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Abstract. A general semi-analytical method for accurate and efficient numerical

calculation of the dielectrically screened (“dressed”) potential around a non-relativistic

test particle moving in an isotropic, collisionless, unmagnetised plasma is presented.

The method requires no approximations and is illustrated using results calculated for

two cases taken from the MSc thesis of the first author: test particles with velocities

above and below the ion sound speed in plasmas with Maxwellian ions and warm

electrons. The idea that the fluctuation spectrum of a plasma can be described as a

superposition of the fields around non-interacting dressed test particles is an expression

of the quasiparticle concept, which has also been expressed in the development of the

oscillation-centre and pseudo-orbit formalisms.
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1. Introduction

The Fokker–Planck–Landau equation incorporating dielectric screening now known as

the Balescu–Lenard equation was also derived by Thompson and Hubbard [1, 2, 3] from

simpler statistical physics arguments. In the Thompson–Hubbard approach the diffusion

coefficient was calculated from a fluctuation spectrum obtained by superimposing the

dielectrically screened fields of independently moving particles, an approach called the

dressed test particle picture by Rostoker [4].

In this picture, unperturbed “test particles” replace the actual particles in the

plasma, though in reality the trajectories are perturbed slightly by the fluctuations,

giving rise to the linear dielectric response and velocity-space diffusion. The dressed

test particle picture was developed in Fourier, (ω,k), representation rather than in

real space-time, (x, t), and thus it was difficult to visualise the actual nature of the

screened potential surrounding each particle. This created interest in inverting the

Fourier transform to better understand Balescu–Lenard kinetic theory.

The first chapter of the MSc thesis of the first author [5] was on relativistic plasma

response functions [6]. However Chapters 2 and 3 of the thesis were restricted to the

non-relativistic case and calculated the screened potential of a dressed test particle in

real space, using both asymptotic approximation methods and “exact” calculations in

which the triple Fourier integral was evaluated in a way that exploited a highly efficient

numerical algorithm for calculating a special function η(z) defined for the purpose.

Much of the two relevant chapters of reference [5] has recently been published more-

or-less verbatim [7], but details of the numerical approach were omitted. Our main

purpose in this paper is to present the mathematical analysis and numerical method

used in reference [5] in the hope they may prove useful in teaching and further research.

A survey [5] of the ’60s literature on test-particle screening is reprinted in reference

[7]. The problem was revisited occasionally in the ’70s, e.g. [8], and ’80s, but in the

last decade and a half there has been a considerable revival of interest in this topic in

the context of dusty plasmas. Some of these more recent papers are mentioned briefly

below.

Ishihara and Vladimirov [9] applied screened potentials to charged dust particles

in a plasma. They calculated the potential in the wake of a moving test particle and

showed it contained periodic minima. This can result in an attractive force between

dust particles, providing a mechanism for the formation of Coulomb crystals. Other

studies have considered the effect of Landau damping [10, 11], neutral collisions [10],

magnetic fields [12] and the wake of a dipole [13]. Lapenta [14] considered a derivation

of the screened potential in real space, rather than Fourier space, with the aim of

including nonlinear effects in the wake. Numerical simulations have played an important

role in validating analytic results and finding potentials beyond the point particle

approximation for objects such as rods [15]) and multiple particles [16, 17].

While particle-in-cell simulations [18, 15] allow more physics to be included,

including nonlinearity [19, 20], the approaches based on linear dielectric response,
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e.g. [8, 9, 11, 16], in principle allow more resolution and accuracy (within the linear

régime) and should be numerically less intensive. However, to simplify the problem the

dielectric response function is usually approximated and/or integrations are performed

only approximately.

An exception appears to be the work of Lampe and Joyce [10, 16], who used

Fast Fourier Transforms to perform the Fourier inversions without the need to make

approximations. However, because the inversions were performed only once and

tabulated to avoid the need for recalculation, calculational details and timings were

not given in these papers.

In this paper we present the efficient numerical approach [5] that allowed an

extensive numerical study even using the limited computer power available in the mid-

’60s. The method does not require the dielectric response function to be approximated,

so it includes Landau damping accurately, and was applied to dielectric constants

corresponding to both Lorentzian and Maxwellian plasma distribution functions. We

have found that the method allows a full, accurate calculation of the wake structure to

be computed in a few minutes on a modern laptop.

