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Abstract. The Ricci tensor (Ric) is fundamental to Einstein’s geometric theory of

gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of

time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor

for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear,

diffusive Ricci flow (RF) that was fundamental to Perelman’s proof of the Poincarè

conjecture. Analytic applications of RF can be found in many fields including general

relativity and mathematics. Numerically it has been applied broadly to communication

networks, medical physics, computer design and more. In this paper, we use Regge

calculus (RC) to provide the first geometric discretization of the Ric. This result is

fundamental for higher-dimensional generalizations of discrete RF. We construct this

tensor on both the simplicial lattice and its dual and prove their equivalence. We show

that the Ric is an edge-based weighted average of deficit divided by an edge-based

weighted average of dual area – an expression similar to the vertex-based weighted

average of the scalar curvature reported recently. We use this Ric in a third and

independent geometric derivation of the RC Einstein tensor in arbitrary dimension.

http://arxiv.org/abs/1107.2458v1
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1. Introduction

The Ricci curvature tensor (Ric) governs the dynamics of geometry in vacuum general

relativity. It also has been pivotal in the mathematical classification of manifolds. It

can therefore have a profound impact on our understanding of geometry and deepen our

insights into classical and quantum gravity. Hamilton used the Ric to define a diffusive

curvature flow that is referred to as Ricci flow (RF) [1];
(

Rate of change

of the metric

)

= −2Ric. (1)

This was instrumental in Perelman’s proof of Poincaré’s conjecture [2, 3, 4]. In addition

to its mathematical applications, RF has been applied to a broad range of problems

ranging from medical physics to network routing, and from face recognition to general

relativity and cosmology. Many of the applications of RF are for discrete, unstructured

meshes. Regge calculus (RC) provides a natural discrete description of Einstein’s

geometric theory of gravitation [5]. Here we apply RC to define the Ric in RC for

arbitrary dimensions, so that RF can be extended to higher dimensions.

Evolutions of the Ric have found recent applications in the physics of spacetime.

RF is expected to be an important tool for the study of generic black hole solutions

of spacetime. For example, RF provides a means for a better understanding of quasi-

local mass in non-trivial asymptotically flat spacetimes [6]. Moreover, it may be useful

for a mathematically rigourous prescription for black hole boundary conditions in the

numerical relativity community [7]. Similary, RF has also been applied to black-hole

physics as a means for determining the Bekenstein-Hawking entropy [8, 9]. In cosmology,

there has been increased interest in RF as means for understanding the averaging

problem in ΛCDM cosmological models [10, 11].

Numerical methods using RF techniques require discrete representations of the Ric

and its corresponding evolution equation. Current RF techniques in computational

geometry on complex topologies focus on 2-dimensional representations of higher-

dimensional data [12, 13]. Meanwhile, recent numerical simulations of relativistic

models examined RF on higher dimensional manifolds with lower complexity topologies

[14, 15, 16, 17]. Geometric discretizations of the Ric are needed for numerical simulation

of RF on higher dimensional manifolds with arbitrary topology. RC is a natural setting

for investigating the Ric and RF due to its piecewise-flat, coordinate-free construction

which naturally captures the Riemannian curvature on each codimension 2 hinge, h, of

the simplicial lattice. Here we use this RC Riemann curvature to derive a simplicial

representation of the Ric. This one-form expression is valid in arbitrary dimension. We

start by reviewing some of the principles related to representation of differential forms in

RC and the notation used in this article in Section 2. In Section 3 we develop simplicial

Ric on edges of the simplicial and dual lattices. In Section 4 we use our expression of

the simplicial Ric to provide a third and independent geometric derivation of the RC

Einstein tensor in arbitrary dimension. In particular, we utilize the simplicial Ric and

scalar curvature to explicity construct the Einstein tensor as the trace-reversed Ric.
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2. Dual Lattices and Discrete Differential Forms

Geometric discretizations [12, 13, 18, 19, 20, 21] are generally characterized by

association of tensors with lattice elements of a discrete manifold. Tensors decomposed

into the space of values and tangent space components become weighted distributions

over the skeleton of the discrete manifold and obtain their geometric properties from

the skeleton itself. Differential quantities in the lattice are formulated such that point-

wise evaluation gives way to averaged evaluation over an integral domain. Tensors

thus become integrated measures on the discrete manifold and their associated scalar

weights may be intepreted as densities assigned to a lattice element. This integrated

representation of tensors over lattice elements is a form of discrete exterior calculus or

discrete differential forms (DDF) in which one explicitly discretizes the tangent space

values of a differential form.

