
Variational Gaussian Process Dynamical Systems

Andreas Damianou
Sheffield Institute for Translational Neuroscience

University of Sheffield
andreas.damianou@sheffield.ac.uk

Michalis K. Titsias
School of Computer Science

University of Manchester, UK
mtitsias@cs.man.ac.uk

Neil Lawrence
Sheffield Institute for Translational Neuroscience

and
Department of Computer Science

University of Sheffield
neil@dcs.shef.ac.uk

Abstract
High dimensional time series are endemic in applications of machine learning such as robotics (sensor

data), computational biology (gene expression data), vision (video sequences) and graphics (motion capture
data). Practical nonlinear probabilistic approaches to this data are required. In this paper we introduce the
variational Gaussian process dynamical system. Our work builds on recent variational approximations for
Gaussian process latent variable models to allow for nonlinear dimensionality reduction simultaneously with
learning a dynamical prior in the latent space. The approach also allows for the appropriate dimensionality of
the latent space to be automatically determined. We demonstrate the model on a human motion capture data
set and a series of high resolution video sequences.

1 Introduction
Nonlinear probabilistic modeling of high dimensional time series data is a key challenge for the machine learn-
ing community. A standard approach is to simultaneously apply a nonlinear dimensionality reduction to the
data whilst governing the latent space with a nonlinear temporal prior. The key difficulty for such approaches is
that analytic marginalization of the latent space is typically intractable. Markov chain Monte Carlo approaches
can also be problematic as latent trajectories are strongly correlated making efficient sampling a challenge. One
promising approach to these time series has been to extend the Gaussian process latent variable model [1, 2]
with a dynamical prior for the latent space and seek a maximum a posteriori (MAP) solution for the latent
points [3, 4, 5]. Ko and Fox [6] further extend these models for fully Bayesian filtering in a robotics setting. We
refer to this class of dynamical models based on the GP-LVM as Gaussian process dynamical systems (GPDS).
However, the use of a MAP approximation for training these models presents key problems. Firstly, since the
latent variables are not marginalised, the parameters of the dynamical prior cannot be optimized without the
risk of overfitting. Further, the dimensionality of the latent space cannot be determined by the model: adding
further dimensions always increases the likelihood of the data. In this paper we build on recent developments
in variational approximations for Gaussian processes [7, 8] to introduce a variational Gaussian process dynami-
cal system (VGPDS) where latent variables are approximately marginalized through optimization of a rigorous
lower bound on the marginal likelihood. As well as providing a principled approach to handling uncertainty in
the latent space, this allows both the parameters of the latent dynamical process and the dimensionality of the
latent space to be determined. The approximation enables the application of our model to time series containing
millions of dimensions and thousands of time points. We illustrate this by modeling human motion capture data
and high dimensional video sequences.

1

ar
X

iv
:1

10
7.

49
85

v1
 [

st
at

.M
L

]
 2

5
Ju

l 2
01

1

2 The Model
Assume a multivariate times series dataset {yn, tn}Nn=1, where yn ∈ RD is a data vector observed at time
tn ∈ R+. We are especially interested in cases where each yn is a high dimensional vector and, therefore,
we assume that there exists a low dimensional manifold that governs the generation of the data. Specifically, a
temporal latent function x(t) ∈ RQ (with Q � D), governs an intermediate hidden layer when generating the
data, and the dth feature from the data vector yn is then produced from xn = x(tn) according to

ynd = fd(xn) + εnd , εnd ∼ N (0, β−1), (1)

where fd(x) is a latent mapping from the low dimensional space to dth dimension of the observation space
and β is the inverse variance of the white Gaussian noise. We do not want to make strong assumptions about
the functional form of the latent functions (x, f).1 Instead we would like to infer them in a fully Bayesian
non-parametric fashion using Gaussian processes [9]. Therefore, we assume that x is a multivariate Gaussian
process indexed by time t and f is a different multivariate Gaussian process indexed by x, and we write

xq(t) ∼ GP(0, kx(ti, tj)), q = 1, . . . , Q, (2)
fd(x) ∼ GP(0, kf (xi,xj)), d = 1, . . . , D. (3)

Here, the individual components of the latent function x are taken to be independent sample paths drawn from
a Gaussian process with covariance function kx(ti, tj). Similarly, the components of f are independent draws
from a Gaussian process with covariance function kf (xi,xj). These covariance functions, parametrized by
parameters θx and θf respectively, play very distinct roles in the model. More precisely, kx determines the
properties of each temporal latent function xq(t). For instance, the use of an Ornstein-Uhlbeck covariance
function yields a Gauss-Markov process for xq(t), while the squared-exponential kernel gives rise to very
smooth and non-Markovian processes. In our experiments, we will focus on the squared exponential covariance
function (RBF), the Matern 3/2 which is only once differentiable, and a periodic covariance function [9, 10]
which can be used when data exhibit strong periodicity. These kernel functions take the form:

kx(rbf) (ti , tj) = σ2
rbfe
− (ti−tj)

2

(2l2t) , kx(mat) (ti, tj) = σ2
mat

(
1 +

√
3|ti − tj |
lt

)
e
−
√

3|ti−tj |
lt ,

kx(per) (ti , tj) = σ2
pere
− 1

2

sin2(2π
T (ti−tj))
lt . (4)

The covariance function kf determines the properties of the latent mapping f that maps each low dimensional
variable xn to the observed vector yn. We wish this mapping to be a non-linear but smooth, and thus a suitable
choice is the squared exponential covariance function

kf (xi,xj) = σ2
arde

− 1
2

∑Q
q=1 wq(xi,q−xj ,q)

2

, (5)

which assumes a different scale wq for each latent dimension. This, as in the variational Bayesian formulation
of the GP-LVM [8], enables an automatic relevance determination procedure (ARD), i.e. it allows Bayesian
training to “switch off” unnecessary dimensions by driving the values of the corresponding scales to zero.