Details of the numerical techniques used and the special function η were omitted

from reference [7] so they are, until now, unpublished. In section 2 we review the

Fourier representation of dielectric screening and present the strategy introduced in

reference [5] for performing the 3-dimensional integral over k in spherical polars, by

evaluating the infinite integral over k first. This is the most difficult part of the

numerical Fourier inversion as numerical integration of rapidly oscillatory integrands is

notoriously difficult, but this difficulty is circumvented by drawing on the mathematical

tools of complex analysis and the literature on special functions to develop an efficient

algorithm for calculating this integral in terms of a special function, η(z), thus effectively

performing the k-integral analytically.

In section 3 we introduce the coordinate system used to perform the remaining 2-

dimensional integral over solid angle numerically, and in section 4 we indicate how this is

implemented in a reconstruction of the code, using gfortran [21]. Some of the previous

cases studied [5, 7] are recalculated and replotted as validation of the reconstructed

code and a few new, but related plots are presented as well. Appendix A gives details

of the special function η(z) and its relation to the exponential integral E1(z) and the

auxiliary function for sine and cosine integrals, f(z). A subroutine for calculating η(z)

is provided online as supplementary material.

In section 5 we attempt to trace how the patterns of thought developed from the

MSc studies of the first author have influenced the course of his career.
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2. Dressed test particles

A test particle with charge q moving through a plasma at constant, non-relativistic

velocity v0 produces the following dielectrically screened potential [7] (in SI units)

ϕ =
q

ε0
lim
λ→+0

∫ d3k

(2π)3
exp[ik · (x− v0t)− λ|k|]

k2ε(k · v0,k)
, (1)

where ε0 is the permittivity of free space and ε(ω,k) is the frequency, ω, and wavevector,

k, -dependent plasma dielectric constant. In an isotropic, collisionless, unmagnetised

plasma the dielectric constant is of the form

ε(ω,k) = ε(ω, |k|) = 1 +
Φ(ω/k)

k2
, (2)

where Φ(ω/k) (called the polarisation function in references [5, 7]) will be discussed more

explicitly below. For now all we need to assume is that it obey the reality condition,

Φ(−ν) = Φ∗(ν), and the stability condition [5, 7], Re [Φ(ν)]1/2 > 0, for all real finite

ν, where [Φ(ν)]1/2 ≡ |Φ(ν)|1/2 exp 1
2
i arg Φ(ν). In (1), λ is a regularisation parameter

required to interpret the integral as k ≡ |k| → ∞.

Writing r = x− v0t, we have the potential in the rest frame of the test particle

ϕ(r) =
q

ε0
lim
λ→+0

∫ d3k

(2π)3
exp(ik · r− λ|k|)
k2 + Φ(k̂ · v0)

, (3)

where k̂ is the unit vector in the direction of k. A key insight in reference [5] was that

the 3-dimensional integral in (3) could be reduced to the 2-dimensional integral below

by transforming to spherical polars and integrating over k using the special function

η(·) defined in (A.1). Making use of the identity (A.3) differentiated twice with respect

to α = k̂·r + iλ, with β = [Φ(k̂ · v0)]
1/2 ≡

√
Φ, we find

ϕ(r) = −i q
ε0

lim
λ→+0

∫
k̂∈S2

dΩ(k̂)

(2π)3

√
Φ η′′

(
(k̂·r + iλ)

√
Φ
)
, (4)

where dΩ(k̂) is an element of solid angle such that d3k = k2dΩ(k̂) and S2 is the unit

sphere. Using the identity (A.13), which gives η′′(z) ≡ η(z)− 1/z, we can also write ϕ

in the form of the “bare” Coulomb potential ϕ0(r),

ϕ0(r) ≡
q

4πε0r
, (5)

plus a correction term, which may be interpreted as the potential of the screening charge

“dressing” the particle,

ϕ(r) = ϕ0(r)− i
q

ε0

∫
k̂∈S2

dΩ(k̂)

(2π)3

√
Φ η

(
k̂·r
√

Φ
)
. (6)

The first term on the RHS of (6), the bare potential ϕ0(r), comes from the 1/z

term in η′′(z), which is divergent as z → 0. We used the Plemelj formula to interpret

limλ→+0 1/(k̂·r + iλ) as P/k̂·r− iπδ(k̂·r), where P denotes the principal part operator

and δ(·) is the Dirac delta function. (The integral over the principal part term vanishes,

so only the delta-function term contributes to the potential.) We have set λ = 0 in
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the second term, the dressing potential, as, from (A.8), the singularity in η
(
k̂·r
√

Φ
)

at

k̂·r = 0 is sufficiently weak that regularisation is not required.

