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Abstract

This paper handles a kind of strategic game called potentialgames and develops a novel learning

algorithm Payoff-based Inhomogeneous Partially Irrational Play (PIPIP). The present algorithm is based

on Distributed Inhomogeneous Synchronous Learning (DISL)presented in an existing work but, unlike

DISL, PIPIP allows agents to make irrational decisions witha specified probability, i.e. agents can choose

an action with a low utility from the past actions stored in the memory. Due to the irrational decisions,

we can prove convergence in probability of collective actions to potential function maximizers. Finally,

we demonstrate the effectiveness of the present algorithm through experiments on a sensor coverage

problem. It is revealed through the demonstration that the present learning algorithm successfully leads

agents to around potential function maximizers even in the presence of undesirable Nash equilibria.

We also see through the experiment with a moving density function that PIPIP has adaptability to

environmental changes.
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I. INTRODUCTION

Cooperative control of multi-agent systems basically aimsat designing local interactions of

agents in order to meet some global objective of the group [1], [2]. It is also required depending

on scenarios that agents achieve the global objective underimperfect prior knowledge on envi-

ronments while adapting to the network and environmental changes. Nevertheless, conventional

cooperative control schemes do not always embody such functions. For example, in sensor

deployment or coverage, most of the control schemes as in [3], [4], [5] assume prior knowledge

on a density function defined over a mission space and hence are hardly applicable to the mission

over unknown surroundings. A game theoretic framework as in[6] holds tremendous potential

for overcoming the drawback of the conventional schemes.

A game theoretic approach to cooperative control formulates the problems as non-cooperative

games and identifies the objective in cooperative control with arrival at some specific Nash

equilibria [6], [7], [8]. In particular, it is shown by J. Marden et al. [6] that a variety of cooperative

control problems are related to so-called potential games [9]. Unlike the other game theory,

potential games give a design perspective, which consists of two kinds of design problem: utility

design and learning algorithm design [10]. The objective ofutility design is to align local utility

functions to be maximized by each agent so that the resultinggame constitutes a potential game,

where the literature [11], [12] provides general design methodologies. The learning algorithm

design determines action selection rules of agents so that the actions converge to Nash equilibria.

In this paper, we focus on the learning algorithm design for cooperative control of multi-agent

systems. A lot of learning algorithms have been establishedin game theory literature and recently

some algorithms are also developed mainly by J. Marden and his collaborators. The algorithms

therein are classified into several categories depending ontheir features.

The first issue is whether an algorithm presumes finite or infinite memories. For example,

Fictitious Play (FP) [13], Regret Matching (RM) [14], JointStrategy Fictitious Play (JSFP)

with Inertia [15] and Regret-Based Dynamics [16] require infinite number of memories for

executing the algorithms. Meanwhile, Adaptive Play (AP) [17], Better Reply Process with Finite

Memory and Inertia [18], (Restrictive) Spatial Adaptive Play ((R)SAP) [19], [6] and Payoff-based

Dynamics (PD) [20], Payoff-based version of Log-Linear Learning (PLLL) [21] and Distributed

Inhomogeneous Synchronous Learning (DISL) [7] require only a finite number of memories. Of
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course, the finite memory algorithms are more preferable forpractical applications.

The second issue is what information is necessary for executing learning algorithms. For

example, FP presumes that all the information of the other agents’ actions are available, which

strongly restricts its applications. On the other hand, RM,JSFP with Inertia and (R)SAP assume

availability of a so-called virtual payoff, i.e. the utility which would be obtained if an agent

chose an action. Moreover, PD, PLLL and DISL utilize only theactual payoffs obtained after

taking actions, which has a potential to overcome the aforementioned drawback of the sensor

coverage schemes [7].

The main objective of standard game theory is to compute Nashequilibria and hence most

of the above algorithms except for [6], [21] assure only convergence to pure Nash equilibria.

However, in most of cooperative control problems, it is insufficient for achieving the global

objective and selection of the most efficient equilibria is required [21]. In this paper, we thus

deal with convergence of the actions to the Nash equilibria maximizing the potential function

which are called optimal Nash equilibria in this paper, since the potential function is usually

designed in many cooperative control problems so that its maximizers coincide with the action

profiles achieving the global objectives.

The primary contribution of this paper is to develop a novel learning algorithm calledPayoff-

based Inhomogeneous Partially Irrational Play (PIPIP). The learning algorithm is based on

DISL presented in [7] and inherits its several desirable features: (i) The algorithm requires finite

and a little memory, (ii) The algorithm is payoff-based, (iii) The algorithm allows agents to

choose actions in a synchronous fashion at each iteration, (iv) The action selection procedure in

PIPIP consists of simple rules, (v) The algorithm is capableof dealing with constraints on action

selection. The main difference of PIPIP from DISL is to allowagents to make irrational decisions

with a certain probability, which renders agents opportunities to escape from undesirable Nash

equilibria. Thanks to the irrational decisions, PIPIP assures that the actions of the group converge

in probability to optimal Nash equilibria, though only convergence to a pure Nash equilibrium

is proved in [7]. Meanwhile, some learning algorithms as in [6], [21] dealing with convergence

to the optimal Nash equilibria have been presented and we also mention the advantages of

PIPIP over these learning algorithms in the following. RSAP[6] guarantees convergence of the

distribution of actions to a stationary distribution such that the probability staying the optimal

Nash equilibria is arbitrarily specified by a design parameter. However, RSAP is not synchronous
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and virtual payoff-based and hence its applications are restricted. PLLL [21] also allows irrational

and exploration decisions similarly to PIPIP and the resulting conclusion is almost compatible

with this paper. However, in [21], how to handle the action constraints is not explicitly shown

and convergence in probability to the optimal Nash equilibria is not proved in a strict sense.

The secondary contribution of this paper is to demonstrate the effectiveness of the present

learning algorithm through experiments on a sensor coverage problem, where the learning

algorithm is applied to a robotic system compensated by local controllers and logics. Such

investigations have not been sufficiently addressed in the existing works. Here, we mainly

check the performance of the learning algorithm in finite time and adaptability to environmental

changes. In order to deal with the former issue, we prepare obstacles in the mission space to

generate apparent undesirable Nash equilibria. Then, we compare the performance of PIPIP

with DISL. The results therein will support our claim that what this paper provides is not a

minor extension of [7] and contains a significant contribution from a practical point of view.

We next demonstrate the adaptability by employing a moving density function defined over the

mission space. Though adaptation to time-varying density is in principle expected for payoff-

based algorithms, its demonstration has not been addressedin previous works. We see from

the results that desirable group behaviors, i.e. tracking to the moving high density region are

achieved by PIPIP even in the absence of any knowledge on the density.