The matrix Y ∈ RN×D will collectively denote all observed data so that its nth row corresponds to the
data point yn. Similarly, the matrix F ∈ RN×D will denote the mapping latent variables, i.e. fnd = fd(xn),
associated with observations Y from (1). Ana usly, X ∈ RN×Q will store all low dimensional latent variables
xnq = xq(tn). Further, we will refer to columns of these matrices by the vectors yd, fd,xq ∈ RN . Given the
latent variables we assume independence over the data features, and given time we assume independence over
latent dimensions to give

p(Y, F,X|t) = p(Y |F)p(F |X)p(X|t) =

D∏
d=1

p(yd|fd)p(fd|X)

Q∏
q=1

p(xq|t), (6)

1To simplify our notation, we often write x instead of x(t) and f instead of f(x). Later we also use a similar convention for the kernel
functions by often writing them as kf and kx.

2

where t ∈ RN and p(yd|fd) is a Gaussian likelihood function term defined from (1). Further, p(fd|X) is a
marginal GP prior such that

p(fd|X) = N (fd|0,KNN), (7)

where KNN = kf (X,X) is the covariance matrix defined by the kernel function kf and similarly p(xq|t) is the
marginal GP prior associated with the temporal function xq(t),

p(xq|t) = N (xq|0,Kt) , (8)

where Kt = kx(t, t) is the covariance matrix obtained by evaluating the kernel function kx on the observed
times t.

Bayesian inference using the above model poses a huge computational challenge as, for instance, marginal-
ization of the variables X , that appear non-linearly inside the kernel matrix KNN , is troublesome. Practical
approaches that have been considered until now (e.g. [5, 3]) marginalise out only F and seek a MAP solution
for X . In the next section we describe how efficient variational approximations can be applied to marginalize
X by extending the framework of [8].

2.1 Variational Bayesian training
The key difficulty with the Bayesian approach is propagating the prior density p(X|t) through the nonlinear
mapping. This mapping gives the expressive power to the model, but simultaneously renders the associated
marginal likelihood,

p(Y |t) =

∫
p(Y |F)p(F |X)p(X|t)dXdF, (9)

intractable. We now invoke the variational Bayesian methodology to approximate the integral. Following a
standard procedure [11], we introduce a variational distribution q(Θ) and compute the Jensen’s lower bound Fv
on the logarithm of (9),

Fv(q,θ) =

∫
q(Θ) log

p(Y |F)p(F |X)p(X |t)
q(Θ)

dXdF, (10)

where θ denotes the model’s parameters. However, the above form of the lower bound is problematic becauce
X (in the GP term p(F |X)) appears non-linearly inside the kernel matrix KNN making the integration over X
difficult. As shown in [8], this intractability is removed by applying the “data augmentation” principle. More
precisely, we augment the joint probability model in (6) by includingM extra samples of the GP latent mapping
f , known as inducing points, so that um ∈ RD is such a sample. The inducing points are evaluated at a set of
pseudo-inputs X̃ ∈ RM×Q. The augmented joint probability density takes the form

p(Y, F, U,X, X̃|t) =

D∏
d=1

p(yd|fd)p(fd|ud,X)p(ud|X̃)p(X|t), (11)

where p(ud|X̃) is a zero-mean Gaussian with a covariance matrix KMM constructed using the same function
as for the GP prior (7). By dropping X̃ from our expressions, we write the augmented GP prior analytically
(see [9]) as

p(fd|ud, X) = N
(
fd|KNMK

−1
MMud,KNN −KNMK

−1
MMKMN

)
. (12)

A key result in [8] is that a tractable lower bound (computed analogously to (10)) can be obtained through the
variational density

q(Θ) = q(F,U,X) = q(F |U,X)q(U)q(X) =

D∏
d=1

p(fd|ud, X)q(ud)q(X), (13)

where q(X) =
∏Q
q=1N (xq|µq, Sq) and q(ud) is an arbitrary variational distribution. Titsias and Lawrence [8]

assume full independence for q(X) and the variational covariances are diagonal matrices. Here, in contrast, the

3

posterior over the latent variables will have strong correlations, so Sq is taken to be a N × N full covariance
matrix. Optimization of the variational lower bound provides an approximation to the true posterior p(X|Y)
by q(X). In the augmented probability model, the “difficult” term p(F |X) appearing in (10) is now replaced
with (12) and, eventually, it cancels out with the first factor of the variational distribution (13) so that F can be
marginalised out analytically. Given the above and after breaking the logarithm in (10), we obtain the final form
of the lower bound (see supplementary material for more details)

Fv(q,θ) = F̂v − KL(q(X) ‖ p(X|t)), (14)

with F̂v =
∫
q(X) log p(Y |F)p(F |X) dXdF . Both terms in (14) are now tractable. Note that the first of

the above terms involves the data while the second one only involves the prior. All the information regarding
data point correlations is captured in the KL term and the connection with the observations comes through the
variational distribution. Therefore, the first term in (14) has the same analytical solution as the one derived in
[8]. (14) can be maximized by using gradient-based methods2. However, when not factorizing q(X) across data
points yields O(N2) variational parameters to optimize. This issue is addressed in the next section.

2.2 Reparametrization and Optimization

The optimization involves the model parameters θ = (β,θf ,θt), the variational parameters {µq, Sq}Qq=1 from
q(X) and the inducing points3 X̃ .

