also correct when the exact

density dependence of the sound horizon, rs, and CMB redshift, z∗, is included.
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So perturbing the standard model by 0.1 in Ω1, one would perturb the matter density

measurement by only –0.01. And perturbing the standard model by 0.1 in Ωk, one would

perturb the density measurement by –0.04. This would be a significant change. Similar

equations can be written for Ω−1 if we adopt Ω1 = 0.

6. Constraining Ω0,1,2 in a dark energy program

6.1. Combined SN and CMB constraints

From WMAP7 we formed the data vector (lA, R, z∗) and calculated χ2 for a full grid

of values of Ωn. For SNe χ2 was calculated directly from the data shown in Figure 1.

Marginalising over Ωm, we can calculate probability in the (Ω±1,Ω2) plane given the SN

data in Figure 1 and the WMAP 7 year data. The results are in Figures 4 and 5. We

confirm what we found in section 4, that the Hubble Constant and the density of matter do

not constrain these parameters.

6.2. The expansion rate at larger redshifts

A polynomial approach to dark energy in the Friedmann equation may actually lead to

physical insights. Because unknown physical processes may be classified by how they scale

with 1+z, they can at least be ranked by our approach.

Quintessence is beyond the scope of the present work.

Ω0,1,2 can be measured via experiments3 to determine δh2 at z = 2 and z = 3, where h

is the dimensionless expansion rate, h(z).

Of course, our enthusiasm for polynomials should not obscure the real purpose of a

dark energy program which is to determine the expansion as a function of redshift and the

underlying physics, not simply an analytic form of the Friedmann equation.

3For example, Ω2 = 72δ2h
2 – 48δ1h

2 – 0.3, where δzh
2 = h2(z) − h2(1).If only one of these parameters

is nonzero, e.g. Ω2, then Ω2 = 7.2δ2h
2 –0.17 and it could be measured to 10% accuracy by a differential

expansion rate experiment of similar measurement precision.
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6.3. Dark Energy Surveys

Experiments such as the Dark Energy Survey (Frieman et al. 2005) and WiggleZ (Blake

et al. 2011) are aimed at determination of the equation of state P = ρw. Measurement of

Ω1 and Ω0 are also within their scope (Komatsu et al. 2009; equation 80).

a3(1+weff ) = ΩΛ/(Ω0 + Ω1/a) (11)

For small z and weff ≈ –1,

3w′

effz = Ω1/Ω0 = 0 for Ω1 = 0 (12)

where w′ = dw/da.

Coefficients in the Friedmann equation are related to w by equation (4) and are identified

in Table 1.

Table 1: Equation of state components

Ωn n wn cn fn –gn
phantom –1 –4/3 4.6 0.307 –0.401

vacuum 0 –1 –0.815 0.662 0.552

textures 1 –2/3 1 0.964 0.824

“curvature” 2 –1/3 –0.185 2.294 1.368

matter 3 0 0 2.677

radiation 4 +1/3

The c,f,g coefficients have been evaluated at Ω3 = 0.27.

7. Conclusions

Our primary conclusion is that introducing Ω1 or Ω−1 does not change WMAP values

of H0 or Ωm . It is easy to show that this conclusion extends to phantom energy generally

for w < –1 with Σa−nΩn + a−xΩx = h2 and x < 0. Using the supernova data alone, it is

not possible to determine all the Ω’s because of degeneracies. But in combination with CMB

data, the degeneracies are broken. Second, we find that Ω1 < 0.2 and Ω−1 < 0.1 with 95%
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confidence. Stricter limits will follow from dark energy program. Third, Ω2 ≈ − 0.2Ω1 for

Ω1 << 1. If Ω2 = ǫ (say, 10−6) due to inflation, Ω1 < 0.018/(f1 − f0) = 0.06.

I acknowledge very helpful discussions with Brian Schmidt and Chris Blake. Thanks go

to Karl Glazebrook, Lucas Macri, and Paul Schechter for reading a draft and to Ned Wright

for compiling the observational data and making them available on his web page. This

research is part of the Dark Universe scientific program of CAASTRO http://caastro.org

and supported by ARC.

http://caastro.org


– 8 –

REFERENCES

Blake, C. et al. 2011, astro-ph 1104.2948

Conley, A. et al. 2011, ApJS, 192, 1

Eisenstein, D. et al. 2005, ApJ, 633, 560

Frieman, J. and The Dark Energy Survey 2005, BAAS, 36, 1462

Garnavich, P. et al. 1998, ApJ, 509, 74

Gooding, A. et al. 1992, ApJ, 393, 42

Komatsu, S. et al. 2009, ApJS, 180, 330

Komatsu, S. et al. 2011, ApJS, 192, 18

Peacock, J. et al. 2001, Nature, 410, 169

Perlmutter, S. et al. 1999, ApJ, 517, 565

Schaefer, B. 2007, ApJ, 660, 16

Turner, M. 1999, The Third Stromlo Symposium: The Galactic Halo, ASP Conference Series,

165, 431

This preprint was prepared with the AAS LATEX macros v5.2.



– 9 –

Fig. 1.— Curvature (solid curve for Ω2 = 0.05). The solid symbols are supernovae; the

open symbols are GRBs. The standard model is the dashed curve. The red line dotted line

shows that 0.5 violates the data.
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Fig. 2.— Textures (solid curve for Ω1 = 0.1). The standard model is the dashed curve. The

red dotted line shows that 0.5 violates the data.
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Fig. 3.— Phantom power (solid curve for Ω−1 = 0.1). The standard model is the dashed

curve. The red dotted line shows that 0.5 violates the data.
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Fig. 4.— Probability contours (1σ and 2σ) for Ω1 and Ω2 given the WMAP7 CMB data and

the supernova data in Figure 1. The SN contours are marked in red dots. The green dashed

lines show the probability contours if a prior is added to the supernova constraint, namely

Ω3 = 0.273 ± 0.025 (Eisenstein et al. 2005) from SDSS. Constraints from Baryon Acoustic

Oscillation experiments such as WiggleZ look like supernova constraints in this diagram, but

are beyond the scope of the present paper.
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Fig. 5.— Probability contours (1σ and 2σ) for Ω−1 and Ω2 given the WMAP7 CMB data

and the supernova data in Figure 1. The green dashed lines show the probability contours

if a prior is added to the supernova constraint, namely Ω3 = 0.273 ± 0.025 (Eisenstein

et al. 2005) from SDSS.
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