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Abstract. A class of special solutions are constructed in an intuitive way for the ultradis-
crete analog of q-Painlevé II (q-PII) equation. The solutions are classified into four groups
depending on the function-type and the system parameter.
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1 Introduction

Ultradiscretization [1] is a limiting procedure transforming a given difference equation into
a cellular automaton, in which dependent variables also take discrete values. To apply this
procedure, we first replace a dependent variable xn in the equation by

xn = eXn/ε, (1)

where ε is a positive parameter. Next, we apply ε log to both sides of the equation and take the
limit ε → +0. Then, using identity

lim
ε→+0

ε log
(

eX/ε + eY/ε
)

= max(X,Y ),

the original difference equation is approximated by a piecewise linear equation which can be
regarded as a time evolution rule for a cellular automaton. In many examples, cellular automata
obtained by this systematic method preserve the essential properties of the original equations,
such as the qualitative behavior of exact solutions. However, the ansatz (1) is only possible if
the variable xn is positive definite. This restriction is called ‘negative problem’.

From theoretical and application points of view, it is an interesting problem to study ultradis-
crete analogs of special functions and their defining equations, including the Painlevé equations.
Ultradiscrete analogs for some of the Painlevé equations and their special solutions are discussed,
for example, in [2, 3, 4]. However, the class of solutions for ultradiscrete Painlevé equations has
been restricted because of the negative problem. Some attempts resolving this problem are
reported, for example, in [5, 6, 7]. The authors and coworkers study in [5] an ultradiscrete
Painlevé II equation with sinh ansatz and discuss its special solution of Bi function type.

In order to overcome the negative problem, a new method ‘ultradiscretization with parity
variables’ (p-ultradiscretization) is proposed in [8]. The procedure keeps track of the sign of

⋆This paper is a contribution to the Proceedings of the Conference “Integrable Systems and Geomet-
ry” (August 12–17, 2010, Pondicherry University, Puducherry, India). The full collection is available at
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original variables. By using this method, the authors and coworkers present [9] a p-ultradiscrete
analog of the q-Painlevé II equation (q-PII),

(z(qτ)z(τ) + 1)
(

z(τ)z
(

q−1τ
)

+ 1
)

=
aτ2z(τ)

τ − z(τ)
. (2)

In [9], we also discuss a series of special solutions corresponding to that of q-PII written in the
determinants of size N . However, the resulting solutions are reduced to only one solution for the
p-ultradiscrete Painlevé II (udPII) equation. In this paper, we construct other series of special
solutions for udPII and discuss their structure. In Section 2, we introduce the results in [9] for
the p-ultradiscrete Airy equation. Then, we construct special solutions for udPII in Section 3.
These solutions are, from their construction, considered to be counterparts of those of q-PII
written by the determinants. Finally, concluding remarks are given in Section 4.

2 Ultradiscrete Airy equation with parity variables

We start with a q-difference analog of the Airy equation

w(qτ) − τw(τ) + w
(

q−1τ
)

= 0, (3)

which reduces to the Airy equation

d2v

ds2
+ sv = 0

in a continuous limit.
In order to ultradiscretize (3), we put τ = qm and q = eQ/ε (Q < 0). Furthermore, we

introduce an ansatz for p-ultradiscretization,

w(qm) = {s(ωm)− s(−ωm)}eWm/ε,

where ωm ∈ {+1,−1} denotes the sign of w(qm) and s(ω) is defined by

s(ξ) =

{

1, ξ = +1,

0, ξ = −1.

Taking the ultradicrete limit, we obtain a p-ultradiscrete analog of the Airy equation

max (Wm+1 + S(ωm+1),mQ+Wm + S(−ωm),Wm−1 + S(ωm−1))

= max (Wm+1 + S(−ωm+1),mQ+Wm + S(ωm),Wm−1 + S(−ωm−1)) , (4)

where S(ω) is defined by

S(ω) =

{

0, ω = +1,

−∞, ω = −1.