This paper is organized as follows: In Section II, we give some terminologies and basis

necessary for stating the results of this paper. In Section III, we present the learning algorithm

PIPIP and state the main result associated with the algorithm, i.e. convergence in probability to

the optimal Nash equilibria. Then, Section IV gives the proof of the main result. In Section V,

we demonstrate the effectiveness of PIPIP through experiments on a sensor coverage problem.

Finally, Section VI draws conclusions.

II. PRELIMINARY

A. Constrained Potential Games

In this paper, we consider a constrained strategic gameΓ = (V,A, {Ui(·)}i∈V , {Ri(·)}i∈V).

Here,V := {1, · · · , n} is the set of agents’ unique identifiers. The setA is called a collective

action set and defined asA := A1×· · ·×An, whereAi, i ∈ V is the set of actions which agent

i can take. The functionUi : A → R is a so-called utility function of agenti ∈ V and each
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agent basically behaves so as to maximize the function. The functionRi : Ai → 2Ai provides

a so-called constrained action set andRi(ai) is the set of actions which agenti will be able to

take in case he takes an actionai. Namely, at each iterationt ∈ Z+ := {0, 1, 2, · · · }, each agent

chooses an actionai(t) from the setRi(ai(t− 1)).

Throughout this paper, we denote collection of actions other than agenti by

a−i := (a1, · · · , ai−1, ai+1, · · · , an).

Then, the joint actiona = (a1, · · · , an) ∈ A is described asa = (ai, a−i). Let us now make the

following assumptions.

Assumption 1 The functionRi : Ai → 2Ai satisfies the following three conditions.

• (Reversibility [6]) For anyi ∈ V and any actionsa1i , a
2
i ∈ Ai, the inclusiona2i ∈ Ri(a

1
i ) is

equivalent toa1i ∈ Ri(a
2
i ).

• (Feasibility [6]) For anyi ∈ V and any actionsa1i , a
m
i ∈ Ai, there exists a sequence of

actionsa1i → a2i → · · · → ami satisfyingali ∈ Ri(a
l−1
i ) for all l ∈ {1, · · · , m}.

• For anyi ∈ V and any actionai ∈ Ai, the number of available actions inRi(ai) is greater

than or equal to3.

Assumption 2 For any (a, a′) satisfyinga′i ∈ Ri(ai) and a−i = a′−i, the inequalityUi(a
′) −

Ui(a) < 1 holds true for alli ∈ V.

Assumption 2 means that when only one agent changes his action, the difference in the utility

function Ui should be smaller than1. This assumption is satisfied by just scaling all agents’

utility functions appropriately.

Let us now introduce the potential games under consideration in this paper.

Definition 1 (Constrained Potential Games [6], [7])A constrained strategic gameΓ is said

to be a constrained potential game with potential functionφ : A → R if for all i ∈ V, every

ai ∈ Ai and everya−i ∈
∏

j 6=iAj, the following equation holds for everya′i ∈ Ri(ai).

Ui(a
′
i, a−i)− Ui(ai, a−i) = φ(a′i, a−i)− φ(ai, a−i) (1)

Throughout this paper, we suppose that a potential functionφ is designed so that its maximizers

coincide with the joint actiona achieving a global objective of the group. Under the situation,
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(1) implies that if an agent changes his action, the change ofthe local objective function is equal

to that of the group objective function.

We next define the Nash equilibria as below.

Definition 2 (Constrained Nash Equillibria) For a constrained strategic gameΓ, a collection

of actionsa∗ ∈ A is said to be a constrained pure Nash equilibrium if the following equation

holds for all i ∈ V.

Ui(a
∗
i , a

∗
−i) = max

ai∈Ri(a∗i )
Ui(ai, a

∗
−i) (2)

It is known [7], [9] that any constrained potential game has at least one pure Nash equilibrium

and, in particular, a potential function maximizer is a Nashequilibrium, which is called an optimal

Nash equilibrium in this paper. However, there may exist undesirable pure Nash equilibria not

maximizing the potential function. In order to reach the optimal Nash equilibria while avoiding

undesirable equilibria, we have to design appropriately a learning algorithm which determines

how to select an action at each iteration.

B. Resistance Tree

Let us consider a Markov process{P 0
t } defined over a finite state spaceX . A perturbation

of {P 0
t } is a Markov process whose transition probabilities are slightly perturbed. Specifically,

a perturbed Markov process{P ε
t }, ε ∈ [0, 1] is defined as a process such that the transition of

{P ε
t } follows {P 0

t } with probability 1 − ε and does not follow with probabilityε. Then, we

introduce a notion ofregular perturbation as below.

Definition 3 (Regular Perturbation [19]) A family of stochastic processes{P ε
t } is called a

regular perturbation of{P 0
t } if the following conditions are satisfied:

(A1) For someε∗ > 0, the process{P ε
t } is irreducible and aperiodic for allε ∈ (0, ε∗].

(A2) Let us denote byP ε
xy the transition probability fromx ∈ X to y ∈ X along with the

Markov process{P ε
t }. Then,limε→0P

ε
xy = P 0

xy holds for allx, y ∈ X .

(A3) If P ε
xy > 0 for someε, then there exists a real numberχ(x→ y) ≥ 0 such that

limε→0

P ε
xy

εχ(x→y)
∈ (0,∞), (3)

whereχ(x→ y) is calledresistance of transition from x to y.
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Remark that, from (A1), if{P ε
t } is a regular perturbation of{P 0

t }, then{P ε
t } has the unique

stationary distributionµ(ε) for eachε > 0.

We next introduce theresistance λ(r) of a path r from x ∈ X to x′ ∈ X along with transitions

x(0) = x→ x(2) → · · · → x(m) = x′ as the value satisfying

lim
ε→0

P ε(r)

ελ(r)
∈ (0,∞), (4)

whereP ε(r) denotes the probability of the sequence of transitions. Then, it is easy to confirm

that λ(r) is simply given by

λ(r) =
m−1
∑

i=0

χ(x(i) → x(i+1)). (5)

A statex ∈ X is said to communicate with statey ∈ X if both x  y and y  x hold,

where the notationx  y implies thaty is accessible fromx i.e. a process starting at statex

has non-zero probability of transitioning intoy at some point. Arecurrent communication class

is a class such that every pair of states in the class communicates with each other and no state

outside the class is accessible to the class. Now, letH1, · · · , HJ be recurrent communication

classes of Markov process{P 0
t }. Then, within each class, there is a path with zero resistance

from every state to every other. In case of a perturbed Markovprocess{P ε
t }, there may exist

several paths from states inHl to states inHk for any two distinct recurrent communication

classesHl andHk. The minimal resistance among all such paths is denoted byχlk.

