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Abstract

We propose a new variant model of the modulated reheating. If particles have large scale fluc-

tuations on their velocities, or equivalently their Lorentz factors, the decay rate also fluctuates

and the curvature perturbation is induced via their decay processes in analogy with modu-

lated reheating. For example, if they are produced nonthermally by the decay of another field

with its mass fluctuating on large scales, such a situation is realized. We explicitly calculate

the resulting curvature perturbation and non-linearity parameters and show that the effect of

velocity-modulation is not negligible if the particles are semi-relativistic at the decay.
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I. INTRODUCTION

High accuracy measurements of the cosmic microwave background (CMB) anisotropy

revealed that the cosmological density perturbations obey the nearly scale-invariant power

spectrum [1]. The inflaton, which drives the inflationary expansion of the very early

Universe, has quantum fluctuations on large scales and it is a prime candidate for the

origin of the nearly scale invariant curvature perturbation [2].

However, it was recognized that the curvature perturbation can be generated without

invoking the quantum fluctuation of the inflaton itself. There may be many scalar fields

in the physics beyond the standard model, and some of which may be light during in-

flation and obtain quantum fluctuations. In the curvaton mechanism [3–7], such a light

scalar other than the inflaton, called curvaton, is responsible for the curvature pertur-

bation. Another possibility is to make the inflaton decay rate fluctuate due to another

light scalar having large scale perturbations [8, 9]. Then the radiation produced by the

inflaton decay has curvature perturbation even if the inflaton itself does not have enough

fluctuations. This is called the modulated reheating scenario. Mechanisms for generating

the curvature perturbation which shares a similar idea to the modulated reheating have

been proposed [10–20].

In this paper we propose a new mechanism to generate the curvature perturbation,

which is a variant type of the modulated reheating scenario. The idea is that if a particle

velocity is fluctuating on large scales, its decay rate also does since the lifetime of a

particle receives a spatially fluctuating Lorentz boost. Therefore, the modulated reheating

is realized even if an intrinsic decay rate does not depend on some fluctuating scalar fields

as in the original modulated reheating scenario.

As a concrete example, such a large scale fluctuation in the particle velocity is generated

if it is produced nonthermally by the decay of a heavier particle whose mass depends on

another light scalar with large scale fluctuations.1 In this setup, modulated reheating

1 Here the fluctuation of the particle velocity should not be confused with the “velocity perturbation”

usually used in the cosmological context. The former refers to the velocity of each particle while the
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occurs at two stages : one is at the decay of a heavier particle with a fluctuating mass,

the other is at the decay of a daughter particle whose velocity is fluctuating. The final

curvature perturbation receives both of the two contributions, as well as that generated

by the inflaton. We will systematically calculate the resulting curvature perturbation and

estimate the non-Gaussianity, and find that the effect of modulated velocity is important

if the velocity at the decay is not much smaller than the speed of light.

II. BASIC IDEA

Let us suppose that a particle σ has a decay width of Γ̄σ at the σ rest frame and that

its velocity is given by v in the laboratory frame. Due to the time delay effect, the effective

decay rate of σ in the laboratory looks like Γσ = Γ̄σ/γ where γ = (1− v2)−1/2.

Then let us imagine a situation that the σ particles are non-interacting and have a

monochromatic velocity distribution within a small patch of the Universe but on large

scales their velocities fluctuate. More precisely, we assume that the velocities of σ-particles

have large scale fluctuations on the decay hypersurface (H(~x) = Γσ(~x) in the sudden decay

approximation where H is the Hubble parameter). On this surface, σ has a velocity of

v(~x) = v̄ + δv(~x). (1)

Finally the σ-particles decay into radiation. Since the decay hypersurface does not coincide

with the uniform density hypersurface due to the fluctuated Lorentz factor, the curvature

perturbation is induced at the σ-decay. In this setup, the curvature perturbation is esti-

mated as

ζ ∼ Ωσ
δΓσ

Γσ
= −Ωσ

δγ

γ
= Ωσγ

2v̄δv, (2)

where Ωσ is the energy density of the σ at the decay relative to the total energy density

and δΓσ(~x) ≡ Γσ(~x)−Γσ. Thus the large scale fluctuation on the velocity can be converted

to the curvature perturbation via the modulated reheating. Obviously, if the σ particles

are non-relativistic (v → 0), such an effect is negligible. Also in the ultra-relativistic

latter is the average velocity as the fluid. In the present paper we are interested in the former.
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limit (v → 1), the curvature perturbation is not generated since the equation of state

of the Universe does not change across the σ-decay. Therefore, this effect is expected to

be important if the σ particles are semi-relativistic v ∼ O(1). If the δv is a Gaussian

random variable, then the corresponding curvature perturbation is also Guassian at the

linear order in δv.