Optimization of the variational parameters appears challenging, due to their large number and the correla-
tions between them. However, by reparametrizing our O

(
N2
)

variational parameters according to the frame-
work described in [12] we can obtain a set of O(N) less correlated variational parameters. Specifically, we first
take the derivatives of the variational bound (14) w.r.t. Sq and µq and set them to zero, to find the stationary
points,

Sq =
(
K−1t + Λq

)−1
and µq = Ktµ̄q, (15)

where Λq = −2ϑF̂v (q,θ)
ϑSq

is a N × N diagonal, positive matrix and µ̄q = ϑF̂v
ϑµq

is a N−dimensional vector.
The above stationary conditions tell us that, since Sq depends on a diagonal matrix Λq , we can reparametrize it
using only the N−dimensional diagonal of that matrix, denoted by λq . Then, we can optimise the 2(Q × N)
parameters (λq , µ̄q) and obtain the original parameters using (15).

2.3 Learning from Multiple Sequences
Our objective is to model multivariate time series. A given data set may consist of a group of independent ob-
served sequences, each with a different length (e.g. in human motion capture data several walks from a subject).
Let, for example, the dataset be a group of S independent sequences

(
Y (1), ..., Y (S)

)
. We would like our model

to capture the underlying commonality of these data. We handle this by allowing a different temporal latent
function for each of the independent sequences, so that X(s) is the set of latent variables corresponding to the
sequence s. These sets are a priori assumed to be independent since they correspond to separate sequences,
i.e. p

(
X(1), X(2), ..., X(S)

)
=
∏S
s=1 p(X

(s)), where we dropped the conditioning on time for simplicity. This
factorisation leads to a block-diagonal structure for the time covariance matrix Kt, where each block corre-
sponds to one sequenece. In this setting, each block of observations Y (s) is generated from its corresponding
X(s) according to Y (s) = F (s) + ε, where the latent function which governs this mapping is shared across all
sequences and ε is Gaussian noise.

2See supplementary material for more detailed derivation of (14) and for the equations for the gradients.
3We will use the term “variational parameters” to refer only to the parameters of q(X) although the inducing points are also variational

parameters.

4

3 Predictions
Our algorithm models the temporal evolution of a dynamical system. It should be capable of generating com-
pletely new sequences or reconstructing missing observations from partially observed data. For generating novel
sequence given training data the model requires a time vector t∗ as input and computes a density p(Y∗|Y, t, t∗).
For reconstruction of partially observed data the time stamp information is additionally accompanied by a par-
tially observed sequence Y p∗ ∈ RN∗×Dp from the whole Y∗ = (Y p∗ , Y

m
∗), where p and m are set of indices

indicating the present (i.e. observed) and missing dimensions of Y∗ respectively, so that p ∪m = {1, . . . , D}.
We reconstruct the missing dimensions by computing the Bayesian predictive distribution p(Y m∗ |Y

p
∗ , Y, t∗, t).

The predictive densities can also be used as estimators for tasks like generative Bayesian classification. Whilst
time stamp information is always provided, in the next section we drop its dependence to avoid notational
clutter.

3.1 Predictions Given Only the Test Time Points
To approximate the predictive density, we will need to introduce the underlying latent function values F∗ ∈
RN∗×D (the noisy-free version of Y∗) and the latent variables X∗ ∈ RN∗×Q. We write the predictive density as

p(Y∗|Y) =

∫
p(Y∗, F∗, X∗|Y∗, Y)dF∗dX∗ =

∫
p(Y∗|F∗)p(F∗|X∗, Y)p(X∗|Y)dF∗dX∗. (16)

The term p(F∗|X∗, Y) is approximated by the variational distribution

q(F∗|X∗) =

∫ ∏
d∈D

p(f∗,d|ud, X∗)q(ud)dud =
∏
d∈D

q(f∗,d|X∗), (17)

where q(f∗,d|X∗) is a Gaussian that can be computed analytically, since in our variational framework the optimal
setting for q(ud) is also found to be a Gaussian (see suppl. material for complete forms). As for the term
p(X∗|Y) in eq. (16), it is approximated by a Gaussian variational distribution q(X∗),

q(X∗) =

Q∏
q=1

q(x∗,q) =

Q∏
q=1

∫
p(x∗,q|xq)q(xq)dxq =

Q∏
q=1

〈p(x∗,q|xq)〉q(xq) , (18)

where p(x∗,q|xq) is a Gaussian found from the conditional GP prior (see [9]) and q(X) is also Gaussian. We
can, thus, work out analytically the mean and variance for (18), which turn out to be:

µx∗,q = K∗N µ̄q (19)

var(x∗,q) = K∗∗ −K∗N (Kt + Λ−1q)−1KN∗. (20)

where K∗N = kx(t∗, t), K∗N = K>∗N and K∗∗ = kx(t∗, t∗). Notice that these equations have exactly the
same form as found in standard GP regression problems. Once we have analytic forms for the posteriors in (16),
the predictive density is approximated as

p(Y∗|Y) =

∫
p(Y∗|F∗)q(F∗|X∗)q(X∗)dF∗dX∗ =

∫
p(Y∗|F∗) 〈q(F∗|X∗)〉q(X∗) dF∗, (21)

which is a non-Gaussian integral that cannot be computed analytically. However, following the same argument
as in [9, 13], we can calculate analytically its mean and covariance:

E(F∗) = B>Ψ∗1 (22)

Cov(F∗) = B>
(
Ψ∗2 −Ψ∗1(Ψ∗1)>

)
B + Ψ∗0I − Tr

[(
K−1MM − (KMM + βΨ2)

−1
)

Ψ∗2

]
I, (23)

where B = β (KMM + βΨ2)
−1

Ψ>1 Y , Ψ∗0 = 〈kf (X∗, X∗)〉, Ψ∗1 = 〈KM∗〉 and Ψ∗2 = 〈KM∗K∗M 〉. All
expectations are taken w.r.t. q(X∗) and can be calculated analytically, while KM∗ denotes the cross-covariance
matrix between the training inducing inputs X̃ and X∗. The Ψ quantities are calculated analytically (see suppl.
material). Finally, since Y∗ is just a noisy version of F∗, the mean and covariance of (21) is just computed as:
E(Y∗) = E(F∗) and Cov(Y∗) = Cov(F∗) + β−1IN∗ .