Let us now define a weighted complete directed graphG = (H,H×H,W) over the recurrent

communication classesH = {H1, · · · , HJ}, where the weightwlk ∈ W of each edge(Hl, Hk)

is equal to the minimal resistanceχlk. We next definel-tree which is a spanning tree overG

with a root nodeHl ∈ H. We also denote byG(l) the set of alll-trees. Theresistance of an

l-tree is the sum of the weights on all the edges of the tree. Thestochastic potential of the

recurrent communication classHl is the minimal resistance among alll-trees inG(l). We also

introduce the notion ofstochastically stable state as below.

Definition 4 (Stochastically Stable State [19])A state x ∈ X is said to be stochastically

stable, if x satisfieslimε→0+µx(ε) > 0, whereµx(ε) is the value of an element of stationary

distributionµ(ε) corresponding to statex.

Using the above terminologies, we introduce the following well known result which connects

the stochastically stable states and stochastic potential.
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Proposition 1 [19] Let {P ε
t } be a regular perturbation of{P 0

t }. Thenlimε→0+µ(ε) exists and the

limiting distributionµ(0) is a stationary distribution of{P 0
t }. Moreover the stochastically stable

states are contained in the recurrent communication classes with minimum stochastic potential.

C. Ergodicity

Discrete-time Markov processes can be divided into two types: time-homogeneous and time-

inhomogeneous, where a Markov process{Pt} is said to be time-homogeneous if the transition

matrix denoted byPt is independent of the time and to be a time-inhomogeneous if it is time

dependent. We also denote the probability of the state transition from time k0 to time k by

P (k0, k) =
∏k−1

t=k0
Pt, 0 ≤ k0 < k.

For a Markov process{Pt}, we introduce the notion of ergodicity.

Definition 5 (Strong Ergodicity [23]) A Markov process{Pt} is said to be strongly ergodic if

there exists a stochastic vectorµ∗ such that for any distributionµ on X and timek0, we have

limk→∞µP (k0, k) = µ∗.

Definition 6 (Weak Ergodicity [23]) A Markov process{Pt} is said to be weakly ergodic if

the following equation holds.

lim
k→∞

(Pxz(k0, k)− Pyz(k0, k)) = 0 ∀x, y, z ∈ X , ∀k0 ∈ Z+

If {Pt} is strongly ergodic, the distributionµ converges to the unique distributionµ∗ from any

initial state. Weak ergodicity implies that the information on the initial state vanishes as time

increases though convergence ofµ may not be guaranteed. Note that the notions of weak and

strong ergodicity are equivalent in case of time-homogeneous Markov processes.

We finally introduce the following well-known results on ergodicity.

Proposition 2 [23] A Markov process{Pt} is strongly ergodic if the following conditions hold:

(B1) The Markov process{Pt} is weakly ergodic.

(B2) For eacht, there exists a stochastic vectorµt on X such thatµt is the left eigenvector

of the transition matrixP (t) with eigenvalue 1.

(B3) The eigenvectorµt in (B2) satisfies
∑∞

t=0

∑

x∈X |µ
t
x − µt+1

x | < ∞. Moreover, ifµ∗ =

limt→∞ µt, thenµ∗ is the vector in Definition 5.
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III. L EARNING ALGORITHM AND MAIN RESULT

In this section, we present a learning algorithm calledPayoff-based Inhomogeneous Partially

Irrational Play (PIPIP) and state the main result of this paper. At each iterationt ∈ Z+,

the learning algorithm chooses an action according to the following procedure assuming that

each agenti ∈ V stores previous two chosen actionsai(t − 2), ai(t − 1) and the outcomes

Ui(a(t− 2)), Ui(a(t− 1)). Each agent first updates a parameterε calledexploration rate by

ε(t) = t−
1

n(D+1) , (6)

whereD is defined asD := maxi∈VDi and Di is the minimal number of steps required for

transitioning between any two actions of agenti.

Then, each agent compares the values ofUi(a(t − 1)) andUi(a(t − 2)). If Ui(a(t − 1)) ≥

Ui(a(t− 2)) holds, then he chooses actionai(t) according to the rule:

• ai(t) is randomly chosen fromRi(ai(t−1)) \ {ai(t−1)} with probabilityε(t), (it is called

an exploratory decision).

• ai(t) = ai(t− 1) with probability 1− ε(t).

Otherwise (Ui(a(t− 1)) < Ui(a(t− 2))), actionai(t) is chosen according to the rule:

• ai(t) is randomly chosen fromRi(ai(t − 1)) \ {ai(t − 1), ai(t − 2)} with probability ε(t)

(it is called anexploratory decision).

• ai(t) = ai(t− 1) with probability

(1− ε(t))(κ · ε(t)∆i), ∆i := Ui(a(t− 2))− Ui(a(t− 1)) (7)

(it is called anirrational decision).

• ai(t) = ai(t− 2) with probability

(1− ε(t))(1− κ · ε(t)∆i). (8)

The parameterκ should be chosen so as to satisfy

κ ∈
( 1

C − 1
,
1

2

]

, C := max
i∈V

max
ai∈Ai

|Ri(ai)|, (9)

where |Ri(ai)| is the number of elements of the setRi(ai). It is clear under the third item of

Assumption 1 that the actionai(t) is well-defined.
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Algorithm 1 Payoff-based Inhomogeneous Partially Irrational Play (PIPIP)
Initialization: Action a is chosen randomly fromA. Set a1i ← ai, a2i ← ai, U1

i ←

Ui(a), U2
i ← Ui(a), ∆i ← 0 for all i ∈ V and t← 2.

Step 1: ε← t(−1/(n(D+1))).

Step 2: If U1
i ≥ U2

i , then set

atmp
i ←







rnd(Ri(a
1
i ) \ {a

1
i }), w.p. ε

a1i , w.p. 1− ε
.

Otherwise, set

atmp
i ←



















rnd(Ri(a
1
i ) \ {a

1
i , a

2
i }), w.p. ε(t)

a1i , w.p. (1− ε)(κ · ε∆i)

a2i , w.p. (1− ε)(1− κ · ε∆i)

.

Step 3: Execute the selected actionatmp
i and receiveU tmp

i ← Ui(a
tmp).

Step 4: Seta2i ← a1i , a1i ← atmp
i , U2

i ← U1
i , U1

i ← U tmp
i and∆i ← U2

i − U1
i .

Step 5: t← t + 1 and go toStep 1.

Finally, each agenti executes the selected actionai(t) and computes the resulting utility

Ui(a(t)) via feedbacks from environment and neighboring agents. At the next iteration, agents

repeat the same procedure.