The function Φ(·), as derived in the standard way from the linearised Vlasov

equation, is given by

Φ
(
ω

k

)
=
∑
s

ω2
ps

∫ ∞
−∞

dv
g′s(v)

ω/k − v
. (7)

Here ωps denotes the plasma frequency, (e2sns/ε0ms)
1/2, for species s, with ns the

unperturbed number density, ms the mass, es the charge, and gs(v) the one-dimensional

projection of the velocity distribution function fs(v). For a non-relativistic Maxwellian

plasma,

Φs

(
ωps

kDs
x
)

= k2Ds

[
1−
√

2xF

(
x√
2

)
+ i

√
π

2
x exp

(
−x

2

2

)]
(8)

where kDs ≡ (e2sns/ε0Ts)
1/2 is the inverse Debye length for species s, Ts being the

temperature in energy units, and F (x) the Dawson function, defined by [22]

F (ζ) ≡ e−ζ
2
∫ ζ

0
et

2

dt . (9)

The RHS of (8) can also be written as −(k2Ds/2)Z ′(x/
√

2) where Z(ζ) is the Plasma

Dispersion Function [23].

2.1. Limitations of the method

It should be noted that the method requires that k2ε(k·v0,k) be of the form k2 + Φ(k̂)

in order for the identity (A.3) to be used to evaluate the infinite integral over k. This

limits the applicability of the method to classical, collisionless, unmagnetised plasmas

as explained below. The specific form we have assumed for Φ in (2) and (7) is further

limited to isotropic plasmas, but the method would also apply to the anisotropic case,

complicating only the integration over solid angle.

The classical polarisation function Φ involves numerators, k·(∂fs/∂v), and

denominators, ω − k·v, arising from solving the linearised Vlasov equation, while in

the quantum case [24] the numerators are replaced by (ms/h̄)[fs(v+ h̄k/2ms))−fs(v−
h̄k/2ms)], which reduces to the classical form as h̄ → 0. To obtain the form in (7),

or its anisotropic generalisation, we divide both numerators and denominators by k, so

that all k-dependences of the numerators are removed and the numerators depend on k

only through the phase velocity ω/k. The problem encountered in the quantum case is

that the numerators are not linear in k, so that their k-dependences are not removed by

this division. The problem encountered in the collisional case of [10, 16], where ω in the

denominator of the ion term is replaced by ω + νi, where νi is the ion-neutral collision

frequency, is that νi/k is not independent of k (unless νi is assumed proportional to k) so

that the denominator no longer depends only on ω/k. Similarly, in the magnetised case

the cyclotron frequencies, ωcs, would complicate the k-dependences of the denominators.
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Figure 1. Coordinate system used for numerical evaluation of the solid-angle integral

in (6).

3. Numerical formulation

Two systems of coordinates for evaluating the solid-angle integral in (4) numerically

suggest themselves: spherical polars with axis along v0, and spherical polars with axis

along r as shown in figure 1. We adopt the second choice because it appears to have

the advantage that it is the natural choice when deriving the bare potential term in (6),

where the singularity at k̂·r = 0 is of particular concern and v0 does not appear. In

this coordinate system we have

k̂·v0 = µv‖ +
√

1− µ2 cosφ v⊥ , (10)

where v‖ ≡ v0·r̂ = v0 cosψ, v⊥ ≡ |v0×r̂| = v0 sinψ, and µ ≡ k̂·r̂.
In these coordinates the element of solid angle in (4) is given by dΩ = dµdφ, with

the ranges of integration being µ ∈ [−1, 1], φ ∈ [0, 2π]. By using the reality condition,

the ranges of the µ and φ integrations can be reduced by half, so (6) becomes

ϕ(r, ψ) =
2ϕ0(r)

π2

∫ π

0
dφ
{
π

2
+
∫ r

0
dx Im

[√
Φ η

(
x
√

Φ
)]}

(11)

with

√
Φ ≡

Φ

v0 cosψ
x

r
+ v0 sinψ cosφ

[
1−

(
x

r

)2
]1/2

1/2

. (12)

