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Abstract Given some assumptions it is possible to derive the most general theory of

gravity at large distances. The force law derived from this theory contains a Rindler term

in addition to well-known contributions, a Schwarzschild mass and a cosmological constant.

The same force law recently was confronted with solar system precision data. The Rindler

force, if present in Nature, has intriguing consequences for gravity at large distances. In

particular, the Rindler force is capable of explaining about 10% of the Pioneer anomaly

and simultaneously ameliorates the shape of galactic rotation curves.

http://arxiv.org/abs/1107.2373v1


What is the most general theory of gravity at large distances? This is an interesting

question, whose answer may help to understand some of the puzzles that gravity poses,

including the issues of dark matter and dark energy.

This question was answered recently [1]. Of course, any such answer is only as good as

the assumptions used in its derivation. The assumptions of Ref. [1] were diffeomorphism

invariance, spherical symmetry at large distances (which effectively reduces the theory to

two dimensions), power counting renormalizability, cosmic censorship at large distances,

local validity of Newton’s law (based on the tight bounds of [2]) and analyticity. The first

two assumptions imply that gravity at large distances can be described by line-elements of

the form

ds2 = gαβ dxα dxβ + Φ2
(

dθ2 + sin2 θ dφ2
)

. (1)

The main burden of Ref. [1] was to construct the most general model that determines the

dynamics of the 2-dimensional metric gαβ(x
γ) and the surface radius Φ(xγ). Exploiting the

remaining assumptions it was shown that this model is described by a specific 2-dimensional

dilaton gravity action S depending on two constants, Λ and a (we use Planck units)

S = −
∫

d2x
√
−g

[

Φ2R + 2(∂Φ)2 − 6ΛΦ2 + 8aΦ+ 2
]

. (2)

The most general solution to the equations of motion descending from the action (2) was

found using the gauge theoretic formulation based upon Ref. [3]. In Schwarzschild gauge

the surface radius is given by Φ = r, while the 2-dimensional line-element reads

gαβ dxα dxβ = −K2 dt2 +
dr2

K2
K2 = 1− 2M

r
− Λr2 + 2ar . (3)

For M = Λ = 0 the line-element (3) is the 2-dimensional Rindler metric. The effective field

theory (2) therefore differs only in one aspect from spherically symmetric general relativity:

it permits a Rindler term.
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Solar system data are typically the graveyard of modified theories of gravity [4, 5]. It

is thus pivotal to confront the line-element (1), (3) with solar system precision data.

To this end we study geodesics on such backgrounds and obtain the standard expressions

for angular velocity, φ̇ = ℓ/r2, and radial velocity, ṙ2/2 + V eff = E, with some energy E

and angular momentum ℓ. For time-like test-particles the effective potential derived from

the line-element (1), (3) is given by

V eff = −M

r
+

ℓ2

2r2
− Mℓ2

r3
− Λr2

2
+ ar

(

1 +
ℓ2

r2
)

. (4)

For light-like test-particles only the terms proportional to ℓ2 remain. The first term in V eff

is the Newton potential, the second the centrifugal barrier, the third the general relativistic

correction, the fourth a cosmic acceleration and the last term proportional to the Rindler

acceleration is novel. If the angular momentum vanishes the force F (per unit mass) derived

from the effective potential (4) reduces to a Newtonian result, but with Rindler term. (As

a simplification we set to zero the cosmological constant, Λ = 0.)

F = −M

r2
− a (5)

Before we proceed it is important to mention a caveat. Namely, in order to trust the

effective model at large distances (2) the condition

m

r0
. ar (6)

should hold at least approximately, where r0 is the size of the test-mass. Otherwise the

self-energy of the test-particle would dominate over the Rindler energy and the picture

above fails because the test-particle backreacts appreciably on the “background”. In table

1 some typical systems are considered and it is clarified to which of them (5) is applicable.
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Source Test object Mass m Size r0 Distance r Ratio arr0
m

(5) ok?

Sun Pioneer 1011 1035 1047 109 Yes

Sun Earth 1032 1041 1046 10−7 No

Milky Way Sun 1038 1044 1055 10−1 Perhaps

Table 1: Checking the inequality (6) for various systems with a from (9)

In collaboration with ESA we found recently that the best solar system constraint

complying with the condition (6) comes from radar echo delay [6]. More specifically, we

calculated the (coordinate) time delay ∆t due to light bending and clock effects for a radar

signal sent from Earth to some planet or space craft and reflected back to Earth when Earth

and the target are in opposition. To leading order we obtained the following time-delay

formula.