This is a generic idea and may have a potential of broad applications. In the next

section we provide a concrete setup which results in the velocity fluctuation and induces

the curvature perturbation.

III. A MODEL OF VELOCITY MODULATION AND CURVATURE PERTUR-

BATION

A. Outline

We consider a situation that non-relativistic scalar condensate of the Σ field decays

into relativistic σ-particles and subsequently σ-particles decay into radiation2. Our key

assumption is that the mass of Σ spatially fluctuates. This can be achieved if the mass is

dependent on a light scalar field which acquired spatial fluctuations during inflation. Such

fluctuations of the mass result in the generation of the primordial curvature perturbations

through two different processes. In the following, let us roughly estimate the resulting

curvature perturbation. More detailed calculations will be given later.

If the mass of Σ spatially fluctuates, then generically the decay rate does too. Let us

suppose that σ is a fermion. The Σ decays into a σ pair through the yukawa interaction,

L = yΣσσ̄, (3)

where y is the yukawa coupling constant, then the decay rate is given by

Γ(Σ → σσ̄) ≡ ΓΣ =
y2

8π
mΣ. (4)

2 The assumption that Σ is a scalar field is not essential to achieve the velocity modulation. The mech-

anism can work for the cases where Σ is not a scalar field as well.
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If σ is a scalar, Σ can decay into them through the three point interaction,

L = µΣσσ, (5)

where µ is a coupling constant having mass dimension one. Then the decay rate is given

by

Γ(Σ → σσ) ≡ ΓΣ =
µ2

8πmΣ
. (6)

It is clear from these equations that fluctuation ofmΣ is taken over by ΓΣ. For concreteness

we assume σ is a fermion in the following, although qualitative arguments do not depend

on whether it is a fermion or scalar. The density fluctuations of σ are produced when Σ

decays;
δρσ
ρσ

≃ δmΣ

mΣ
. (7)

This is exactly the same mechanism of generating the curvature perturbation in the mod-

ulated reheating scenario.

Since each σ-particle has an energy mΣ/2 when it is produced, velocity of the produced

σ-particle is given by

v0 =

√

m2
Σ − 4m2

σ

mΣ
. (8)

It is clear that the velocity v also fluctuates if mΣ fluctuates. We assume that the interac-

tion of σ-particle is sufficiently weak so that it does not take part in thermal bath and the

velocity remains constant except for the redshift by the cosmic expansion.3 Otherwise, the

σ-particles obey thermal distribution with a background temperature of the radiation and

the velocity fluctuation will be smoothed out as long as σ is subdominant. Now, let us

suppose that the velocity of σ-particle has dropped to v1 due to the cosmological redshift

when σ-particles decay. Taking into account the effect of time delation, the decay rate of

σ is given by

Γ(σ → radiation) ≡ Γσ = Γ̄σ

√

1− v21, (9)

3 The σ-particles can scatter off themselves by the exchange of Σ. This process is suppressed if the

coupling constant between Σ and σ is small and/or the Σ is heavy enough.
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where Γ̄σ is the decay rate measured at the rest frame. Since v1 is position dependent,

this equation manifests that the decay rate of σ spatially fluctuates too;

δΓσ

Γσ
≃ v21

δmΣ

mΣ
. (10)

Again, the modulation of Γσ gives additional contribution to the curvature perturbation.

Denoting by Ωσ a fraction of σ-particles when they decay, we expect that the final curvature

perturbation ζ is given by

ζ ≃ Ωσ
δρσ
ρσ

+ Ωσ
δΓσ

Γσ
≃ Ωσ(1 + v21)

δmΣ

mΣ
. (11)

Therefore, if σ-particles are still relativistic when they decay, i.e. v1 = O(1), then the

effect of the velocity modulation on the final curvature perturbation cannot be neglected.

B. Calculation of the curvature perturbation

Now let us evaluate the curvature perturbation based on the δN -formalism [21, 22].

We adopt the so-called sudden decay approximation in which the decay of Σ or σ-particles

is assumed to occur instantaneously when the decay rate becomes equal to the Hubble

expansion rate [23].