The first term in the integrand of the φ-integral (which arises from the delta-function

in the Plemelj formula) gives the bare Coulomb potential ϕ0. The second term, the

integral over x ≡ rµ, gives the dressing potential from the screening cloud. As will be

commented on further below, these two terms almost cancel in the far-field of Debye-

screened regions.
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Figure 2. Visualisations of the wake of a superthermal but subsonic test particle

moving at v0 = 4vthi ≡ 4ωpi/kDi in a Maxwellian-ion plasma with kDe = 0 (colour

online). (a) Contour plot of ϕ(r)/ϕ0(r). This figure agrees with figure 13 of [7], the

dot-dashed lines delineating the “thermal Mach cone.” (b) v0ϕ(r, π) vs. r/v0 behind

the particle. This figure agrees with figure 12 of [7]. (c) ϕ(r, π)/ϕ0(r) vs. r/v0 behind

the particle. This is a transect of (a) along the negative y = 0 axis, extended to

x/v0 = −20.

4. Numerical results: validation against MSc plots

We have reused the subroutine ETA listed in reference [5] (a listing with a README file

and a test program being provided online as supplementary material for this paper) for

calculating the special function η(z), (A.1), in a FORTRAN 77 reconstruction of the

original FORTRAN program for computing ϕ(r, ψ) from (11). This code computes the

double integral over φ and x using Romberg integration [25] with the maximum size

of the approximation matrix set to 10 × 10 in both integrations. The Free Software

Foundation’s gcc-based gfortran [21] was used to compile and link the program.

In the calculations we used units used such that kDi = ωpi = 1 and q = 4πε0 so that

ϕ0(r) = 1/r. Assuming the particle velocity to be much less than the mean electron

velocity, we approximated the electron polarisation function Φe with its static value,

Φe(0) = k2De and used the dawson routine [25] to calculate the ion polarisation function

from (8).

Figures 2(a) and 3(a) show contour plots of ϕ(r)/ϕ0(r) in the x/v0, y/v0 plane,
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Figure 3. Visualisations of the wake of a supersonic test particle moving at

v0 = 32ωpi/kDi = 4Cs in a Maxwellian-ion plasma with kDe = kDi/8. (a) Contour plot

of ϕ(r)/ϕ0(r). (b) ϕ(r, ψ)/ϕ0(r) vs. ψ (in degrees) on the small arc r = 1.5v0/kDi) on

the right of (a). This figure agrees with figure 14 of [7]. (c) ϕ/ϕ0 on the middle arc,

r = 7.5v0/kDi. (d) ϕ/ϕ0 on the left-most arc, r = 15v0/kDi.

where x and y are such that r = xx̂ + yŷ + zẑ, with the unit vector x̂ in the direction

of v0. The other panels show the behaviour of ϕ along transects as described in the

captions. The figures are both for test particles moving faster than the ion thermal

speed, figure 2 showing a subsonic case and figure 3 showing a supersonic case (see

captions).

These two figures were produced by interpolation from 100 × 100 grids above the

x-axis, with the contours below the axis being obtained by reflection. The 10,000

evaluations each of the Fourier inversions (3) were calculated as described above. Using

gfortran on a MacBook Pro, the scan for figure 2 took 311 seconds, while that for

figure 3 took 942 seconds, giving an average of 0.03 s and 0.09 s per Fourier inversion,

respectively. The interpolations and plots were done with Mathematica [26].

In figure 3(a) the disturbance behind the particle is seen to be limited to a Mach

cone (dashed lines) of half width about 15 degrees. Note that the Mach cone does not

contain a shock wave owing to the dispersive character of ion acoustic waves. Asymptotic

analyses performed in reference [5] were published in [7]. Further analyses, including an

interpretation of the wave structure observed in figure 3 based on ray tracing, will be

published elsewhere. Here we limit ourselves to a qualitative heuristic interpretation of

the wake.