An ultradiscretized variable is represented by a pair of ωm and Wm, which is denoted as Wn =
(ωm,Wm) in what follows. It is possible to rewrite the implicit form (4) into explicit forward
schemes

ωm+1 =







ωm − ωm−1

2
+

ωm + ωm−1

2
sgn(Fm), ωm = −ωm−1 or Fm 6= 0,

indefinite, ωm = ωm−1 and Fm = 0,
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Wm+1

{

= max (mQ+Wm,Wm−1) , ωm = −ωm−1 or Fm 6= 0,

≤ Wm−1, ωm = ωm−1 and Fm = 0,

where Fm := mQ+Wm−Wm−1. Note that we generally have both of unique and indeterminate
schemes depending on given values of (ωm,Wm) and (ωm−1,Wm−1). The explicit backward
schemes are obtained by replacing m± 1 with m∓ 1, respectively.

We find two typical solutions of (4). One is an Ai-function-type solution for W0 = (+1, 0)
and W1 = (+1, 0),

uAi(m) = (ωm,Wm) =











(

(−1)
m(m−1)

2 , 0
)

, m ≥ 0,
(

+1,
m(m− 1)

2
Q

)

, m ≤ −1,

and the other is a Bi-function-type for W0 = (+1, 0) and W1 = (−1, 0),

uBi(m) = (ωm,Wm) =











(

(−1)
m(m+1)

2 , 0
)

, m ≥ 0,
(

+1,−
m(m+ 1)

2
Q

)

, m ≤ −1.

They show similar behavior as those of the Ai and Bi functions, respectively.

3 Ultradiscrete Painlevé II equation with parity variables

For the following discussion, we first introduce the results for (2). It has been shown in [10] that

z(N)(τ) =



















g(N)(τ)g(N+1)(qτ)

qNg(N)(qτ)g(N+1)(τ)
, N ≥ 0,

g(N)(τ)g(N+1)(qτ)

qN+1g(N)(qτ)g(N+1)(τ)
, N < 0

(5)

solves (2) with a = q2N+1, where the functions g(N)(t) (N ∈ Z) satisfy the bilinear equations

q2Ng(N+1)(q−1τ)g(N)(q2τ)− qN τg(N+1)(τ)g(N)(qτ) + g(N+1)(qτ)g(N)(τ) = 0, (6)

q2Ng(N+1)(q−1τ)g(N)(qτ)− q2Nτg(N+1)(τ)g(N)(τ) + g(N+1)(qτ)g(N)(q−1τ) = 0 (7)

for N ≥ 0 and

q2N+2g(N+1)(q−1τ)g(N)(q2τ)− qN+1τg(N+1)(τ)g(N)(qτ) + g(N+1)(qτ)g(N)(τ) = 0, (8)

q2N+2g(N+1)(q−1τ)g(N)(qτ)− q2N+1τg(N+1)(τ)g(N)(τ) + g(N+1)(qτ)g(N)(q−1τ) = 0 (9)

for N < 0. It is also known that g(N)(τ) are written in terms of the Casorati determinant of
size |N | whose elements are represented by the solutions of (3).

In order to construct ultradiscrete analogs of these equations, we put τ = qm, q = eQ/ε(Q < 0)
and a = eA/ε. Furthermore, we introduce

z(qm) = (s(ζm)− s(−ζm))eZm/ε,

g(N)(qm) = (s(γ(N)
m )− s(−γ(N)

m ))eG
(N)
m /ε.

Then (2) is reduced to udPII,

max
[

Zm+1 + 3Zm + Zm−1 +max
{

S(ζm+1) + S(ζm) + S(ζm−1),
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S(−ζm+1) + S(ζm) + S(−ζm−1), S(−ζm+1) + S(−ζm) + S(ζm−1),