Let us take a hypersurface just before the Σ field decays on which the total energy

density is spatially uniform (uniform density hypersurface). We here assume that Σ begins

to oscillate in a period between the end of inflation and the completion of reheating where

the universe expands like a matter-dominated universe and that the initial amplitude is

constant. In this case the energy density of the Σ condensation does not fluctuate on

the uniform density slice even if its mass fluctuates.4 Since no fluctuations exist before

Σ decays, this hypersurface coincides with the spatially flat hypersurface. Let us denote

by δN1 a required e-folding number from the flat hypersurface to the decay hypersurface

4 If, otherwise, the Σ begins to oscillate during the radiation-dominated era after the reheating, the

energy density of Σ itself also has fluctuations. We do not consider such a case since it only makes the

following analyses more complicated.
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on which Σ decays into σ-particles. Since ΓΣ spatially fluctuates, δN1 does too. Thus we

have

ρ̄re
−4δN1 + ρ̄Σe

−3δN1 = ρ̄tot

(

1 +
δΓΣ

ΓΣ

)2

, (12)

where ρr and ρΣ denote the energy densities of the radiation and Σ at the Σ-decay. The to-

tal energy density is given by ρtot = ρr+ρΣ. Quantities with bars represent the background

values. This is rewritten in the form as

(1− ΩΣ)e
−4δN1 + ΩΣe

−3δN1 =

(

1 +
δΓΣ

ΓΣ

)2

. (13)

where ΩΣ ≡ ρ̄Σ/ρ̄tot at the Σ-decay. Let us next consider a hypersurface just after the Σ

decays on which ρσ is spatially uniform and denote by δN2 a required e-folding number

from the decay hypersurface to uniform ρσ hypersurface. Then equation for δN2 is given

by

e−3δN1e−3(1+w0)δN2 = 1, (14)

where w0 is the effective equation of state parameter w0 = Pσ/ρσ of σ evaluated on the

decay surface. According to the δN formalism, the sum of δN1 and δN2 gives the curvature

perturbation of the uniform ρσ hypersurface;

ζσ = δN1 + δN2. (15)

Eqs. (13), (14) and (15) allow us to express ζσ in terms of δΓΣ, which we defer. Unless

w0 is zero, ζσ is non-vanishing, as it should be. Since σ-particles do not interact with the

other particles, ζσ is conserved until σ-particles decay into radiation. On the other hand,

ζr, the curvature perturbation on the uniform ρr hypersurface, is zero since we assume

that Σ decays only into σ-particles.

Now we consider a difference between a hypersurface on which σ-particles decay into

radiation and a one on which ρσ is uniform. Let us denote by δN3 a required e-folding

number from uniform ρσ hypersurface to σ decay hypersurface. Then we obtain

ρ̄σe
−3(1+w1)δN3 + ρ̄re

−4(ζσ+δN3) = ρ̄tot

(

1 +
δΓσ

Γσ

)2

. (16)
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This is rewritten as

Ωσe
−3(1+w1)δN3 + (1− Ωσ)e

−4(ζσ+δN3) =

(

1 +
δΓσ

Γσ

)2

, (17)

where Ωσ ≡ ρ̄σ/ρ̄tot on the σ-decay surface and w1 is the effective equation of state

parameter of σ on this hypersurface. Let us next consider a hypersurface just after the

σ-particles decay on which radiation energy density is spatially uniform and denote by

δN4 a required e-folding number from the σ decay hypersurface to the uniform density

hypersurface. Then we have the following relation

e4δN4 =

(

1 +
δΓσ

Γσ

)2

. (18)

The final curvature perturbation is given by

ζ = ζσ + δN3 + δN4. (19)

From Eqs. (17) and (18), we can express both δN3 and δN4 as a function of δΓσ. Therefore,

ζ can be written in terms of δΓΣ and δΓσ. Note that ΩΣ and Ωσ are related through

Ωσ =
ΩΣ

ΩΣ + (1− ΩΣ) exp
[∫

3H(1 + w(t))dt− 4N
] , (20)

where the e-folding number N measures the duration between the Σ and σ decay hyper-

surfaces and w(t) denotes the time-dependent equation of state of the σ particle. The

integral in the exponent starts from the time of Σ-decay and ends at the σ-decay. It is

soon seen that in the relativistic limit w = 1/3, Ωσ remains constant as is expected. The

equation of state of σ at its production (w0) and decay (w1) are also related. First note

that the equation of state of the σ is given by

w(t) =
Pσ

ρσ
=

p2(t)