In the rest frame of the plasma, the screening response excited by the bare potential

of a test particle as it passes a given point occurs with a time lag, producing a region
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of opposite potential immediately behind the particle but travelling with it, as shown

in figure 3(b). In figure 3(c,d) it is seen that the sign of this near-field disturbance is

preserved away from the x axis in the potential minimum just inside the Mach cone in

the far field. This is a wave train consisting of a superposition of ion acoustic waves with

phase velocities given by k̂k̂·v0, diminishing in amplitude away from the test particle

due both to spreading and Landau damping.

In the Debye-screened regions outside the Mach cone there is strong cancellation

between the bare potential and screening cloud terms in (11). Thus, when ϕ is very

small the relative error can become significant, leading to some numerical “noise” causing

spurious zero contours in the upper and lower right-hand corners of figure 3. This was

filtered out by setting ϕ/ϕ0 to 0.01 when it fell below 0.01 in absolute value outside

the Mach cone, but it may be possible to eliminate the problem by using (4) instead of

(6) and deforming the contour of the numerical µ-integration away from origin to avoid

the singularity there, thus avoiding the split between bare and screening potentials and

handling Debye cancellations analytically.

5. Quasiparticles

As indicated in the Introduction, the original motivation of this work [5, Chapters 2

and 3] was mainly to achieve a better understanding of plasma kinetic theory via a

visualisation of dressed test particles.

Another motivation was to test the calculation by Pines and Bohm [27] of dynamical

screening using a classical version of their quantum-mechanical collective coordinate

approach [28, 29]. Their calculation in fact failed this test [7, p. 9], but more recently

a corrected quantum-mechanical collective coordinate approach has been developed to

calculate the interaction of dust particles in plasmas [30].

While Chapter 4 (unpublished) of [5] was on a quantum field theory treatment of

electron-photon scattering in a plasma, including a test particle calculation, the first

author has not used quantum mechanics per se since, except for a short project on

statistical mechanics of a thin film [31] after submitting his MSc thesis and before

commencing PhD studies at Princeton.

However his experience with the quantum approach for calculating nonlinear wave-

particle and wave-wave interactions led naturally to the thought that perhaps the

relative ease with which this is done in quantum field theory [32, 33, e.g.] is due to

the power of the Lagrangian and Hamiltonian formalisms developed in the field, rather

than being due to anything intrinsic to quantum physics. Perhaps, if similar effort

were applied to developing Lagrangian and Hamiltonian methods for classical plasmas,

similarly powerful results would follow. This thought, combined with the one related

to the dressed test particle picture described below, has been expressed in much of his

later work.

In quantum field theory, especially as applied in condensed matter physics, dressed

test particles are regarded as “quasiparticles”, related to bare particles but with
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properties altered by the interactions between the bare particles. In quantum theory the

first step is often to write down a Hamiltonian operator consisting of an unperturbed

(bare) part and an interaction term, and then to diagonalise the Hamiltonian using a

Bogolyubov transformation. The analogue of this in classical Hamiltonian theory would

be to find a canonical transformation to a normal form in which explicit many-body

interactions were reduced to an irreducible residual part, with the collective interactions

being incorporated in a renormalised “unperturbed” Hamiltonian.

The Pines–Bohm [27] development of collective coordinate theory for particles

interacting via Coulomb potentials was very much based on classical canonical

transformation theory. However, the first author began to develop a quasiparticle

formalism not in a many-body Hamiltonian context, but in a Lagrangian approach

to wave-background interaction in an ideal magnetohydrodynamic (MHD) fluid [34],

which showed that the conservation of wave action arises as naturally in classical

mechanics as in quantum mechanics. However, another expression of the quasiparticle

concept was in developing an oscillation-centre theory of turbulent phase-space diffusion

[35, 36, 37], which used canonical Hamiltonian perturbation theory. The operator

method for classical canonical transformations introduced in [37] triggered the adoption

of Lie methods as an important tool in theoretical plasma physics [38].

As it became apparent that the separation of the transformed Hamiltonian into a

renormalised, non-interacting part and a residual interaction part was highly non-trivial

and intimately related to developments in Kolmogorov-Arnold-Moser (KAM) theory,

more recent development of this line of thought has been in papers aimed at developing

a canonical theory of almost-invariant tori in 11
2

Hamiltonian systems via a pseudo-orbit

approach [39, 40, 41, 42], with physical application to the description of magnetic fields

in non-axisymmetric toroidal plasma confinement systems [43, 44, 45, 46, 47]. Whether

this approach will ever succeed in finding a classical Hamiltonian derivation of the

Thompson–Hubbard dressed test particle picture is yet to be seen, but the development

of modern Poisson-bracket perturbation formalisms [48] may point the way. Also, recent

developments in the collective coordinate approach [30] look very promising.