5

3.2 Predictions Given the Test Time Points and Partially Observed Outputs
The expression for the predictive density p(Y m∗ |Y

p
∗ , Y) is similar to (16),

p(Y m∗ |Y p∗ , Y) =

∫
p(Y m∗ |Fm∗)p(Fm∗ |X∗, Y p∗ , Y)p(X∗|Y p∗ , Y)dFm∗ dX∗, (24)

and is analytically intractable. To obtain an approximation, we firstly need to apply variational inference and
approximate p(X∗|Y p∗ , Y) with a Gaussian distribution. This requires the optimisation of a new variational
lower bound that accounts for the contribution of the partially observed data Y p∗ . This lower bound approximates
the true marginal likelihood p(Y p∗ , Y) and has exactly analogous form with the lower bound computed only on
the training data Y . Moreover, the variational optimisation requires the definition of the variational distribution
q(X∗, X) which needs to be optimised and is fully correlated across X and X∗. After the optimisation, the
approximation to the true posterior p(X∗|Y p∗ , Y) is given from the marginal q(X∗). A much faster but less
accurate method would be to decouple the test from the training latent variables by imposing the factorisation
q(X∗, X) = q(X)q(X∗). This is not used, however, in our current implementation.

4 Handling Very High Dimensional Datasets
Our variational framework avoids the typical cubic complexity of Gaussian processes allowing relatively large
training sets (thousands of time points, N). Further, the model scales only linearly with the number of dimen-
sions D. Specifically, the number of dimensions only matters when performing calculations involving the data
matrix Y . In the final form of the lower bound (and consequently in all of the derived quantities, such as gra-
dients) this matrix only appears in the form Y Y > which can be precomputed. This means that, when N � D,
we can calculate Y Y > only once and then substitute Y with the SVD (or Cholesky decomposition) of Y Y >. In
this way, we can work with an N ×N instead of an N ×D matrix. Practically speaking, this allows us to work
with data sets involving millions of features. In our experiments we model directly the pixels of HD quality
video, exploiting this trick.

5 Experiments
We consider two different types of high dimensional time series, a human motion capture data set consist-
ing of different walks and high resolution video sequences. The experiments are intended to explore the
various properties of the model and to evaluate its performance in different tasks (prediction, reconstruction,
generation of data). Matlab source code for repeating the following experiments is available on-line from
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/vargplvm/.

5.1 Human Motion Capture Data
We followed [14, 15] in considering motion capture data of walks and runs taken from subject 35 in the CMU
motion capture database. We treated each motion as an independent sequence. The data set was constructed and
preprocessed as described in [15]. This results in 2,613 separate 59-dimensional frames split into 31 training
sequences with an average length of 84 frames each.

The model is jointly trained, as explained in section 2.3, on both walks and runs, i.e. the algorithm learns
a common latent space for these motions. At test time we investigate the ability of the model to reconstruct
test data from a previously unseen sequence given partial information for the test targets. This is tested once
by providing only the dimensions which correspond to the body of the subject and once by providing those that
correspond to the legs. We compare with results in [15], which used MAP approximations for the dynamical
models, and against nearest neighbour. We can also indirectly compare with the binary latent variable model
(BLV) of [14] which used a slightly different data preprocessing. We assess the performance using the cumu-
lative error per joint in the scaled space defined in [14] and by the root mean square error in the angle space
suggested by [15]. Our model was initialized with nine latent dimensions. We performed two runs, once using

6

the Matern covariance function for the dynamical prior and once using the RBF. From table 1 we see that the
variational Gaussian process dynamical system considerably outperforms the other approaches. The appropriate
latent space dimensionality for the data was automatically inferred by our models. The model which employed
an RBF covariance to govern the dynamics retained four dimensions, whereas the model that used the Matern
kept only three. The other latent dimensions were completely switched off by the ARD parameters. The best
performance for the legs and the body reconstruction was achieved by the VGPDS model that used the Matern
and the RBF covariance function respectively.

Table 1: Errors obtained for the motion capture dataset considering nearest neighbour in the angle space (NN) and in the
scaled space(NN sc.), GPLVM, BLV and VGPDS. CL / CB are the leg and body datasets as preprocessed in [14], L and B
the corresponding datasets from [15]. SC corresponds to the error in the scaled space, as in Taylor et al. while RA is the
error in the angle space. The best error per column is in bold.

Data CL CB L L B B
Error Type SC SC SC RA SC RA

BLV 11.7 8.8 - - - -
NN sc. 22.2 20.5 - - - -

GPLVM (Q = 3) - - 11.4 3.40 16.9 2.49
GPLVM (Q = 4) - - 9.7 3.38 20.7 2.72
GPLVM (Q = 5) - - 13.4 4.25 23.4 2.78

NN sc. - - 13.5 4.44 20.8 2.62
NN - - 14.0 4.11 30.9 3.20

VGPDS (RBF) - - 8.19 3.57 10.73 1.90
VGPDS (Matern 3/2) - - 6.99 2.88 14.22 2.23

5.2 Modeling Raw High Dimensional Video Sequences
For our second set of experiments we considered video sequences. Such sequences are typically preprocessed
before modeling to extract informative features and reduce the dimensionality of the problem. Here we work
directly with the raw pixel values to demonstrate the ability of the VGPDS to model data with a vast number of
features. This also allows us to directly sample video from the learned model.