3(p2(t) +m2
σ)
, (21)

because it has a monochromatic momentum distribution in the sudden decay approxima-

tion, where p(t) is the momentum of the σ particle. Then we obtain

w1 =
w0

(1− 3w0)e2N + 3w0
. (22)

8



Since each σ-particle has an energy ofmΣ/2 at the time of their creation, w0 can be written

as

w0 =
m2

Σ − 4m2
σ

3m2
Σ

. (23)

To get the final expression for the curvature perturbation, we need to express δΓΣ and

δΓσ as the functions of δmΣ. As for the former, it is already given by Eq. (4). As for the

latter, the decay rate of σ is calculated from

Γσ = Γ̄σ

√
1− 3w1. (24)

Through Eqs. (24), (22) and (23), we see that Γσ is related to mΣ. To third order in δmΣ,

we find

δΓσ

Γσ
= −w1

w0

δmΣ

mΣ
− (w0 − 3w1)w1

2w2
0

(

δmΣ

mΣ

)2

+
(3w0 − 5w1)w

2
1

2w3
0

(

δmΣ

mΣ

)3

. (25)

Using these results obtained above, we can Taylor-expand ζ in terms of δmΣ to any

order. To third order, it is given by

ζ = A1
δmΣ

mΣ
+

1

2
A2

(

δmΣ

mΣ

)2

+
1

6
A3

(

δmΣ

mΣ

)3

, (26)

where A1 is given by

A1 =
Ωσ [12w

2
0(w1 + 1)− w1(w0 + 1)(3w1 − 1)(ΩΣ − 4)]

2w0(w0 + 1)(ΩΣ − 4)((3w1 − 1)Ωσ + 4)
. (27)

The other expansion coefficients A2 and A3 are given in the appendix. Let us confirm

that apart from the O(1) numerical factors, Eq. (27) reproduces the naive expectation

Eq. (11). First, we see that A1 is proportional to Ωσ (It can be confirmed that A2 and A3

are also proportional to Ωσ.). Therefore, ζ of Eq. (26) is proportional to Ωσ and vanishes

in the limit Ωσ → 0, which is also true for the naive expectation. Secondly, let us expand

A1 in terms of w1;

A1 =
3Ωσ

8(Ωσ − 4)
+

9Ωσ

2(Ωσ − 4)2
w1 +O(w2

1), (28)

where we have set ΩΣ = 0, w0 = 1/3 for simplicity.5 We see that the first term remains

even if we set w1 = 0. Therefore, this term represents the contribution of δρσ in Eq. (11),

5 Actually Ωσ and ΩΣ are related through Eq. (20). We can always take ΩΣ ≪ Ωσ by choosing N and

w0.
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which originates from the modulation of ΓΣ. On the other hand, the second term in

Eq. (28) is proportional to w1 and hence proportional to v21 . This corresponds to the

second term in Eq. (11) and is due to the modulation of Γσ.

From Eq. (26), the scalar spectral index, ns, is calculated as [24]

ns = 1− 2ǫ− 4ǫ− 2η

1 + 2M2
P ǫN

2
χ

, (29)

where we have defined Nχ through A1δmΣ/mΣ ≡ Nχδχ with χ being the light field giving

spatial modulation to the Σ mass, MP denotes the reduced Planck scale, and ǫ and η

are inflationary slow-roll parameters [2]. If the inflaton dominantly contributes to the

curvature perturbation, we recover the standard formula, ns = 1− 6ǫ+ 2η. Otherwise, it

approaches to ns = 1− 2ǫ, similarly to the curvaton case.

C. Non-linearity parameters

In this paper, we consider the simplest case where δmΣ is a gaussian variable. For

simplicity, let us assume that Σ is subdominant when they decay, i.e., ΩΣ ≪ 1 and σ-

particles are relativistic when they are created, i.e., w0 = 1/3. Hereafter we neglect the

contribution of the inflaton fluctuation to the curvature perturbation and the dominant

contribution to the curvature perturbation comes from the fluctuation of mΣ. With these

assumptions, the non-linearity parameters are given by6

fNL =
20

9(3w1(4w1 − 1) + 1)2Ωσ((3w1 − 1)Ωσ + 4)

×
[

w1(36w1(2w1 − 1) + 5) + 1)(Ωσ − 3w1Ωσ)
2

+2(w1(3w1(24w1(6w1 − 7) + 35) + 10)− 7)Ωσ

+2w1(9w1(8w1(6w1 + 5)− 21) + 22) + 22

]