S(ζm+1) + S(−ζm) + S(−ζm−1)
}

, Zm+1 + 2Zm + S(ζm+1),

2Zm + Zm−1 + S(ζm−1), Zm + S(ζm), Zm +A+ 2mQ+ S(ζm),

Zm+1 + 2Zm + Zm−1 +mQ+max
{

S(−ζm+1) + S(ζm−1), S(ζm+1) + S(−ζm−1)
}

,

Zm+1 + Zm +mQ+max
{

S(−ζm+1) + S(ζm), S(ζm+1) + S(−ζm)
}

,

Zm + Zm−1 +mQ+max
{

S(−ζm) + S(ζm−1), S(ζm) + S(−ζm−1)
}

]

= max
[

Zm+1 + 3Zm + Zm−1 +max
{

S(−ζm+1) + S(−ζm) + S(−ζm−1),

S(ζm+1) + S(−ζm) + S(ζm−1), S(ζm+1) + S(ζm) + S(−ζm−1),

S(−ζm+1) + S(ζm) + S(ζm−1)
}

, Zm+1 + 2Zm + S(−ζm+1),

2Zm + Zm−1 + S(−ζm−1), Zm + S(−ζm), Zm +A+ 2mQ+ S(−ζm),

Zm+1 + 2Zm + Zm−1 +mQ+max
{

S(ζm+1) + S(ζm−1), S(−ζm+1) + S(−ζm−1)
}

,

Zm+1 + Zm +mQ+max
{

S(ζm+1) + S(ζm), S(−ζm+1) + S(−ζm)
}

,

Zm + Zm−1 +mQ+max
{

S(ζm) + S(ζm−1), S(−ζm) + S(−ζm−1)
}

,mQ
]

. (10)

For (6) and (7), we have their ultradiscrete analogs

max
[

2NQ+G
(N+1)
m−1 +G

(N)
m+2 +max

{

S
(

γ
(N+1)
m−1

)

+ S
(

γ
(N)
m+2

)

, S
(

−γ
(N+1)
m−1

)

+ S
(

−γ
(N)
m+2

)

}

,

(N +m)Q+G(N+1)
m +G

(N)
m+1

+max
{

S
(

γ(N+1)
m

)

+ S
(

−γ
(N)
m+1

)

, S
(

−γ(N+1)
m

)

+ S
(

γ
(N)
m+1

)

}

,

G
(N+1)
m+1 +G(N)

m +max
{

S
(

γ
(N+1)
m+1

)

+ S
(

γ(N)
m

)

, S
(

−γ
(N+1)
m+1

)

+ S
(

−γ(N)
m

)

}]

= max
[

2NQ+G
(N+1)
m−1 +G

(N)
m+2+max

{

S
(

γ
(N+1)
m−1

)

+ S
(

−γ
(N)
m+2

)

, S
(

−γ
(N+1)
m−1

)

+ S
(

γ
(N)
m+2

)

}

,

(N +m)Q+G(N+1)
m +G

(N)
m+1

+max
{

S
(

γ(N+1)
m

)

+ S
(

γ
(N)
m+1

)

, S
(

−γ(N+1)
m

)

+ S
(

−γ
(N)
m+1

)

}

,

G
(N+1)
m+1 +G(N)

m +max
{

S
(

γ
(N+1)
m+1

)

+ S
(

−γ(N)
m

)

, S
(

−γ
(N+1)
m+1

)

+ S
(

γ(N)
m

)

}]

(11)

and

max
[

2NQ+G
(N+1)
m−1 +G

(N)
m+1 +max

{

S
(

γ
(N+1)
m−1

)

+ S
(

γ
(N)
m+1

)

, S
(

−γ
(N+1)
m−1

)

+ S
(

−γ
(N)
m+1

)

}

,

(2N +m)Q+G(N+1)
m +G(N)

m

+max
{

S
(

γ(N+1)
m

)

+ S
(

−γ(N)
m

)

, S
(

−γ(N+1)
m

)

+ S
(

γ(N)
m

)

}

,

G
(N+1)
m+1 +G

(N)
m−1 +max

{

S
(

γ
(N+1)
m+1

)

+ S(γ
(N)
m−1

)

, S
(

−γ
(N+1)
m+1

)

+ S
(

−γ
(N)
m−1

)

}]

= max
[

2NQ+G
(N+1)
m−1 +G

(N)
m+1

+max
{

S
(

γ
(N+1)
m−1

)