The simplicial lattice in RC provides one set of differential forms onto which a

tensor may be projected. The simplicial d-volumes of a d-dimensional manifold provide

an anchor – the tangent space– for the differential forms. However, to incorporate dual

forms we require a lattice structure obtained by some duality relation with the simplicial

skeleton, i.e. the dual lattice. We will often use the more generic phrasing of dual lattice

to refer to the circumcentric dual lattice. The circumcentric dual lattice is the unique

lattice defined by connecting the circumcenter of a d-simplex to the circumcenters of

each neighboring d-simplex. This lattice is of special interest since it creates a pair-

wise orthogonality between elements of the dual lattice, i.e. for each k-element of the

simplicial lattice there exists a (d − k)-element in the circumcentric dual. Moreover, if

we constrain the simplicial lattice to be a Delaunay lattice [22], then the circumcentric

dual is identified as a Voronoi lattice. In this particular case, the d-dimensional Voronoi

cells are uniquely determined by the set of all points closest to a given simplicial vertex

than to any other simplicial vertex. Likewise, a general (d−k)-Voronoi element is the set

of all points in the codimension-k hyperplane closest to a k-simplex than to any other

k-simplex in the simplicial lattice. Thus, a d-volume constructed from the simplicial

element and its Voronoi dual has a natural interpretation as the local, compact integral

measures on the simplicial lattice. (See Appendix A for more details.)

Some of the notation used in this article will denote elements of the simplicial

(dual) lattice, volumes in the lattices, or measures of curvature. In particular, we will

distinguish between the simplicial and dual lattices using Latin and Greek lettering.

The Latin letters v, ℓ, and t will label simplicial elements of dimension 0, 1, and 2,

respectively. Arbitrary k-simplexes are labeled by s(k). Meanwhile, the elements of the

dual lattice are labeled by the Greek letter counterparts ν, λ, τ , and σ(k). We will also

be using the notation ∆Va to denote the d-volume associated with the element a. For

an edge ℓ of the simplicial lattice on a 3-dimensional lattice, the label ∆Vℓ represents

a 3-volume associated with ℓ. The label ∆Va b denotes the d-volume associated with

a and restricted to the element b. This restriction can be formulated as taking the

intersection of the individual d-volumes from a and b. Extending this notation to
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arbitrary restrictions, we can write ∆Va1a2···ak as the restriction of the volume ∆Va1

to all of the elements a2, . . . , ak. Indeed, one can convince oneself of this notation by

considering the case of the simplicial manifold restricted to a given element of either

lattice. In this case, the entire manifold contains the d-volume of every lattice element,

so ∆Va can be seen to be the restriction of the simplicial manifold to the element a.

These notations, and others, are summarized below:
ν – Dual vertex

λ – Dual edge

τ , h∗ – Dual polygon

σ(k) – Dual polytope of dimension k

v – Simplicial vertex

ℓ – Simplicial edge

t – Triangle on simplicial skeleton

s(k) – k-simplex

h – Simplicial hinge

St(a) – Star of a lattice element a, i.e.
⋃

s(k)⊃a s
(k) for the simplicial lattice

Ah, |h| – Volume of h

A∗

h, |h∗| – Area of h∗

|s(k)|
(
|σ(k)|

)
– volume of s(k)

(
σ(k)
)

θhℓ – Angle opposite of edge ℓ on a hinge h in 4 dimensions

ǫh – deficit angle associated with a hinge

Rh – Riemann Tensor projected on a hinge

Rλ – Ric projected on a dual edge, λ

Rℓ – Ric projected on a simplicial edge, ℓ

Rν – Ricci scalar at a dual vertex, ν

Rv – Ricci scalar at a simplicial vertex, v

Ahℓ – Volume of hinge restricted to ℓ

A∗

hλ – Area of dual to a hinge restricted to λ

|a|b – Volume of a restricted to b, i.e. the norm of a
⋂
b

|a|b1···bm – Volume of a restricted to all bi, i.e. the norm of a
⋂

b1
⋂

· · ·
⋂

bm

∆Va – d-volume associated with the element (either dual or simplicial) a.