Other concepts picked up during the first author’s MSc research, such as the use

of special functions, asymptotic expansions and numerical analysis also of course have

found expression in various ways in his subsequent publications but we do not attempt

to analyse these here.

6. Conclusion

We have presented analytical and numerical details of a novel approach, introduced in

reference [5], to inverting the Fourier transform of the screened field of a test particle,

and have illustrated the method with results from two cases, subsonic and supersonic

test particles.

The lack of computational detail in the literature, and the rapid increase in

computer speed over the years, makes direct comparison with other approaches difficult.
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However, the approach presented here, being based on classical analysis techniques for

special functions and sound numerical analysis principles, is expected to be relatively

fast. Anecdotal evidence appears to bear this out. The reason that the method has

not been presented before is presumably that the “auxiliary function for sine and cosine

integrals,” f(z) [49], which could have been used instead of our function η(z), is not

well known in the physics community, and no subroutines for its rapid evaluation have

previously been available. A primary purpose of this paper is to increase knowledge of

this function and perhaps stimulate the development of better subroutines than the one

we have provided online (see the online README file for error plots).

The use of this special function imposes certain restrictions on the applicability of

the method, making it inapplicable to quantum, magnetised and collisional plasmas as

discussed in section 2.1.

In section 5 we have also sketched how the dressed-test-particle picture is related

to the concepts of quasiparticles, oscillation centres and pseudo-orbits. This section has

been included to help relate the present paper to others in the cluster of papers for

which it is intended.
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Figure 4. (a) Real and (b) imaginary parts of η(x + iy) showing their respective

antisymmetry/symmetry (A.9) under reflection in the imaginary axis of the (x+ iy)-

plane, cut along the negative imaginary axis.

Appendix A. The function η

The function η(z), first introduced in reference [5], was used in both the analytical

and numerical work in the unpublished thesis. Much of reference [5] was published
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in reference [7], but Appendix I, giving details of the mathematical properties and

numerical calculation of η(z), was omitted. Thus we reproduce the contents of

Appendix I below, including a small amount of additional material for clarity.

The function is closely related to the exponential integral [49, §5.1.1], and may be

computed from tables of this function. As shown below it is even more closely related to

the auxiliary function for sine and cosine integrals, f(z) [49, §5.2.6] and [50], but does

not appear to have been defined before so the notation is our own.

Define η(z) by

η(z) =
z

i

∫ ∞
0

dx
eix

x2 + z2
for | arg z| < π

2
, (A.1)

and analytically continue the function into the left half plane, cutting the complex plane

along the negative imaginary axis (see figure 4).

It may be shown that η(z) has the alternative integral representation

η(z) = z
∫ ∞
0

dt
e−t

z2 − t2
for 0 < argz < π . (A.2)

The form most useful for our purposes is the identity

β

i

∫ ∞
0

exp iαx

x2 + β2
dx ≡ η(αβ) for Imα ≥ 0, Re β > 0 . (A.3)

For instance, we can relate η(·) to the auxiliary function f(z) [49, §5.2.12] by putting

β = 1, α = iz to give f(z) = iη(iz) for Re z > 0. Then, as f(z) is defined on the

complex z-plane cut along the negative real axis [49, §§5.2.2, 5.2.6], replacing z with

−iz we have, by analytic continuation, an alternative definition for η(z),

η(z) = −if(−iz) for − π

2
< Arg z <

3π

2
, (A.4)

the cut now being along the negative imaginary axis as stated after (A.1).

As will be found useful in the subroutine to be described below, we may also show

from (A.2) that

η(z) =
1

2
[ezE

(+)
1 (z)− e−zE(−)

1 (−z)] , (A.5)

where E
(±)
1 (z) are analytic continuations of the exponential integral E1(z) [49, §5.1.1]

and [51] to the z-planes cut along the negative/positive imaginary axis (analytic in the

upper/lower half planes), respectively [see below (A.6)].

These functions can be represented as,

E
(±)
1 (z) = − γ − ln(±)(z)−

∞∑
n=1

(−z)n

nn!