+ S
(

−γ
(N)
m+1

)

, S
(

−γ
(N+1)
m−1

)

+ S
(

γ
(N)
m+1

)

}

,

(2N +m)Q+G(N+1)
m +G(N)

m

+max
{

S
(

γ(N+1)
m

)

+ S
(

γ(N)
m

)

, S
(

−γ(N+1)
m

)

+ S
(

−γ(N)
m

)

}

,

G
(N+1)
m+1 +G

(N)
m−1 +max

{

S
(

γ
(N+1)
m+1

)

+ S
(

−γ
(N)
m−1

)

, S
(

−γ
(N+1)
m+1

)

+ S
(

γ
(N)
m−1

)

}]

, (12)
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respectively. For (8) and (9), we have

max
[

2(N + 1)Q+G
(N+1)
m−1 +G

(N)
m+2

+max
{

S
(

γ
(N+1)
m−1

)

+ S
(

γ
(N)
m+2

)

, S
(

−γ
(N+1)
m−1

)

+ S
(

−γ
(N)
m+2

)

}

,

(N +m+ 1)Q+G(N+1)
m +G

(N)
m+1

+max
{

S
(

γ(N+1)
m

)

+ S
(

−γ
(N)
m+1

)

, S
(

−γ(N+1)
m

)

+ S
(

γ
(N)
m+1

)

}

,

G
(N+1)
m+1 +G(N)

m +max
{

S
(

γ
(N+1)
m+1

)

+ S(γ(N)
m

)

, S
(

−γ
(N+1)
m+1

)

+ S
(

−γ(N)
m

)

}]

= max
[

2(N + 1)Q+G
(N+1)
m−1 +G

(N)
m+2

+max
{

S
(

γ
(N+1)
m−1

)

+ S
(

−γ
(N)
m+2

)

, S
(

−γ
(N+1)
m−1

)

+ S
(

γ
(N)
m+2

)

}

,

(N +m+ 1)Q+G(N+1)
m +G

(N)
m+1

+max
{

S
(

γ(N+1)
m

)

+ S
(

γ
(N)
m+1

)

, S
(

−γ(N+1)
m

)

+ S
(

−γ
(N)
m+1

)

}

,

G
(N+1)
m+1 +G(N)

m +max
{

S
(

γ
(N+1)
m+1

)

+ S
(

−γ(N)
m

)

, S
(

−γ
(N+1)
m+1

)

+ S
(

γ(N)
m

)

}]

(13)

and

max
[

2(N + 1)Q+G
(N+1)
m−1 +G

(N)
m+1

+max
{

S
(

γ
(N+1)
m−1

)

+ S
(

γ
(N)
m+1

)

, S
(

−γ
(N+1)
m−1

)

+ S
(

−γ
(N)
m+1

)

}

,

(2N +m+ 1)Q+G(N+1)
m +G(N)

m

+max
{

S
(

γ(N+1)
m

)

+ S
(

−γ(N)
m

)

, S
(

−γ(N+1)
m

)

+ S
(

γ(N)
m

)

}

,

G
(N+1)
m+1 +G

(N)
m−1 +max

{

S
(

γ
(N+1)
m+1

)

+ S
(

γ
(N)
m−1

)

, S
(

−γ
(N+1)
m+1

)

+ S
(

−γ
(N)
m−1

)

}]

= max
[

2(N + 1)Q+G
(N+1)
m−1 +G

(N)
m+1

+max
{

S
(

γ
(N+1)
m−1

)

+ S
(

−γ
(N)
m+1

)

, S
(

−γ
(N+1)
m−1

)

+ S
(

γ
(N)
m+1

)

}

,

(2N +m+ 1)Q+G(N+1)
m +G(N)

m

+max
{

S
(

γ(N+1)
m

)

+ S
(

γ(N)
m

)

, S
(

−γ(N+1)
m

)

+ S
(

−γ(N)
m

)

}

,

G
(N+1)
m+1 +G

(N)
m−1 +max

{

S
(

γ
(N+1)
m+1

)