Firstly, we used the model to reconstruct partially observed frames from test video sequences4. For the first
video discussed here we gave as partial information approximately 50% of the pixels while for the other two we
gave approximately 40% of the pixels on each frame. The mean squared error per pixel was measured to com-
pare with the k−nearest neighbour (NN) method, for k ∈ (1, .., 5) (we only present the error achieved for the
best choice of k in each case). The datasets considered are the following: firstly, the ‘Missa’ dataset, a standard
benchmark used in image processing. This is 103,680-dimensional video, showing a woman talking for 150
frames. The data is challenging as there are translations in the pixel space. We also considered an HD video of
dimensionality 9×105 that shows an artificially created scene of ocean waves as well as a 230, 400−dimensional
video showing a dog running for 60 frames. The later is approximately periodic in nature, containing several
paces from the dog. For the first two videos we used the Matern and RBF kernel respectively to model the dy-
namics and interpolated to reconstruct blocks of frames chosen from the whole sequence. For the ‘dog’ dataset
we constructed a compound kernel kx = kx(rbf) + kx(periodic), where the RBF term is employed to capture any
divergence from the approximately periodic pattern. We then used our model to reconstruct the last 7 frames ex-
trapolating beyond the original video. As can be seen in table 2, our method outperformed NN in all cases. The
results are also demonstrated visually in figure 1 and the reconstructed videos are available in the supplementary
material.

4‘Missa’ dataset: cipr.rpi.edu. ‘Ocean’: cogfilms.com. ‘Dog’: fitfurlife.com. See details in supplementary. The logo appearing in the
‘dog’ images in the experiments that follow, has been added with post-processing.

7

Table 2: The mean squared error per pixel for VGPDS and NN for the three datasets (measured only in the missing inputs).
The number of latent dimensions selected by our model is in parenthesis.

Missa Ocean Dog
VGPDS 2.52 (Q = 12) 9.36 (Q = 9) 4.01 (Q = 6)

NN 2.63 9.53 4.15

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: (a) and (c) demonstrate the reconstruction achieved by VGPDS and NN respectively for the most challenging
frame (b) of the ‘missa’ video, i.e. when translation occurs. (d) shows another example of the reconstruction achieved by
VGPDS given the partially observed image. (e) (VGPDS) and (f) (NN) depict the reconstruction achieved for a frame of
the ‘ocean’ dataset. Finally, we demonstrate the ability of the model to automatically select the latent dimensionality by
showing the initial lengthscales (fig: (g)) of the ARD kernel and the values obtained after training (fig: (h)) on the ‘dog’ data
set.

As can be seen in figure 1, VGPDS predicts pixels which are smoothly connected with the observed image,
whereas the NN method cannot fit the predicted pixels in the overall context.

As a second task, we used our generative model to create new samples and generate a new video sequence.
This is most effective for the ‘dog’ video as the training examples were approximately periodic in nature. The
model was trained on 60 frames (time-stamps [t1, t60]) and we generated the new frames which correspond to
the next 40 time points in the future. The only input given for this generation of future frames was the time
stamp vector, [t61, t100]. The results show a smooth transition from training to test and amongst the test video
frames. The resulting video of the dog continuing to run is sharp and high quality. This experiment demonstrates
the ability of the model to reconstruct massively high dimensional images without blurring. Frames from the
result are shown in figure 2. The full video is available in the supplementary material.

6 Discussion and Future Work
We have introduced a fully Bayesian approach for modeling dynamical systems through probabilistic nonlinear
dimensionality reduction. Marginalizing the latent space and reconstructing data using Gaussian processes
results in a very generic model for capturing complex, non-linear correlations even in very high dimensional

8

(a) (b) (c)

Figure 2: The last frame of the training video (a) is smoothly followed by the first frame (b) of the generated video. A
subsequent generated frame can be seen in (c).

data, without having to perform any data preprocessing or exhaustive search for defining the model’s structure
and parameters.

Our method’s effectiveness has been demonstrated in two tasks; firstly, in modeling human motion capture
data and, secondly, in reconstructing and generating raw, very high dimensional video sequences. A promising
future direction to follow would be to enhance our formulation with domain-specific knowledge encoded, for
example, in more sophisticated covariance functions or in the way that data are being preprocessed. Thus, we
can obtain application-oriented methods to be used for tasks in areas such as robotics, computer vision and
finance.

Acknowledgments

Research was partially supported by the University of Sheffield Moody endowment fund and the Greek State
Scholarships Foundation (IKY). We also thank Colin Litster and “Fit Fur Life” for allowing us to use their video
files as datasets.

References

[1] N. D. Lawrence, “Probabilistic non-linear principal component analysis with Gaussian process latent vari-
able models,” Journal of Machine Learning Research, vol. 6, pp. 1783–1816, 2005.

[2] N. D. Lawrence, “Gaussian process latent variable models for visualisation of high dimensional data,” in
In NIPS, p. 2004, 2004.

[3] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models,” in In NIPS, pp. 1441–
1448, MIT Press, 2006.

[4] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models for human motion,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 283–298, Feb. 2008.

[5] N. D. Lawrence, “Hierarchical Gaussian process latent variable models,” in In International Conference
in Machine Learning, 2007.

[6] J. Ko and D. Fox, “GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation
models,” Auton. Robots, vol. 27, pp. 75–90, July 2009.