The algorithm PIPIP is compactly described in Algorithm 1, where the functionrnd(A′)

outputs an action chosen randomly from the setA′. Note that the algorithm with a constant

ε(t) = ε ∈ (0, 1/2] is called Payoff-based Homogeneous Partially Irrational Play (PHPIP),

which will be used for the proof of the main result of this paper.

PIPIP is developed based on the learning algorithm DISL presented in [7]. The main difference

of PIPIP from DISL is that agents may choose the action with the lower utility in Step 2with

probability(1−ε)(κ ·ε∆i) which depends on the difference of the last two steps’ utilities∆i and

the parametersκ and ε. Thanks to the irrational decisions, agents can escape fromundesirable

Nash equilibria as will be proved in the next section.

We are now ready to state the main result of this paper. Beforementioning it, we define

B := {(a, a′) ∈ A×A| a′i ∈ Ri(ai) ∀i ∈ V}. (10)
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and ζ(Γ) as the set of the optimal Nash equilibria, i.e. potential function maximizers, of a

constrained potential gameΓ.

Theorem 1 Consider a constrained potential gameΓ satisfying Assumptions 1 and 2. Suppose

that each agent behaves according to Algorithm 1. Then, a Markov process{Pt} is defined over

the spaceB and the following equation is satisfied.

lim
t→∞

Prob [z(t) ∈ diag (ζ(Γ))] = 1, (11)

wherez(t) := (a(t− 1), a(t)) anddiag(A′) = {(a, a) ∈ A×A| a ∈ A′}, A′ ⊆ A.

Equation (11) means that the probability that agents executing PIPIP take one of the potential

function maximizers converge to1. The proof of this theorem will be shown in the next section.

In PIPIP, the parameterε(t) is updated by (6) to prove the above theorem, which is the same

as DISL. However, this update rule takes long time to reach a sufficiently smallε(t) when the

size of the game, i.e.n(D+1) is large. Thus, from the practical point of view, we might have to

decreaseε(t) based on heuristics or use PHPIP with a sufficiently smallε. Even in such cases,

the following theorem at least holds similarly to the paper [20].

Theorem 2 Consider a constrained potential gameΓ satisfying Assumptions 1 and 2. Suppose

that each agent behaves according to PHPIP. Then, given any probabilityp < 1, if the exploration

rateε is sufficiently small, for all sufficiently large timet ∈ Z+, the following equation holds.

Prob [z(t) ∈ diag (ζ(Γ))] > p. (12)

Theorem 2 assures that the optimal actions are eventually selected with high probability as long

as the final value ofε(t) is sufficiently small irrespective of the decay rate ofε(t).

IV. PROOF OFMAIN RESULT

In this section, we prove the main result of this paper (Theorem 1). We first consider PHPIP

with a constant exploration rateε. The statez(t) = (a(t− 1), a(t)) for PHPIP withε constitutes

a perturbed Markov process{P ε
t } on the state spaceB = {(a, a′) ∈ A×A| a′i ∈ Ri(ai) ∀i ∈ V}.

In terms of the Markov process{P ε
t } induced by PHPIP, the following lemma holds.

Lemma 1 The Markov process{P ε
t } induced by PHPIP applied to a constrained potential game

Γ is a regular perturbation of{P 0
t } under Assumption 1.
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Proof: Consider a feasible transitionz1 → z2 with z1 = (a0, a1) ∈ B andz2 = (a1, a2) ∈ B

and partition the set of agentsV according to their behaviors along with the transition as

Λ1 = {i ∈ V| Ui(a
1) ≥ Ui(a

0), a2i ∈ Ri(a
1
i ) \ {a

1
i }},

Λ2 = {i ∈ V| Ui(a
1) ≥ Ui(a

0), a2i = a1i },

Λ3 = {i ∈ V| Ui(a
1) < Ui(a

0), a2i ∈ Ri(a
1
i ) \ {a

0
i , a

1
i }},

Λ4 = {i ∈ V| Ui(a
1) < Ui(a

0), a2i = a1i },

Λ5 = {i ∈ V| Ui(a
1) < Ui(a

0), a2i = a0i }.

Then, the probability of the transitionz1 → z2 is represented as

P ε
z1z2 =

∏

i∈Λ1

ε

|Ri(a
1
i )| − 1

×
∏

i∈Λ2

(1− ε)×
∏

i∈Λ3

ε

|Ri(a
1
i )| − hi

×

×
∏

i∈Λ4

(1− ε)κε∆i ×
∏

i∈Λ5

(1− ε)(1− κε∆i), (13)

wherehi = 1 if a0i = a1i andhi = 2 otherwise. We see from (13) that the resistance of transition

z1 → z2 defined in (3) is given by|Λ1|+ |Λ3|+
∑

i∈Λ4
∆i since

0 < lim
ε→0

P ε
z1z2

ε|Λ1|+|Λ3|+
∑

i∈Λ4
∆i

=
∏

i∈Λ1

1

|Ri(a1i )| − 1

∏

i∈Λ3

1

|Ri(a1i )| − hi
× κ|Λ4| < +∞ (14)

holds. Thus,(A3) in Definition 3 is satisfied. In addition, it is straightforward from the procedure

of PHPIP to confirm the condition(A2).

It is thus sufficient to check(A1) in Definition 3. From the rule of taking exploratory actions

in Algorithm 1 and the second item of Assumption 1, we immediately see that the set of

the states accessible from anyz ∈ B is equal toB. This implies that the perturbed Markov

process{P ε
t } is irreducible. We next check aperiodicity of{P ε

t }. It is clear that any state in

diag(A) = {(a, a) ∈ A × A| a ∈ A} has period 1. Let us next pick any(a0, a1) from the set

B \ diag(A). Sincea0i ∈ Ri(a
1
i ) holds iff a1i ∈ Ri(a

0
i ) from Assumption 1, the following two

paths are both feasible:(a0, a1)→ (a1, a0)→ (a0, a1), (a0, a1)→ (a1, a1)→ (a1, a0)→ (a0, a1).

This implies that the period of state(a0, a1) is 1 and the process{P ε
t } is proved to be aperiodic.

Hence the process{P ε
t } is both irreducible and aperiodic, which means(A1) in Definition 3.

In summary, conditions(A1)–(A3) in Definition 3 are satisfied and the proof is completed.

From Lemma 1, the perturbed Markov process{P ε
t } is irreducible and hence there exists a

unique stationary distributionµ(ε) for everyε. Moreover, because{P ε
t } is a regular perturbation
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of {P 0
t }, we see from the former half of Proposition 1 thatlimε→0+ µ(ε) exists and the limiting

distributionµ(0) is the stationary distribution of{P 0
t }.