∆Va b – d-volume of a restricted to b
〈
α(k), s(k)

〉
– Local projection or metric inner-product of two k-forms,

(
α(k), β(k)

)
– Standard L2 inner-product on two simplicial (dual) k-forms

〈Ca〉b – Volume-weighted average of the Ca’s hinging on the element b,
∑

a:b∈a
Ca∆Va b∑

a:b∈a
∆Va b

〈Ca〉b – Area-weighted average of the Ca’s hinging on the element b, a
∑

a:b∈a
CaAab∑

a:b∈a
Aab

C̄a|b – Arithmetic mean of the Ca’s hinging on b
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3. Discretizing the Ricci Tensor

Here we construct a geometric representation of the Ric on a piecewise-flat simplicial

geometry. The geometric discretization we use is based on discrete differential forms

(DDF) in which the (dual) simplicial lattice is used as the (co-)chain complex for

embedding continuum forms in the discrete manifold. It has been found that such

discretizations preserve the geometric properties of the tensors and can be useful for

solving differential equations for tensor fields on geometries with complex topology

[20, 23, 21].

Piecewise-flat geometries are characterized by curvature distributions concentrated

at each codimension 2 hinge, h, on the simplicial manifold, S. The curvature on a given

hinge h is a conical singularity with deficit angle ǫh. We have shown that standard RC is

consistent with distributing this curvature evenly over the polyhedron, h∗, (with areaA∗

h)

dual to hinge h. It admits a natural interpretation as the sole independent component

of the Riemann curvature tensor in the d-volume associated with the hinge [24]. From

this local representation of curvature distributed over a hinge one can explicitly and

geometrically define the Einstein tensor in 4-dimensions [25] and a vertex-based scalar

curvature [26]. The Einstein tensor encodes the geometrodynamics of General Relativity

through the Einstein equations. The scalar curvature provides a point-wise average of

curvature that an observer can set out to measure. However, these curvature measures

are insufficient to examine geometric flows where the Ric plays the predominent role.

When discretizing evolution processes that can be reformulated as an evolution of the

Ric itself, e.g. RF, we seek to first represent the Ric directly in the geometry, then

develop the evolution equations for the new representation. We provide two equivalent

derivations of the Ric. First, we start with the continuum construction and apply it

directly to discrete curvature forms. Second, we derive an equivalent expression directly

from the action principle of RC.

3.1. Derivation of the Ric from the Continuum using Discrete Curvature Forms

In the continuum the Ric is defined as the first contraction of the Riemann curvature

tensor;

Ra
b = Rac

bc. (2)

As a bivector-valued two-form the curvature tensor takes in a bivector for the loop

of parallel transport and outputs a bivector characterizing the change in a vector

transported around the loop;

R =
1

4
ea ∧ eb R

ab
cddx

c ∧ dxd (3)

where {ea} are the basis tangent vectors dual to the basis one-forms {dxc}.
In RC, curvature is given exclusively by the sectional curvature, K, associated with

a codimension 2 hinge. On a hinge, the sectional curvature is given by

K =
ǫh

A∗

h

(4)
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which is just the ratio of angle rotated (the deficit angle epsilonh) to area traversed

(A∗

h) by the loop of parallel transport. The sectional curvature is the double projection

of the Riemann tensor onto a given plane [27];

K = R(ea, eb, ea, eb) (5)

where ea and eb are an orthonormal basis for the plane. Hence the Riemann curvature

tensor on a hinge is proportional to the sectional curvature of the polygonal dual, h∗,

to the hinge;

Rh = R(h∗

ab, h
∗,ab) = d(d− 1)

ǫh

A∗

h

. (6)

For this reason, one can generally denote the Riemann tensor for a hinge as Rh∗

h∗ . We

will, in general, only keep track of the two-form components and write Rh∗ = Rh, where

the equality is a result of the duality. Taking the trace of the Riemann tensor requires

summation over the curvature associated with loops spanned, in part, by a given one-

form eb. This summation of loops hinging on a given one-form reduces the curvature

two-form to a one-form doubly-projected on eb.