[7] M. Titsias, “Variational learning of inducing variables in sparse Gaussian processes,” JMLR W&CP, vol. 5,
pp. 567–574, 2009.

[8] M. Titsias and N. D. Lawrence, “Bayesian Gaussian process latent variable model,” Journal of Machine
Learning Research - Proceedings Track, vol. 9, pp. 844–851, 2010.

[9] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006.

9

[10] D. J. C. MacKay, “Introduction to Gaussian processes,” in Neural Networks and Machine Learning (C. M.
Bishop, ed.), NATO ASI Series, pp. 133–166, Kluwer Academic Press, 1998.

[11] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics). Springer,
1st ed. 2006. corr. 2nd printing ed., Oct. 2007.

[12] M. Opper and C. Archambeau, “The variational Gaussian approximation revisited,” Neural Computation,
vol. 21, no. 3, pp. 786–792, 2009.

[13] A. Girard, C. E. Rasmussen, J. Quiñonero-Candela, and R. Murray-Smith, “Gaussian process priors with
uncertain inputs - application to multiple-step ahead time series forecasting,” in Neural Information Pro-
cessing Systems, 2003.

[14] G. W. Taylor, G. E. Hinton, and S. Roweis, “Modeling human motion using binary latent variables,” in
Advances in Neural Information Processing Systems, p. 2007, MIT Press, 2006.

[15] N. D. Lawrence, “Learning for larger datasets with the Gaussian process latent variable model,” Journal
of Machine Learning Research - Proceedings Track, vol. 2, pp. 243–250, 2007.

10

Appendix

A Derivation of the variational bound
We wish to approximate the marginal likelihood:

p(Y |t) =

∫
p(Y, F,X|t)dXdF, (25)

by computing a lower bound:

Fv(q,θ) =

∫
q(Θ) log

p(Y, F,X |t)
q(Θ)

dXdF, (26)

This can be achieved by first augmenting the joint probability density of our model with inducing inputs X̃
along with their corresponding function values U :

p(Y, F, U,X, X̃|t) =

D∏
d=1

p(yd|fd)p(fd|ud,X)p(ud|X̃)p(X|t) (27)

where p(ud|X̃) =
∏D
d=1N (ud|0,KMM) . For simplicity, X̃ is dropped from our expressions for the rest of

this supplementary material. Note that after including the inducing points, p(fd|ud, X) remains analytically
tractable and it turns out to be [9]):

p(fd|ud, X) = N
(
fd|KNMK

−1
MMud,KNN −KNMK

−1
MMKMN

)
. (28)

We are now able to define a variational distribution q(Θ) which factorises as: For tractability we now define a
variational density, q(Θ):

q(Θ) = q(F,U,X) = q(F |U,X)q(U)q(X) =

D∏
d=1

p(fd|ud, X)q(ud)q(X), (29)

where q(X) =
∏Q
q=1N (xq|µq, Sq). Now, we return to (26) and replace the joint distribution with its aug-

mented version (27) and the variational distribution with its factorised version (29):

Fv(q,θ) =

∫
q(Θ) log

p(Y, F, U,X|t)
q(F,U,X)

dXdF,

=

∫ D∏
d=1

p(fd|ud, X)q(ud)q(X) log

∏D
d=1 p(yd|fd)������

p(fd|ud,X)p(ud|X̃)p(X|t)∏D
d=1������

p(fd|ud, X)q(ud)q(X))
dXdF

=

∫ D∏
d=1

p(fd|ud, X)q(ud)q(X) log

∏D
d=1 p(yd|fd)p(ud|X̃)∏D
d=1 q(ud)q(X))

dXdF,

−
∫ D∏

d=1

q(X) log
q(X)

p(X|t)
dX

= F̂v − KL(q ‖ p), (30)

with F̂v =
∫
q(X) log p(Y |F)p(F |X) dXdF =

∑D
d=1 F̂d. Both terms in (30) are analytically tractable, with

the first having the same analytical solution as the one derived in [8]. Further calculations in the the F̂v term
reveal that the optimal setting for q(ud) is also a Gaussian. More specifically, we have:

F̂v =

∫
q(ud) log

e
〈logN(yd|ad,β−1Id)〉

q(X)p(ud)

q(ud)
dud −A (31)

11

where A is a collection of remaining terms and ad is the mean of (28). (31) is a KL-like quantity and, therefore,
q(ud) is optimally set to be the quantity appearing in the numerator of the above equation. So:

q(ud) = e
〈logN(yd|ad,β−1Id)〉

q(X)p(ud),

exactly as in [8]. This is a Gaussian distribution since p(ud) = N (ud|0,KMM).
The complete form of the jensen’s lower bound turns out to be:

Fv(q,θ) =

D∑
d=1

F̂d(q,θ)− KL(q ‖ p)

=

D∑
d=1

log

(
(β)

N
2 |KMM |

1
2

(2π)
N
2 |βΨ2 + KMM |

1
2

e−
1
2y

T
dWyd

)
− βψ0

2
+
β

2
Tr
(
K−1MMΨ2

)
− Q

2
log |Kt | −

1

2

Q∑
q=1

[
Tr
(
Kt
−1Sq

)
+ Tr

(
Kt
−1µqµ

T
q

)]
+

1

2

Q∑
q=1

log |Sq |+ const (32)

where the last line corresponds to the KL term. Also:

Ψ0 = Tr(〈KNN 〉q(X)) , Ψ1 = 〈KNM 〉q(X) , Ψ2 = 〈KMN KNM 〉q(X) (33)

The Ψ quantities can be computed analytically as in [8].