∆t = 4M
(

ln
4rErT
r20

+ 1
)

− 2a(r2E + r2T ) (7)

Here r0 is a radius of the order of the solar radius, while rE and rT are the semi-major axes

of Earth and the target, respectively. The first term on the right hand side of (7) is the

general relativistic result, while the second term is the leading correction from the Rindler

force.

The Cassini spacecraft data provide a strong bound on corrections to the general rel-

ativistic result of time-delay [7]. Exploiting these data we converted the result (7) into a

constraint on the magnitude of Rindler acceleration [6].

|a| < 5 · 10−61 ≈ 3 · 10−9m/s2 (8)

This bound may be improved with future missions like e.g. the Juno mission by NASA or

the EJSM-Laplace mission by ESA.
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The model (2) for gravity at large distances predicts the possibility of a Rindler force,

but does not determine its sign or magnitude. We assume now that a is a universal constant

and postulate

a ≈ 10−62 ≈ 10−10m/s2 . (9)

This value coincides with the critical acceleration in modified Newton dynamics (see for

instance [8]). The sign was chosen such that the Rindler term in the Newtonian limit (5)

produces a force towards the source. Note that the choice (9) is compatible with (and

not very far from) the experimental bound (8). We take (9) as a working hypothesis and

investigate its implications.

Let us discuss observational consequences of the Rindler contribution to the force law

(5) with the choice above (9). Several of the solar system tests involve the planets as test

masses. As evident from table 1 the gravitational self-energy is so large that the force law

(5) is not applicable to them. In order to find a test mass which would allow to apply (5)

the ratio m/r0 must not exceed 10−17 [about 10 Astronomical Units times the quantity

a ≈ 10−62 taken from (9)]. This is the case for satellites or spacecrafts, which typically

have m/r0 ≈ 10−24, so those objects are prime candidates to test (5). As an example we

consider the Pioneer spacecrafts. The force law (5) yields

FPioneer ≈ −1038

r2
− 10−62 , (10)

where the force per unit mass is directed towards the Sun for both terms. Thus, an

anomalous acceleration towards the Sun is predicted. Actual experiments found a slightly

larger acceleration of about 10−61 [9]. If taken at face value the result (10) implies that

the Pioneer acceleration observed is too large and should be 90% artifact and 10% effect.
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Figure 1: Rotation curve for dwarf galaxy (3 kiloparsec ≈ 1055)
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Figure 2: Rotation curve for large spiral galaxy

Consider now galaxies. The galactic rotation curve predicted from (5) and (9) is

v(r) ≈
√

M(r)

r
+ 10−62 r . (11)

For small galaxies (M ≈ 108 solar masses, assuming for simplicity a constant density until

r ≈ 1054 and vanishing density thereafter) we plot the velocity v as a function of the

radius r in figure 1. Quantitatively similar curves have been observed for dwarf galaxies.

The Newtonian prediction without Rindler force corresponds to the dotted line in both

figures. For large galaxies (M ≈ 1011 solar masses, assuming for simplicity a constant

density until r ≈ 1055 and vanishing density thereafter) the rotation curve is depicted in

figure 2. Quantitatively similar curves have been observed for large spiral galaxies. Note

the maximal velocity of about 10−3 (300 km/s), close to observational bounds [10]. It is

intriguing that the Newtonian approximation (5) of the model (2) appears to be capable

of describing gravity at large distances better than the Newtonian limit of spherically

symmetric general relativity.
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The model (2) shows that a Rindler term leading to the quasi-Newtonian force law

(5) can emerge at large distances. However, it does not — and cannot — explain why a

Rindler force should emerge in the first place. We mention finally scenarios that lead to a

Rindler force.

Any modified theory of gravity that at large distances leads to spherically symmetric

metrics solving ∇σ∇σR = 0 or ∇σ∇σRµν = 0 automatically predicts the possibility of a

Rindler force. This includes the theory of conformal Weyl gravity [11] and, for some critical

tuning, the fourth derivative theory introduced recently by Lü and Pope [12]. It remains

to be seen whether any of these models is capable of passing all theoretical consistency

tests and survives all observational bounds. Any dark matter model that predicts density

ρ = − a
2πr

, radial pressure pr = −ρ and tangential pressure p⊥ = 1

2
pr leads to the same

dynamics as a Rindler force would. It remains to be seen whether such exotic dark matter

can be derived from some reasonable model. Finally, it is conceivable that quantum effects

within general relativity lead to a Rindler force. The first hint in this direction comes from

the gravitational scattering of scalar s-waves, where the intermediate geometries where

found to contain a Rindler term [13]. It would be interesting to derive a Rindler force at

large distances within more comprehensive approaches to quantum gravity.
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