We also have the following lemma on the Markov process{P ε
t } induced by PHPIP.

Lemma 2 Consider the Markov process{P ε
t } induced by PHPIP applied to a constrained

potential gameΓ. Then, the recurrent communication classes{Hi} of the unperturbed Markov

process{P 0
t } are given by elements ofdiag(A) = {(a, a) ∈ A×A| a ∈ A}, namely

Hi = {(a
i, ai)}, i ∈ 1, · · · , |A|. (15)

Proof: Because of the rule at Step 2 of PHPIP, it is clear that any state belonging todiag(A)

cannot move to another state without explorations, which implies that all the states indiag(A)

itself form recurrent communication classes of the unperturbed Markov process{P 0
t }.

We next consider the states inB \ diag(A) and prove that these states are never included

in recurrent communication classes of the unperturbed Markov process{P 0
t }. Here, we use

induction. We first consider the case ofn = 1. If U1(a
1
1) ≥ U1(a

0
1), then the transition(a01, a

1
1)→

(a11, a
1
1) is taken. Otherwise, a sequence of transitions(a01, a

1
1)→ (a11, a

0
1)→ (a01, a

0
1) occurs. Thus,

in case ofn = 1, the state(a01, a
1
1) ∈ B \ diag(A) is never included in recurrent communication

classes of{P 0
t }.

We next make a hypothesis that there exists ak ∈ Z+ such that all the states inB \ diag(A)

are not included in recurrent communication classes of the unperturbed Markov process{P 0
t }

for all n ≤ k. Then, we consider the casen = k + 1, where there are three possible cases:

(i) Ui(a
1) ≥ Ui(a

0) ∀i ∈ V = {1, · · · , k + 1},

(ii) Ui(a
1) < Ui(a

0) ∀i ∈ V = {1, · · · , k + 1},

(iii) Ui(a
1) ≥ Ui(a

0) for l agents wherel ∈ {2, · · · , k}.

In case (i), the transition(a0, a1)→ (a1, a1) must occur forε = 0 and, in case (ii), the transition

(a0, a1)→ (a1, a0)→ (a0, a0) should be selected. Thus, all the states inB\diag(A) satisfying (i)

or (ii) are never included in recurrent communication classes. In case (iii), at the next iteration,

all the agentsi satisfyingUi(a
1) ≥ Ui(a

0) choose the current action. Then, such agents possess a

single action in the memory and, in case ofε = 0, each agent has to choose either of the actions

in the memory. Namely, these agents never change their actions in all subsequent iterations. The

resulting situation is thus the same as the case ofn = k + 1 − l. From the above hypothesis,
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we can conclude that the states in case (iii) are also not included in recurrent communication

classes. In summary, the states inB\diag(A) are never included in the recurrent communication

classes of{P 0
t }. The proof is thus completed.

A feasible path over the process{P ε
t } from z ∈ B to z′ ∈ B is especially said to be aroute

if both of the two nodesz andz′ are elements ofdiag(A) ⊂ B. Note that a route is a path and

hence the resistance of the route is also given by (4). Especially, we define astraight route as

follows, where we use the notation

Esingle := {(z = (a, a), z′ = (a′, a′)) ∈ diag(A)× diag(A)|

∃i ∈ V s.t. ai ∈ Ri(a
′
i), ai 6= a′i anda−i = a′−i}. (16)

Definition 7 (Straight Route) A route between any two statesz0 = (a0, a0) and z1 = (a1, a1)

in diag(A) such that(z0, z1) ∈ Esingle is said to be a straight route if the path is given by the

transitions on the Markov process{P ε
t } such that only one agenti changes his action froma0i

to a1i at first iteration and the explored agenti selects the same actiona1i at the next iteration

while the other agents choose the same actiona0−i = a1−i during the two steps.

In terms of the straight route, we have the following lemma.

Lemma 3 Consider paths from any statez0 = (a0, a0) ∈ diag(A) to any statez1 = (a1, a1) ∈

diag(A) such that(z0, z1) ∈ Esingle over the Markov process{P ε
t } induced by PHPIP applied

to a constrained potential gameΓ. Then, under Assumption 2, the resistanceλ(r) of the straight

route r from z0 to z1 is strictly smaller than2 and the resistanceλ(r) is minimal among all

paths fromz0 to z1.

Proof: Along with the straight route, only one agenti first changes action froma0i to a1i ,

whose probability is given by

(1− ε)n−1 ×
ε

|Ri(a0i )| − 1
. (17)

It is easy to confirm from (17) that the resistance of the transition (a0, a0) → (a0, a1) is equal

to 1. We next consider the transition from(a0, a1) to (a1, a1). If Ui(a
1) ≥ Ui(a

0) is true, the

probability of this transition is given by(1 − ε)n, whose resistance is equal to0. Otherwise,
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Ui(a
1) < Ui(a

0) holds and the probability of this transition is given by(1− ε)n × κε∆i, whose

resistance is∆i. Let us now notice that the resistanceλ(r) of the straight router is equal to

the sum of the resistances of transitions(a0, a0) → (a0, a1) and (a0, a1) → (a1, a1) from (5)

and that∆i < 1 from Assumption 2. We can thus conclude thatλ(r) is smaller than2. It is

also easy to confirm that the resistance of paths such that more than1 agents take exploratory

action should be greater than2. Namely, the straight route gives the smallest resistance among

all paths fromz0 = (a0, a0) to z1 = (a1, a1) and hence the proof is completed.

We also introduce the following notion.

Definition 8 (m-Straight-Route) An m-straight-route is a route which passes throughm ver-

tices indiag(A) and all the routes between any two of these vertices are straight.

In terms of the route, we can prove the following lemma, whichclarifies a connection between

the potential function and the resistance of the route.

Lemma 4 Consider the Markov process{P ε
t } induced by PHPIP applied to a constrained poten-

tial gameΓ. Let us denote anm-straight-router over {P ε
t } from statez0 = (a0, a0) ∈ diag(A)

to statez1 = (a1, a1) ∈ diag(A) by

z(0) = z0⇒z(1) ⇒ z(2)⇒z(3)⇒· · · z(m−3) ⇒ z(m−2)⇒z(m−1) = z1, (18)

where z(i) = (a(i), a(i)) ∈ diag(A), i ∈ {0, · · · , m − 1} and all the arrows between them are

straight routes. In addition, we denote its reverse router′ by

z(0) = z0⇐z(1)⇐z(2)⇐z(3)⇐· · ·⇐z(m−3)⇐z(m−2)⇐z(m−1) = z1, (19)

which is also anm-straight route fromz0 to z1. Then, under Assumption 2, ifφ(a0) > φ(a1),

we haveλ(r) > λ(r′).