+ S
(

−γ
(N)
m−1

)

, S
(

−γ
(N+1)
m+1

)

+ S
(

γ
(N)
m−1

)

}]

, (14)

respectively. Finally, the transformations (5) are reduced to

ζ(N)
m = γ(N)

m γ
(N+1)
m+1 γ(N+1)

m γ
(N)
m+1, (15)

Z(N)
m = G(N)

m +G
(N+1)
m+1 −G(N+1)

m −G
(N)
m+1 −NQ (16)

for N ≥ 0 and

ζ(N)
m = γ(N)

m γ
(N+1)
m+1 γ(N+1)

m γ
(N)
m+1, (17)

Z(N)
m = G(N)

m +G
(N+1)
m+1 −G(N+1)

m −G
(N)
m+1 − (N + 1)Q (18)

for N < 0. If we find solutions for the ultradiscrete bilinear equations, special solutions for
udPII are obtained through (15)–(18).
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Hereafter we consider only the case of A = (2N+1)Q in (10), which corresponds to a = q2N+1

in the discrete system. Firstly, we present the results reported in [9], that is, the Ai-function-

type solutions for N ≥ 0. Solutions of (13) and (14) are given by G
(N)
m = (γ

(N)
m , G

(N)
m ) for

N = 0, 1, 2, . . . , where

γ(N)
m =

{

γ
(N)
0 (−1)

m(m−1)N
2 , m ≥ 0,

γ
(N)
0 , m ≤ −1,

G(N)
m =















mN(N − 1)

2
Q+G

(N)
0 , m ≥ 0,

mN(m+N − 2)

2
Q+G

(N)
0 , m ≤ −1.

Since G
(N)
m → −∞ as m → −∞ in the same way as the uAi function, we call these solutions

the Ai-function-type solutions. From these solutions, we have only one special solution of udPII
with A = (2N + 1)Q for N = 0, 1, 2, . . .

Z(N)
m =

(

ζ(N)
m , Z(N)

m

)

=

{

((−1)m, 0) , m ≥ 0,

(+1,mQ) , m ≤ −1,
(19)

which does not depend on N . We note that Z
(N)
m → ∞ as m → −∞.

Secondly, we investigate Bi-function-type solutions for N ≥ 0. We find that G
(0)
m = (+1, 0)

and G
(1)
m = uBi(m) solve (11) and (12) with N = 0. By using this result, we inductively

construct solutions G
(N+1)
m of the equations with N ≥ 1 for a given function G

(N)
m and assigned

values of G
(N+1)
0 and G

(N+1)
1 . We further assume that G

(N+1)
0 and G

(N+1)
1 are chosen so that

G
(N+1)
m for any m are uniquely determined in (11) and (12). Then we have the following solutions

G
(N)
m = (γ

(N)
m , G

(N)
m ), where

γ(N)
m =



























(−1)
m(m+1)N

2 γ
(N)
0 , m ≥ −1,

(−1)
(m−2)(m−1)m(m+1)

24 γ
(N)
0 , −2 ≥ m ≥ −2N − 1, N : even,

(−1)
m(m+1)(m+2)(m+3)

24 γ
(N)
0 , −2 ≥ m ≥ −2N − 1, N : odd,

(−1)
N(N−1)

2 γ
(N)
0 , m ≤ −2N − 2,

G(N)
m =















































mN(N − 1)

2
Q+G

(N)
0 , m ≥ −1,

mN(N − 1)

2
Q+

(m− 2)m(2m + 1)

24
Q+G

(N)
0 , m = −2,−4, . . . ,−2N,

mN(N − 1)

2
Q+

(m− 1)(m+ 1)(2m − 3)

24
Q+G

(N)
0 , m = −3,−5, . . . ,−2N−1,

−
mN(m+N)

2
Q−

N(N − 1)(4N + 1)

6
Q+G

(N)
0 , m ≤ −2N − 2.

Since G
(N)
m → ∞ as m → −∞ in the same way as the uBi function, we call these solutions the

Bi-function-type solutions.