B Derivatives of the variational bound
Before giving the expressions for the derivatives of the variational bound (30), it should be reminded that the
variational parameters µq and Sq (for all qs) have been reparametrised as Sq =

(
K−1t + diag(λq)

)−1
and µq =

Ktµ̄q , where the function diag(·) transforms a vector into a square diagonal matrix and vice versa. Given the
above, the set of the parameters to be optimised is (θf ,θx, {µ̄q,λq}Qq=1, X̃ . The gradient w.r.t the inducing
points X̃ , however, has exactly the same form as for θf and, therefore, is not presented here. Also notice that
from now on we will often use the term “variational parameters” to refer to the new quantities µ̄q and λq .

Some more notation:

1. λq is a scalar, an element of the vector λq which, in turn, is the main diagonal of the diagonal matrix Λq .

2. Sij , Sq;ij the element of Sq found in the i-th row and j-th column.

3. sq , {Sq;ii}Ni=1, i.e. it is a vector with the diagonal of Sq .

B.1 Derivatives w.r.t the variational parameters

ϑFv
ϑµ̄q

= Kt

(
ϑF̂
ϑµq

− µ̄q

)
and

ϑFv
ϑλq

= −(Sq ◦ Sq)

(
ϑF̂
ϑsq

+
1

2
λq

)
. (34)

where:

F̂(q,θ)

ϑµq
= −βD

2

ϑΨ0

ϑµq
+ βTr

(
ϑΨT

1

ϑµq
Y Y TΨ1A

−1
)

+
β

2
Tr
[
ϑΨ2

ϑµq

(
DK−1MM − β

−1DA−1 −A−1ΨT
1 Y Y

TΨ1A
−1)] (35)

12

ϑF̂(q,θ)

ϑSq;i,j
= −βD

2

ϑΨ0

ϑSq;i,j
+ βTr

(
ϑΨT

1

ϑSq;i,j
Y Y TΨ1A

−1
)

+
β

2
Tr
[
ϑΨ2

ϑSq;i,j

(
DK−1MM − β

−1DA−1 −A−1ΨT
1 Y Y

TΨ1A
−1)] (36)

with A = β−1KMM + Ψ2.

B.2 Derivatives w.r.t θ = (θf ,θx) and β
Given that the KL term involves only the temporal prior, its gradient w.r.t the parameters θf is zero. Therefore:

ϑFv
ϑθf

=
ϑF̂
ϑθf

(37)

with:

ϑF̂
ϑθf

= const− βD

2

ϑΨ0

ϑθf
+ βTr

(
ϑΨT

1

ϑθf
Y Y TΨ1A

−1
)

+
1

2
Tr
[
ϑKMM

ϑθf

(
DK−1MM − β

−1DA−1 −A−1ΨT
1 Y Y

TΨ1A
−1 − βDK−1MMΨ2K

−1
MM

)]
+
β

2
Tr
[
ϑΨ2

ϑθf

(
DK−1MM − β

−1DA−1 −A−1ΨT
1 Y Y

TΨ1A
−1)] (38)

The expression above is identical for the derivatives w.r.t the inducing points. For the gradients w.r.t the β
term, we have a similar expression:

ϑF̂
ϑβ

=
1

2

[
D
(
Tr(K−1MMΨ2) + (N −M)β−1 −Ψ0

)
− Tr(Y Y >) + Tr(A−1Ψ>1 Y Y

>Ψ1)

+β−2DTr(KMMA
−1) + β−1Tr

(
K−1MMA

−1Ψ>1 Y Y
>Ψ1A

−1)] (39)

In contrast to the above, the term F̂v does involve parameters θx, because it involves the variational parame-
ters that are now reparametrized withKt, which in turn depends on θx. To demonstrate that, we will forget for a
moment the reparametrization of Sq and we will express the bound as F (θx, µq(θx)) (where µq(θx) = Ktµ̄q)
so as to show explicitly the dependency on the variational mean which is now a function of θx. Our calcu-

lations must now take into account the term
(
ϑF̂(µq)
ϑµq

)>
ϑµq(θx)
ϑθx

that is what we “miss” when we consider
µq(θx) = µq:

ϑFv(θx, µq(θx))

ϑθx
=
ϑFv(θx,µq)

ϑθx
+

(
ϑF̂(µq)

ϑµq

)>
ϑµq(θx)

ϑθx

=
�
�
�
�ϑF̂(µq)

ϑθx
+
ϑ(−KL)(θx,µq(θx))

ϑθx
+

(
ϑF̂(µq)

ϑµq

)>
ϑµq(θx)

ϑθx
(40)

We do the same for Sq and then we can take the resulting equations and replace µq and Sq with their equals
so as to take the final expression which only contains µ̄q and λq:

ϑFv(θx, µq(θx), Sq(θx))

ϑθx
= Tr

[[
− 1

2

(
B̂qKtB̂q + µ̄qµ̄

>
q

)
+
(
I − B̂qKt

)
diag

(
ϑF̂
ϑsq

)(
I − B̂qKt

)>]ϑKt

ϑθx

]

+

(
ϑF̂(µq)

ϑµq

)>
ϑKt

ϑθx
µ̄q (41)

13

where B̂q = Λ
1
2
q B̃−1q Λ

1
2
q . and B̃q = I + Λ

1
2
q KtΛ

1
2
q . Note that by using this B̃q matrix (which has eigenvalues

bounded below by one) we have an expression which, when implemented, leads to more numerically stable
computations, as explained in [9] page 45-46.