Proof: We suppose that the router containsp straight routes with resistance greater than1

andr′ containsq straight routes with resistance greater than1. Let us now denote the explored

agent along with the routez(i) ⇒ z(i+1) by ji and that withz(i) ⇐ z(i+1) by j′i. From the proof

of Lemma 3, the resistance of the routez(i) ⇒ z(i+1) should be exactly equal to1 (in case of

Uji(a
(i+1)) ≥ Uji(a

(i))) or equal to1 + ∆ji ∈ (1, 2) (in case ofUji(a
(i+1)) < Uji(a

(i))). From

(1), the following equation holds.

∆ji = Uji(a
(i))− Uji(a

(i+1)) = φ(a(i))− φ(a(i+1)) = Uj′i
(a(i))− Uj′i

(a(i+1)) = −∆j′i
. (20)
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Namely, one of the resistances of the straight routesz(i) ⇒ z(i+1) and z(i+1) ⇐ z(i) is exactly

1 and the other is greater than1 except for the case thatUi(a
(i+1)) = Ui(a

(i)) in which the

resistances are both equal to1. An illustrative example of the relation is given as follows, where

the numbers put on arrows are the resistances of the routes.

z(0) = z0
1+∆j0⇒ z(1)

1
⇒ z(2)

1+∆j1⇒ z(3)
1
⇒ · · ·

1
⇒ z(m−3) 1

⇒ z(m−2)
1+∆jm−2
⇒ z(m−1) = z1

z(0) = z0
1
⇐ z(1)

1+∆j′1⇐ z(2)
1
⇐ z(3)

1+∆j′3⇐ · · ·
1+∆j′

m−4
⇐ z(m−3)

1+∆j′
m−3
⇐ z(m−2) 1

⇐ z(m−1) = z1

Namely, the inequalityp + q ≤ m − 1 holds true. Let us now collect all the∆ji such that the

resistance ofz(i) ⇒ z(i+1) is greater than1 and number them as∆1,∆2, · · · ,∆p. Similarly, we

define∆′
1,∆

′
2, · · · ,∆

′
q for the reverse router′. Then, from equations in (20), we obtain

∆1 +∆2 + · · ·+∆p − (∆′
1 +∆′

2 + · · ·+∆′
q) = φ(a0)− φ(a1). (21)

Note that (21) holds even in the presence of pairs(a(i), a(i+1)) such thatUji(a
(i+1)) = Uji(a

(i)).

Since∆1+ · · ·+∆p = λ(r)− (m−1) and∆′
1+ · · ·+∆′

q = λ(r′)− (m−1) from (5), we obtain

λ(r) = λ(r′) + φ(a0)− φ(a1). (22)

It is straightforward from (22) to prove the statement in thelemma.

Let us form the weighted digraphG over the recurrent communication classes for the Markov

process{P ε
t } induced by PHPIP as in Subsection II-B, where the weightwlk of each edge

(Hl, Hk) is equal to the minimal resistanceχlk among all the paths connecting two recurrent

communication classesHl andHk. From Lemma 2, the nodes of the graphG are given by each

element of the setdiag(A) and henceG = (diag(A), E ,W), E ⊆ diag(A)× diag(A). Since all

the recurrent communication classes have only one element as in (15), the weightwlk for any

two stateszl, zk ∈ diag(A) is simply given by the path with minimal resistance among allpaths

from zl to zk. In addition, Lemma 3 proves that if(zl, zk) ∈ Esingle, the weightwlk = χlk is

given by the resistance of the straight route fromzl to zk.

Let us focus onl-trees overG whose root is a statezl ∈ diag(A). Recall now that the

resistance of the tree is the sum of the weights of all the edges constituting the tree as defined

in Subsection II-B. Then, we have the following lemma in terms of the stochastic potential of

zl, which is the minimal resistance among alll-trees inG(l).
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diag A

Kruskal's Algorithm

Fig. 1. Image of Kruskal’s Algorithm

Lemma 5 Consider the weighted directed graphG constituted from the Markov process{P ε
t } in-

duced by PHPIP applied to a constrained potential gameΓ. Let us denote byT = (diag(A), El,W)

the l-tree giving the stochastic potential ofzl ∈ diag(A). If Assumptions 1 and 2 are satisfied,

then the edge setEl must be a subset ofEsingle.

Proof: The edges ofG, denoted byE , are divided into two classes:Es := Esingle and

Ed := E \Es. From Lemma 3, the weights of the edges inEs are smaller than2. We next consider

the weights of the edges inEd. Because of the nature of PHPIP, any agent cannot change his

action to another one without explorations whenz(t) ∈ diag(A), and hence exploration should

be executed more than twice in order that the transition along with an edge inEd occurs. This

implies that the weights of edges inEd should be greater than2.

Hereafter, we simply rewrite the weights of the edgesEs by ws(< 2) and those ofEd by

wd(≥ 2) and build the minimal resistance tree with rootzl over this simplified graph. Note that

this simplification does not change the elements of the edge set El. It should be noted that from

Assumption 1 all recurrent communication classes (diag(A)) can be connected by passing only

through straight routes. From the procedure of Kruskal’s Algorithm, edges with resistanceswd

are never chosen as edges of the minimal tree as illustrated in Fig. 1. Thus, the tree giving the

stochastic potential must consist only of the edges inEs, which completes the proof.

We are now ready to state the following proposition on the stochastically stable states (Defi-

nition 4) for the Markov process{P ε
t }.
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Optimal Nash 
Equilibrium

Optimal Nash 
Equilibrium

Fig. 2. Resistance Trees (the left tree should have a greaterresistance than the right)

Proposition 3 Consider{P ε
t } induced by PHPIP applied to a constrained potential gameΓ. If

Assumptions 1 and 2 are satisfied, then the stochastically stable states are included indiag(ζ(Γ)),

with the set of the optimal Nash equilibriaζ(Γ).

Proof: From Proposition 1, Lemmas 1 and 2, it is sufficient to prove that the states in

diag(A) with the minimal stochastic potential overG are included inζ(Γ).

Let us introduce the notationsznonopt = (anonopt, anonopt) ∈ diag(A) with a non optimal action

anonopt andzopt = (aopt, aopt) ∈ diag(A) with an optimal Nash equilibriumaopt. If znonopt is the

root of a treeT , there exists a unique route fromzopt to znonopt over T . From Lemma 5, the

router is anm-straight-route for somem. Now, we can build a treeT ′ with root zopt such that

only the router is replaced by its reverse router′ (Fig. 2). Then, we haveλ(r) > λ(r′) from

Lemma 4 sinceφ(aopt) > φ(anonopt). Thus, the resistance ofT ′ is smaller than that ofT and the

stochastic potential ofzopt is smaller than the resistance ofT ′. The statement holds regardless

of the selection ofanonopt. This completes the proof.