By substituting these solutions into (15) and (16), we obtain special solutions of udPII,

Z(N)
m =

(

ζ(N)
m , Z(N)

m

)

=

{

(

(−1)m−1, 0
)

, m ≥ −2N − 1,

(+1,−(m+ 2N + 1)Q) , m ≤ −2N − 2.
(20)
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We notice that (19) and (20) have different asymptotic behavior in Z
(N)
m for m → −∞ and in

the phases for m > 0. Furthermore, we remark that (20) have N -dependence.

Thirdly, we study Ai-function-type solutions for N < 0. We find that G
(0)
m = (+1, 0) and

G
(−1)
m = uAi(m− 1) solve (13) and (14) with N = −1. Starting from these simple solutions, we

inductively find the solutions G
(N)
m = (γ

(N)
m , G

(N)
m ) for N = 0,−1,−2, . . . , where

γ(N)
m =

{

(−1)
(m+N)(m+N−1)N

2 γ
(N)
1 , m ≥ −N,

γ
(N)
1 , m ≤ −N,

G(N)
m =















N(N + 1)(m +N − 1)

2
Q+G

(N)
1 , m ≥ −N,

−N(m+N − 1)(m− 1)

2
Q+G

(N)
1 , m ≤ −N.

Substituting these G
(N)
m into (17) and (18), we have special solutions of udPII with A =

(2N + 1)Q for N = −1,−2, . . . ,

Z(N)
m =

(

ζ(N)
m , Z(N)

m

)

=

{

(

(−1)m−1, 0
)

, m ≥ −N,

(+1,−(m+ 2N + 1)Q) , m ≤ −N − 1.
(21)

Typical behavior of these solutions is shown in Fig. 1. They converge to 0 as m → −∞ and
oscillate for m ≥ −N . It is interesting to note that (21) constructed from the uAi function has
essentially the same structure as (20) constructed from the uBi function.

(a)

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

-3 -2 -1 1 2 3 4 5 6 7 8
m

-1.0

-0.5

0.5

1.0

Ζm
H-1LexpHZm

H-1LL

(b)

æ æ æ æ æ æ æ

æ

æ

æ

æ

æ

-3 -2 -1 1 2 3 4 5 6 7 8
m

-1.0

-0.5

0.5

1.0

Ζm
H-4LexpHZm

H-4LL

Figure 1. Behavior of special solutions (21) with Q = −1. (a) and (b) are for N = −1 and N = −4,

respectively.

Finally, we study Bi-function-type solutions for N < 0. We find that G
(0)
m = (+1, 0) and

G
(−1)
m = uBi(m − 1) solve (13) and (14) with N = −1. We construct solutions G

(N)
m of the

equations with N ≤ −2 for a given function G
(N+1)
m and assigned values of G

(N)
1 and G

(N)
2 . We

further assume that G
(N)
1 and G

(N)
2 are chosen so that G

(N)
m for m ≤ 0 are uniquely determined

in (13) and (14). We again inductively obtain the solutions G
(N)
m = (γ

(N)
m , G

(N)
m ), where

γ(N)
m =



























(−1)
N(N+2)

8 γ
(N)
1 , m ≥ 3−N,N : even,

(−1)
(m+N−3)(m+N−4)

2
+ (N−1)(N−3)

8
+1γ

(N)
1 , m ≥ 3−N,N : odd,

(−1)pN,mγ
(N)
1 , N − 1 ≤ m ≤ 2−N,

(−1)
(N+2)(N+3)(N+4)(N+5)

24
+1γ

(N)
1 , m ≤ N − 2,

pN,m =
(m−N − 3)(m−N − 4)(m−N − 5)(m−N − 6)

24

+
(N + 2)(N + 3)(N + 4)(N + 5)

24
,
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G(N)
m =















































































































































































(m− 1)N(N + 1)

2
Q−

N(N + 2)(2N − 1)

24
Q+G

(N)
1 ,

m ≥ 3−N,N : even,

(m− 1)N(N + 1)