C Predictions

C.1 Predictions given only the test time points
To approximate the predictive density, we will need to introduce the underlying latent function values F∗ ∈
RN∗×D (the noisy-free version of Y∗) and the latent variables X∗ ∈ RN∗×Q. We write the predictive density as

p(Y∗|Y) =

∫
p(Y∗, F∗, X∗|Y∗, Y)dF∗dX∗ =

∫
p(Y∗|F∗)p(F∗|X∗, Y)p(X∗|Y)dF∗dX∗. (42)

The term p(F∗|X∗, Y) is approximated according to

q(F∗|X∗) =

∫ ∏
d∈D

p(f∗,d|ud, X∗)q(ud)dud =
∏
d∈D

q(f∗,d|X∗), (43)

where q(f∗,d|X∗) is a Gaussian that can be computed analytically.The term p(X∗|Y) in eq. (42) is approximated
by a Gaussian variational distribution q(X∗),

p(X∗|Y) ≈
∫
p(X∗|X)q(X)dX = 〈p(X∗|X)〉q(X) = q(X∗) =

Q∏
q=1

q(x∗,q), (44)

where p(X∗,q|X) can be found from the conditional GP prior (see [9]). We can then write

x∗,q = αxq + ε, (45)

where α = K∗NK
−1
t and ε ∼ N

(
0,K∗∗ −K∗NK−1

t KN∗

)
. Also, Kt = kx(t, t), K∗N = kx(t∗, t) and

K∗∗ = kx(t∗t∗). Given the above, we know a priori that (44) is a Gaussian and by taking expectations over
q(X) in the r.h.s. of (45) we find the mean and covariance of q(X∗). Substituting for the equivalent forms of
µq and Sq from section 2.2 we obtain the final solution

µx∗,q = k∗N µ̄q (46)

var(x∗,q) = k∗∗ − k∗N (Kt + Λ−1q)−1kN∗. (47)

(42) can then be written as:

p(Y∗|Y) =

∫
p(Y∗|F∗)q(F∗|X∗)q(X∗)dF∗dX∗ =

∫
p(Y∗|F∗) 〈q(F∗|X∗)〉q(X∗) dF∗ (48)

Although the expectation appearing in the above integral is not a Gaussian, its moments can be found analyti-
cally [9, 13],

E(F∗) = B>Ψ∗1 (49)

Cov(F∗) = B> (Ψ∗2 −Ψ∗1(Ψ∗1)>)B + Ψ∗0I − Tr
[(
K−1MM − (KMM + βΨ2)

−1
)

Ψ∗2

]
I, (50)

where B = β (KMM + βΨ2)
−1

Ψ>1 Y , Ψ∗0 = 〈kf (X∗, X∗)〉, Ψ∗1 = 〈KM∗〉 and Ψ∗2 = 〈KM∗K∗M 〉. All
expectations are taken w.r.t. q(X∗) and can be calculated analytically, while KM∗ denotes the cross-covariance
matrix between the training inducing inputs X̃ and X∗. Finally, since Y∗ is just a noisy version of F∗, the mean
and covariance of (48) is just computed as: E(Y∗) = E(F∗) and Cov(Y∗) = Cov(F∗) + β−1IN∗ .

14

C.2 Predictions given the test time points and partially observed outputs
The expression for the predictive density p(Y m∗ |Y

p
∗ , Y) follows exactly as in section C.1 but we need to compute

probabilities for Y m∗ instead of Y∗ and Y is replaced with (Y, Y p∗) in all conditioning sets. Similarly, F is
replaced with Fm. Now q(X∗) cannot be found analytically as in section C.1; instead, it is optimised so that
Y p∗ are taken into account. This is done by maximising the variational lower bound on the marginal likelihood:

p(Y p∗ , Y) =

∫
p(Y p∗ , Y |X∗, X)p(X∗, X)dX∗dX

=

∫
p(Y m|X)p(Y p∗ , Y

p|X∗, X)p(X∗, X)dX∗dX,

Notice that here, unlike the main paper, we work with the likelihood after marginalising F , for simplicity.
Assuming a variational distribution q(X∗, X) and using Jensen’s inequality we obtain the lower bound∫

q(X∗, X) log
p(Y m|X)p(Y p∗ , Y

p|X∗, X)p(X∗, X)

q(X∗, X)
dX∗dX

=

∫
q(X) log p(Y m|X)dX +

∫
q(X∗, X) log p(Y p∗ , Y

p|X∗, X)dX∗dX

− KL[q(X∗, X)||p(X∗, X)] (51)

This quantity can now be maximized in the same manner as for the bound of the training phase. Unfortunately,
this means that the variational parameters that are already optimised from the training procedure cannot be used
here because X and X∗ are coupled in q(X∗, X). A much faster but less accurate method would be to decouple
the test from the training latent variables by imposing the factorisation q(X∗, X) = q(X)q(X∗). Then, equation
(51) would break into terms containing X , X∗ or both. The ones containing only X could then be treated as
constants.

D Additional results from the experiments

(a) (b)

Figure 3: The values of the scales of the ARD kernel after training on the motion capture dataset using the RBF (fig:
(a)) and the Matern (fig: (b)) kernel to model the dynamics for VGPDS. The scales that have zero value “switch off” the
corresponding dimension of the latent space. The latent space is, therefore, 3-D for (a) and 4-D for (b). Note that the scales
were initialized with very similar values.

15

(a) (b)

Figure 4: The prediction for two of the test angles for the body (fig: 4(a)) and for the legs part (fig: 4(a)). Continuous line
is the original test data, dotted line is nearest neighour in scaled space, dashed line is VGPDS (using the RBF kernel for the
body reconstruction and the Matern for the legs).

(a) (b) (c) (d)

Figure 5: Some more examples for the reconstruction achieved for the ‘dog’ dataset. 40% of the test image’s pixels (figures
(a) and (c)) were presented to the model, which was able to successfully reconstruct them, as can be seen in (b) and (d).

16