We next consider PIPIP with time-varyingε(t) and prove strong ergodicity of{P ε
t }.

Lemma 6 The Markov process{P ε
t } induced by PIPIP applied to a constrained potential game

Γ is strongly ergodic.

Proof: We use Proposition 2 for the proof. Conditions(B2), (B3) in Proposition 2 can be

proved in the same way as [7]. We thus show only the satisfaction of Condition(B1). As in
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(13), the probability of transitionz1 → z2 is given by

P ε
z1z2 =

∏

i∈Λ1

ε

|Ri(a
1
i )| − 1

×
∏

i∈Λ2

(1− ε)×
∏

i∈Λ3

ε

|Ri(a
1
i )| − hi

×

×
∏

i∈Λ4

(1− ε)κε∆i ×
∏

i∈Λ5

(1− ε)(1− κε∆i). (23)

Sinceε(t) is strictly decreasing, there ist0 ≥ 1 such thatt0 is the first time when

(1− ε(t))(1− κε(t)∆i) ≥
ε(t)

C − 1
, 1− ε(t) ≥

ε(t)(1−∆i)

κ(C − 1)
(24)

holds. Note that the existence ofε satisfying (24) is guaranteed from the condition (9). For all

t ≥ t0, we have

P ε
z1z2(t) ≥

(

ε(t)

C − 1

)n

. (25)

The remaining part of the proof is the same as [7] and omit it inthis paper.

We are now ready to prove Theorem 1. From Lemma 6, the distribution µ(ε(t)) converges

to the unique distributionµ∗ from any initial state. In addition, we also haveµ∗ = µ(0) =

limε→0µ(ε) from limt→∞ε(t) = 0. We have already proved from Propositions 1 and 3 that any

statez satisfyingµz(0) > 0 must be included indiag(ζ(Γ)). Therefore,

limt→∞Prob[z(t) ∈ diag(ζ(Γ))] = 1,

is proved, which completes the proof of Theorem 1. Theorem 2 is also proved from Proposition

1, Lemma 1 and Proposition 3.

V. APPLICATION TO SENSORCOVERAGE PROBLEM

In this section we demonstrate the effectiveness of the proposed learning algorithm PIPIP

through experiments of the sensor coverage problem investigated e.g. in [3], [4], [5] whose

objective is to cover a mission space efficiently using distributed control strategies. In particular,

the problem of this section is formulated based on [7] with some modifications.

A. Problem Formulation

We suppose that the mission space to be covered is given byQc ⊂ R
2 and that a density

functionW c(q), q ∈ Qc is defined overQc. In particular, to constitute a game in the form of the

previous sections, we also prepare a discretized mission spaceQ consisting of a finite number

July 26, 2011 DRAFT



20

of points inQc. Accordingly, we also define the discretized version of the densityW (q), q ∈ Q

such thatW (q) = W c(q) ∀q ∈ Q.

In the problem, the position of agenti in the mission spaceQ is regarded as the actionai to

be determined, and hence the action setAi is given by a subset ofQ for all i ∈ V. Namely,

each agenti chooses his actionai from the finite setAi ⊆ Q at each iteration and move toward

the corresponding point.

Suppose now that each sensor has a limited sensing radiusrm and that agenti located at

ai ∈ Q may sense an event atq ∈ Q iff q ∈ D(ai) := {q ∈ Q| ‖q − ai‖ ≤ rm}. We also denote

by nq(a) the number of agents such thatq ∈ D(ai) when agents take the joint actiona. Then,

we define the function

φ(a) =
∑

q∈Q

nq(a)
∑

l=1

W (q)

l
dq.

This function means, asnq(a) increases, the sensing accuracy atq ∈ Q improves but the

increment decreases, which captures the characteristics of the sensor coverage problem. Note

that the authors in [7] take account of energy consumption ofsensors in addition to coverage

performance and claim that the functionφ cannot be a performance measure. However, we do

not consider the energy consumption and what is the best selection of the performance measure

depends on the subjective views of designers. We thus identify maximization ofφ with the global

objective of the group lettingφ be the potential function.

Let us now introduce the utility function

Ui(a) =
∑

q∈D(ai)

W (q)

nq(a)
.

Then, equation (1) holds for the above potential functionφ [7] and hence a potential game is

constituted. It is also easy to confirm that the utilityUi(a) can be locally computed if we assume

feedbacks ofWq, q ∈ D(ai) from environment and of the selected actionsaj, j 6= i only from

neighboring agents specified by the2rm-disk proximity communication graph [1].

B. Objectives

In this section, we run two experiments whose objectives arelisted below.

• Demonstration of effectiveness: Theorems 1 and 2 assure statements after infinitely long

time but it is required in practice that the algorithm works in finite time. The first objective
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Fig. 3. Mobile Robot

is thus to check if the agents successfully cover the missionspace (i) even in the presence

of constraints such as obstacles and mobility constraints,and (ii) in the absence of the prior

information on the density function. The second objective is to compare its performance

with the learning algorithm DISL, which is chosen to ensure fair comparisons. Indeed, the

other existing algorithms require either or both of prior knowledge on density or free motion

without constraints.

• Adaptability to environmental changes: In many real applications of sensor coverage schemes,

it is required for sensors to change the configuration according to the surrounding environ-

ment. In particular, the density function can be time-varying e.g. in the scenario such as

measuring of radiation quantity in the air and sampling of some chemical material and

temperature in the ocean. It is expected for payoff-based algorithms to naturally adapt to

such environmental changes without altering action selection rules and any complicated

decision-making processes due to the characteristics thatprior knowledge on environments

except forAi is not assumed. We thus check the function by using a Gaussiandensity

function whose mean moves as time advances.

C. Experimental System

In the experiments, we use four mobile robots with four wheels which can move in any

direction (Fig. 3). Fig. 4 shows the schematic of the experimental system. A camera (Firefly

MV (ViewPLUS Inc.) with lenses LTV2Z3314CS-IR (Raymax Inc.)) is mounted over the field.