2
Q−

(N − 1)(N + 1)(2N + 3)

24
Q+G

(N)
1 ,

m ≥ 3−N,N : odd,

(m− 1)N(m+ 3N + 2)

4
Q+

(m− 2)m(2m+ 1)

24
Q+G

(N)
1 ,

N − 1 ≤ m ≤ 2−N,m : even, N : even,

(m− 1)N(m+ 3N + 2)

4
Q+

(m− 2)m(2m+ 1) + 6

24
Q+G

(N)
1 ,

N − 1 ≤ m ≤ 2−N,m : even, N : odd,

(m− 1)N(m+ 3N + 2)

4
Q+

(m− 1)(m+ 1)(2m − 3)

24
Q+G

(N)
1 ,

N − 1 ≤ m ≤ 2−N,m : odd,

mN(m+N)

2
Q+

N(2N2 − 15N − 14)

24
Q+G

(N)
1 ,

m ≤ N − 2, N : even,

mN(m+N)

2
Q+

(N + 1)(2N2 − 17N + 3)

24
Q+G

(N)
1 ,

m ≤ N − 2, N : odd.

From these solutions, we have special solutions of udPII,

Z(N)
m =

(

ζ(N)
m , Z(N)

m

)

=



































((−1)m, 0) , m ≥ −N − 1,
(

(−1)
m−N

2 ,
m+N

2
Q

)

, |m| ≤ −N − 2,m−N : even,
(

(−1)
m−N−1

2 ,
m+N + 1

2
Q

)

, |m| ≤ −N − 2,m−N : odd,

(+1,mQ) , m ≤ N + 1.

(22)

Typical behavior of these solutions is shown in Fig. 2. Note that (21) and (22) have different

asymptotic behavior in Z
(N)
m as m → −∞ and in the phases for m ≥ −N . We also comment

that, although (22) is similar to (19), (22) has more complicated internal structure.

(a)

æ

æ

æ

æ

æ

æ

æ

æ

æ-3 -2 -1 1 2 3 4 5
m

5

10

15

20

Ζm
H-1LexpHZm

H-1LL

(b)

æ

æ

æ

æ

æ

æ
æ

æ æ æ æ æ
-5 -4 -3 -2 -1 1 2 3 4 5 6

m

-150

-100

-50

50

100

150

Ζm
H-6LexpHZm

H-6LL

Figure 2. Behavior of special solutions (22) with Q = −1. (a) and (b) are for N = −1 and N = −6,

respectively.
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4 Concluding remarks

In this paper we have presented a class of special solutions for the p-ultradiscrete analog of q-PII.
The solutions are classified into four groups; Ai-function-type and Bi-function-type solutions for
the system parameter N ≥ 0, and those for N < 0. In the preceding paper [9] are given only
the Ai-function-type solutions for N ≥ 0, which do not depend on N . Three other groups which
are newly given in this paper do depend on N . Moreover, the solutions of each group have
different structures. For example, we observe differences between the Ai- and Bi-function-type
solutions in their asymptotic amplitude and phases, which may reflect the structure of solutions
of difference and continuous equations. The Bi-function-type solutions for N < 0 have fairly
complicated internal structure, although we do not know the origin of these structures yet. At
any rate, these results may indicate the richness of solution space of the ultradiscrete equation.

For the continuous and discrete Airy equations, linear combination of Ai and Bi functions give
their general solutions. In the ultradiscrete case, max(f, g) corresponds to the linear combination
of functions f and g. Hence, we believe that the cases we treated in this paper cover quite wide
class of special solutions of the ultradiscrete equations.

Our method of constructing solutions is intuitive and purely based on the ultradiscrete equa-
tions. We believe that the solutions we obtain correspond to those of q-PII represented by the
Casorati determinant of size |N | whose elements are given by the q-difference Ai or Bi function.
It is a future problem to clarify the relationship between discrete and ultradiscrete solutions
through a limiting procedure. It is also a future problem to construct p-ultradiscrete analogs of
other Painlevé equations and their special solutions.
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