, (30)

τNL =
36

25
f 2
NL, (31)

6 The non-linearity parameters for the standard modulated reheating case are given in Ref. [25].
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gNL =
800

243(3w1(4w1 − 1) + 1)3Ω2
σ(−3w1Ωσ + Ωσ − 4)2

×
[

(3w1 − 1)(w1(3w1(27w1(4w1(96w1(2w1 − 3) + 127)− 75)− 43)− 97) + 41)Ω3
σ

+3(w1(3w1(9w1(w1(12w1(8w1(36w1 + 19)− 413) + 2579)− 416) + 262)− 500) + 133)Ω2
σ

+2(w1(36w1(3w1 − 1)(4w1 − 1) + 1) + 1)(Ωσ − 3w1Ωσ)
4

+2(w1(3w1(3w1(3w1(12w1(12(37− 12w1)w1 + 133)− 5177) + 4570)− 728) + 674)− 517)Ωσ

+4(w1 + 1)(9w1(w1(12w1(36w1(4w1 + 9)− 181) + 265)− 2) + 209)

]

. (32)

In Fig. 1 and 2, we show plots of fNL, τNL and gNL as a function of w1 for three cases

Ωσ = (0.2, 0.5, 1.0). From this, we see that fNL is always positive. For fixed w1, the smaller

Ωσ is, the larger fNL is. Actually, we can easily show from Eq. (30) that fNL ≃ Ω−1
σ when

Ωσ is small. The mechanism of this boost of fNL is exactly the same as that in the curvaton

model in which fNL is inversely proportional to curvaton fraction evaluated at the time

when the curvaton decays. For fixed Ωσ, fNL has a maximum at w1 ≃ 0.1 and that the

maximum value is roughly two times larger than fNL at w1 = 0. Therefore, if the motion

of σ-particles are mildly relativistic, then the effect of the velocity modulation can double

fNL.

We also find that gNL is always positive and τNL is always larger than gNL. Noticing

that their difference is less than a factor 2 and using Eq. (31), we have gNL = O(f 2
NL).

Therefore, in this model, both τNL and gNL become large when fNL is large.

IV. CONCLUSIONS AND DISCUSSION

We have shown that the curvature perturbation can be sourced by the decay of particles

with velocity modulation. We have given a concrete setup for realizing such a scenario.

A class of modulated reheating scenario in which the mass of decaying particle fluctuates

generates a velocity modulation of daughter particles, which may result in the additional

source of curvature perturbation. The non-Gaussian signatures may also be enhanced due

to the velocity-modulation effects.

One can easily construct a variant model. For example, let us suppose that the mass of

11



FIG. 1: Plots of fNL as a function of w1 for three cases Ωσ = (0.2, 0.5, 1.0).

Σ does not fluctuate but the σ-mass does. The velocity of σ, produced by the Σ-decay, also

fluctuates in this case and the velocity modulation can generate the curvature perturbation

at the σ-decay in a same manner.

The same mechanism may generate the CDM/baryon isocurvature perturbation if the

σ-decay produces CDM/baryon. Actually σ can be identified with the right-handed neu-

trino NR while Σ with a scalar field giving the mass for NR. The relevant interaction

Lagrangian is given by

L =
(

yiΣNRiN̄
c
Ri + y

(ν)
ij HLiN̄Rj + h.c.

)

− V (Σ), (33)

where i, j are generation indices and the scalar potential of Σ is taken to be

V (Σ) = −µ2
Σ|Σ|2 + λ|Σ|4. (34)

Here H is the standard model Higgs boson and Li is the lepton doublet. The Σ mass

around the vacuum, mΣ = 2µΣ, is assumed to depend on another light scalar having large

scale fluctuations. This model possesses a global U(1)L or gauged U(1)B−L symmetry

12



FIG. 2: Plots of τNL and gNL as a function of w1 for three cases Ωσ = (0.2, 0.5, 1.0).

which is spontaneously broken by the VEV of Σ.7 In this model Σ decays into the NR-

pair, and subsequently NR decays into the Higgs boson and lepton, generating the lepton

asymmetry (which is converted to the baryon asymmetry through the sphaleron process)

if the CP angle is nonzero [27]. Since NR has a large scale velocity modulation, the baryon

number created by its decay also has fluctuations. If the Σ or NR decay gives dominant

curvature perturbation, there is no baryonic isocurvature perturbation. On the other

hand, if the curvature perturbation is dominantly sourced by the inflaton fluctuation, this

results in the baryonic isocurvature perturbation.
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Appendix A: Expressions for A2 and A3

Here we give expressions for A2 and A3 in Eq. (26).