The image information is sent to a PC and processed to extractthe pose of robots from the image

by the image processing library OpenCV 2.0. Note that a boardwith two colored feature points
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Fig. 4. Experimental Schematic

Fig. 5. Setting of Experiment 1

is attached to each robot as in Fig. 3 to help the extraction. According to the extracted poses,

the actions to be taken by agents are computed based on learning algorithms. However, in the

experiments, the selected actions are not executed directly since collisions among robots must be

avoided. For this purpose, a local decision-making mechanism checks whether collisions would

occur if the selected actions were executed. The mechanism is designed based on heuristics and

we avoid mentioning the details since it is not essential. Ifthe answer of the mechanism is

yes, the agents decide to stay at the current position. Otherwise, the selected actions are sent as

reference positions together with the current poses to the local velocity and position PI controller

implemented on a digital signal processor DS-1104 (dSPACE Inc.). Then, the eventual velocity

command is sent to each robot via a wireless communication device XBee (Digi International

Inc.).

The following setup is common in all experiments. The mission spaceQc := [0 2.7]m ×

[0 1.8]m is divided into9× 6 squares with side length0.3m as in Fig. 5 letting the discretized

setQ be given by the centers of the squares as

Q = {(0.15 + 0.3j, 0.15 + 0.3l)| j ∈ {0, · · · , 8}, l ∈ {0, · · · , 5}}.

The sensing radiusrm is set asrm = 0.3m for all robots. We also assume that each agent has
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Fig. 6. Configurations by DISL (Experiment 1)

a mobility constraint

Ri(ai) = {ai ± 0.3(b1, b2) ∈ Ai| b1 ∈ {−1, 0, 1}, b2 ∈ {−1, 0, 1}}.

The initial actions of agents are set as

a1(0) = (0.15, 0.15), a2(0) = (0.15, 0.45), a3(0) = (0.45, 0.15), a4(0) = (0.45, 0.45).

D. Experiment 1

In the first experiment, we demonstrate the effectiveness ofPIPIP. For this purpose, we employ

the density function

W (q) = e−
25‖q−µ‖2

9 , µ = (1.95, 1.35)

and prepare obstacles at

O := {(0.75, 1.35), (1.05, 1.05), (1.35, 0.75), (1.65, 0.45)}. (26)

Namely, in the experiment, the action sets are given byAi = Q \O. The setup is illustrated in

Fig. 5, where the region with high density is colored by yellow and the red cross mark indicates
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Fig. 7. Configurations by PIPIP (Experiment 1)

the actions prohibited to be taken by the obstacles. Under the situation, we see that there exist

some Nash undesirable equilibria just ahead on the left of the obstacles. It should be also noted

that each robot does not know the functionW (q) a priori.

We first run DISL under the above situation with the exploration rateε = 0.15. Then, the

resulting configurations at0, 150, 300, 450, 600 and 700 steps are shown in Fig. 6. Under

the setting, three robots cannot reach the colored region atleast in700 step. It is now easily

confirmed that the configurations at600 and 700[step] are Nash equilibria only for the three

robots and hence they cannot increase utilities by any one agent’s action change.

We next run PIPIP letting the parameterε be fixed asε = 0.15 and settingκ = 0.5 (namely,

PHPIP is actually run in the experiment). Fig. 7 shows resulting configurations at the same steps

as Fig. 6. Surprisingly, we see that all the robots eventually avoid the obstacles and arrive at

the colored region though they initially do not know where isimportant. Such a behavior is

never achieved by conventional coverage control schemes. The time responses of the potential

functionφ for PIPIP and DISL are illustrated in Fig. 8, where the solid line shows the response

for PIPIP and the dashed line for DISL. As is apparent from theabove investigations, PIPIP
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Fig. 8. Time Evolution of Potential Function forε = 0.15

(Experiment 1)

Fig. 9. Time Evolution of Potential Function forε = 0.3

(Experiment 1)

achieves a higher potential function value than DISL.

Though we can show only one sample due to the page constraints, similar results are obtained

for both DISL and PIPIP through several trials. From the results, we claim that PIPIP has a

stronger tendency to escape undesirable Nash equilibria than DISL, which is also confirmed by

the meaning of the irrational decision. Of course, the results strongly depend on the value of

exploration rateε. We thus show the time evolution of the functionφ for ε = 0.3 in Fig. 9. We

see from Fig. 9 that some agents executing DISL also do not reach the important region even for

ε = 0.3, which seems to be quite high probability as an exploration rate. Indeed, the fluctuation of

the responses is large and an agent with PIPIP overcomes the obstacle again leaving the colored

region. From all the above results, we thus can state that guarantees of only convergence to

Nash equilibria can be a significant problem not only from thetheoretical point of view but

also from the practical viewpoint. Though much more thorough comparisons are necessary in

order to make the claim on superiority of PIPIP over DISL confident, PIPIP achieves a better

performance than DISL at least in the setup.

E. Experiment 2

We next demonstrate the adaptability of PIPIP to environmental changes, where we get rid of

the obstacleO and henceAi = Q. In the experiment, we use the following Gaussian density
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Fig. 10. Configurations by PIPIP (Experiment 2)

Fig. 11. Time Evolution of Potential Function (Experiment 2)

function whose mean gradually moves.

W c(q) = e−
25‖q−µ(t)‖2

9 , µ(t) =



















(0.45, 0.45), if t ∈ [0, 300]

(0.00375t− 0.6750, 0.00225t− 0.225), if t ∈ (300, 700)

(1.95, 1.35), if t ≥ 700

It is worth noting that agents select actions without using any prior information on the density.
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Figs 10 and 11 respectively illustrate the resulting configurations at0, 200, 400, 600, 800

and1000 steps and time evolution of the potential functionφ. We see from Fig. 10 that agents

gather at around the most important region at any time instant while learning the environmental

changes. Fig. 11 also shows that the potential function keeps almost the same level during whole

time, which indicates that the agents successfully track the most important region. From these

results, as expected, agents executing PIPIP successfullyadapt to the environmental changes

without changing the action selection rule at all. Such a behavior is also never achieved by

conventional coverage control schemes.

VI. CONCLUSION

In this paper, we have developed a new learning algorithm Payoff-based Inhomogeneous

Partially Irrational Play (PIPIP) for potential game theoretic cooperative control of multi-agent

systems. The present algorithm is based on Distributed Inhomogeneous Synchronous Learning

(DISL) presented in [7] and inherits several desirable features of DISL. However, unlike DISL,

PIPIP allows agents to make irrational decisions, that is, take an action giving a lower utility from

the past two actions. Thanks to the decision, we have succeeded proving convergence of the joint

action to the potential function maximizers while escapingfrom undesirable Nash equilibria.

Then, we have demonstrated the utility of PIPIP through experiments on a sensor coverage

problem. It has been revealed through the demonstration that the present learning algorithm works

even in a finite-time interval and agents successfully arrive at around the optimal Nash equilibria

in the presence of obstacles in the mission space. In addition, we also have seen through an

experiment with a moving density function that PIPIP has adaptability to environmental changes,

which is a function expected for payoff-based learning algorithms.
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