≡ − γ − ln(±)(z) + Ein(z) (A.6)

where γ is Euler’s constant, Ein(z) [51] is an entire function, and ln(±)(z) ≡ ln |z| +
i[arg(∓iz) ± π/2] = ln z + i[arg(∓iz) − arg z ± π/2]. Thus, comparing (A.6) with

reference [49, §5.1.1],

E
(±)
1 (z) = E1(z)− i[arg(∓iz)− arg(z)± π/2] . (A.7)
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As ln(+)(z) and ln(−)(−z) are both defined on the complex plane cut along the

negative imaginary axis they can differ only by a constant: ln(−)(−z) = ln(+)(z) − iπ.

In (A.5) this gives

η(z) = − [γ + ln(+)(z)] sinh z − iπ

2
e−z +

1

2
[ezEin(z)− e−zEin(−z)] (A.8)

= − [γ + ln(+)(z)] sinh z − iπ

2
e−z + z +

11z3

36
+

137z5

7200
+O

(
z7
)
,

from which can be seen that η(z) still has a branch point at the origin, but, unlike E1(z),

it remains finite there.

The following symmetry properties, reflection about the imaginary axis and

reflection about the real axis (with exponential correction), can be proved from (A.8)

and may be used to continue η(z) out of any quadrant into the other three quadrants,

η(z) = − η(−z∗)∗ , (A.9)

η(z) = η(z∗)∗ − iπe−z srez , (A.10)

where

sre z ≡ sgn (Re z) (A.11)

and ∗ denotes complex conjugation. These symmetries are apparent in the plots in

figure 4.

The asymptotic expansion for large |z| may be obtained from that for f(z) [49,

§5.2.34]

η(z) ∼ 1

z

(
1 +

2!

z2
+

4!

z4
+ . . .

)
as |z| → ∞, −π

2
< Arg z <

3π

2
.(A.12)

However, the successive terms in this expansion do not decrease sufficiently rapidly for

it to be very useful for computational purposes over the range of |z| in which we are

interested.

All the derivatives η(n)(z) of η(z) may be expressed in terms of η(z) and η′(z),

η(n)(z) = η(z)− (n− 2)!

zn−1
− (n− 4)!

zn−3
− . . .− 0!

z
; n even , (A.13)

η(n)(z) = η′(z) +
(n− 2)!

zn−1
+

(n− 4)!

zn−3
+ . . .+

1!

z2
; n odd . (A.14)

The two relations above are used to calculate η(z) for intermediate |z| by extrapolating

from known values of η(z) and η′(z) using Simpson’s rule. The known values are

calculated from table 5.6 of reference [49] using (A.5) and (A.10) and the relations:

η′(z) =
1

2
[ezE

(+)
1 (z) + e−zE

(−)
1 (z)] (A.15)

η′(z) = η′(z∗)∗ + sre(z)iπe−z srez , (A.16)

where sre(·) is defined in (A.11) and

E
(±)
1 (±z) = E1(±z) for Im z > 0 , (A.17)

E1(z)∗ = E1(z
∗) . (A.18)
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For large |z|, Laguerre integration [49, §25.4.45] of (A.2) is used,

η(z) = z
n∑
i=1

wi
z2 − x2i

+Rn; Im z > 0 , (A.19)

|Rn| <
(n!)2

(Im z)2n+1
, (A.20)

with the abscissas xi and weight factors wi obtained from [49, table 25.9]. The error

bound is pessimistic at large |Re z|, as this equation provides accuracy of six significant

figures, even for z real, if |Re z| ≥ 16.

The FORTRAN IV subroutine developed for efficient calculation of η(z) using the

methods described in this appendix was listed in reference [5]. It is accurate to around 2

parts in 104 and evaluates η(z) in about 0.5µs, so this innermost integral over 0 ≤ k <∞
in the Fourier inversion may be regarded as performed analytically, leaving only the 2-

dimensional integral over solid angle to be done numerically.

To produce the numerical results presented above we used this core subroutine in

our reconstruction of the original screened field program (a testament to the backwards

compatibility of FORTRAN). For the historical record we provide the FORTRAN source

code, and a README file describing its use, as supplementary data in the online version

of this paper. However, for accurate calculations it would probably be preferable to use

the professionally written FORTRAN code for E1(z) developed by Amos [52].
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