A2 =
1

12w5
0(w1 + 1)2Ω2

σ((3w1 − 1)Ωσ + 4)

[

8A3
1w

3
0(w0 + 1)2((3w1 − 1)Ωσ + 4)3

+4A2
1w

2
0Ωσ

(

w3
0(w1 + 1)

(

63w2
1Ω

2
σ − 6w1

(

7Ωσ2 − 20Ωσ − 8
)

+ 7Ω2
σ − 104Ωσ + 160

)

+w2
0

(

9w2
1 + 4w1 + 7

)

(−3w1Ωσ + Ωσ − 4)2 + 6w0w1(3w1 − 1)(−3w1Ωσ + Ωσ − 4)2

+3w1(3w1 − 1)(−3w1Ωσ + Ωσ − 4)2
)

+ 2A1w0Ω
2
σ

(

6w4
0(w1 + 1)2 + 14w3

0w1

(

3w2
1 + 2w1 − 1

)

+w2
0w1

(

27w3
1 + 24w2

1 + 31w1 − 14
)

+ 6w0(1− 3w1)
2w2

1 + 3(1− 3w1)
2w2

1

)

((3w1 − 1)Ωσ + 4)

+w2
1(3w1 − 1)Ω3

σ

(

w3
0

(

33w2
1 + 38w1 + 5

)

+ w2
0

(

9w3
1 + 15w2

1 + 15w1 − 7
)

+ 2w0(1− 3w1)
2w1

+(1− 3w1)
2w1

)

]

, (A1)

A3 = A3,1 + A3,2 + A3,3, (A2)
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where

A3,1 =
3(3w1 − 1)w1(w0 − 3w1)(16A1w0(Ωσ − 1) + w1Ωσ(−3w1Ωσ + Ωσ − 4))

2w3
0((3w1 − 1)Ωσ + 4)2

+
w0f1
w0 + 1

− w3
1

w3
0

+
3(3w1 − 1)w2

1Ωσ(3w0 − 5w1)

2w3
0((3w1 − 1)Ωσ + 4)

, (A3)

A3,2 =
2

3w6
0(w0 + 1)(w1 + 1)4Ω4

σ((3w1 − 1)Ωσ + 4)

[

12(w0 + 1)w3
0(w1 + 1)4(Ωσ − 1)Ω4

σ(2A1w0 + w1)
3

−12(w0 + 1)w3
0(w1 + 1)4Ω2

σ(2A1w0(Ωσ − 1) + w1Ωσ)
3 + 6f1w

7
0(Ωσ − 1)(w1Ωσ + Ωσ)

4

]

, (A4)

A3,3 =
2

3w6
0(w0 + 1)(w1 + 1)4Ω4

σ((3w1 − 1)Ωσ + 4)

[

(w0 + 1)(w1 + 1)(1− Ωσ)Ωσ(2A1w0 + w1)

{

(2A1w0((3w1 − 1)Ωσ + 4) + w1(3w1 − 1)Ωσ) (2A1w0(w0 + 1)((3w1 − 1)Ωσ + 4)

+Ωσ

(

w2
0(w1 + 1) + w0w1(3w1 − 1) + w1(3w1 − 1)

))

(2A1w0(w0 + 1)((3w1 − 1)Ωσ + 4)

+Ωσ

(

6w2
0(w1 + 1) + w0w1(3w1 − 1) + w1(3w1 − 1)

))

− 72f2w
5
0(w1 + 1)3Ω3

σ

(3w1 − 1)Ωσ + 4

}

−54f2w
5
0(w0 + 1)(w1 + 1)5Ω4

σ(2A1w0(Ωσ − 1) + w1Ωσ)

(3w1 − 1)Ωσ + 4

]

, (A5)

and f1 and f2 are defined by

f1 =
3w2

1(3w1 − 1)Ωσ(3w0 − 5w1)

2w3
0((3w1 − 1)Ωσ + 4)

, (A6)

f2 =
3w1(3w1 − 1)(w0 − 3w1)(16A1w0(Ωσ − 1) + w1Ωσ(−3w1Ωσ + Ωσ − 4))

2w3
0(−3w1Ωσ + Ωσ − 4)2

. (A7)
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