RC is at its heart a weak variational formulation of General Relativity. This is

easily seen since the geometric content of RC is encoded not through pointwise defined

tensors, but tensors distributed over elements of the lattice. Indeed, the Regge equations

are integral equations and given by the Einstein tensor integrated over the associated 4-

volume. Hence, we evaluate the discrete Ric as an integrated quantity on the simplicial

manifold. Locally, the Ric becomes a one-form projected on the dual edges of the lattice

and integrated over the d-dimensional domain, ∆Vλ, associated with the dual edge, λ.

To take the trace of the Riemann tensor, one must sum over the independent directions

orthogonal to a dual-edge λ. In general, one will sum over all independent two-forms

λ∧ ea. However, when ea lies in the plane of a hinge h, there is no curvature associated

with such a loop of parallel transport. Therefore, the Ricci one-form on λ is dependent

only on the the polyhedral 2-faces, h∗, hinging on a given dual edge, λ;

Rλ∆Vλ =
∑

h∗:λ∈h∗

Rh∗ ∆Vh∗ λ . (7)

We have introduced the volume ∆Vh∗ λ (Figure 1) which is a restriction of the d-volume

for h∗ to the dual edge λ–the intersection of the d-volumes associated with h∗ and λ.

This is the discrete equivalent of decomposing a domain and integrating over distinct

representations on the subdomains;
∫

Ω

α =
∑

i

∫

Ωi

α′(Ωi). (8)

Here the Ωi form a non-overlapping domain decomposition of Ω. Using the Voronoi-

Delaunay orthogonal decomposition of volumes and the RC definition of curvature on

a hinge, Rh = d(d− 1) ǫh
A∗

h

, we obtain an explicit expression for the integrated Ricci

one-form on a dual edge;

Rλ∆Vλ =
∑

h∗: λ∈h∗

d(d− 1)
ǫh

A∗

h

1
(
d

2

)AhA
∗

hλ
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Figure 1. Restricting the Hinge Volume to a Dual Edge: Here we explicitly

show the decomposition of the d-volume of a hinge h (in d = 4) and its restriction to a

dual edge λ. (Top) Here we show the orthogonal decomposition of the d-volume into

the area of a hinge, Ah, and the area of the dual polygon to a hinge, A∗

h
. Struts (not-

shown) connecting each vertex of h∗ to each vertex of h complete the boundary of the

domain spanned by h and h∗. (Bottom-left) We focus attention on the dual polygon

h∗ and have shown (shaded) the restriction to the dual edge λ. This restricted area is

the 2-simplex constructed from the endpoints of λ and the circumcenter of the hinge

h. (Bottom-right) By connecting the vertexes of the restricted area of h∗, A∗

hλ
, to each

of the vertexes of the hinge h, we obtain a new d-volume, ∆Vh∗λ = ∆Vhλ. The thick

red (dashed) lines are struts connecting vertexes on the boundary of ∆Vh∗λ The struts

connecting the circumcenter O of h to the vertexes of h (thin dashed, red) do not

contribute the boundary of ∆Vhλ and can be routinely dropped from the construction.

=
∑

h∗: λ∈h∗

2ǫhAh

A∗

hλ

A∗

h

. (9)

We have decomposed the restricted d-volume, (see Appendix A), into the Voronoi and

Delaunay components and restricted the Voronoi area, A∗

h, to the dual edge, λ, denoted

as A∗

hλ. This restricted area is the set of all points in A∗

h closer to λ than to any other

dual edge λ′ in the skeleton of h∗. Dividing by the intergal domain, we obtain

Rλ =

∑

h∗ :λ∈h∗ d(d− 1) ǫh
A∗

h

A∗

hλAh
∑

h∗ :λ∈h∗ A∗

hλAh

=

∑

h∗ :λ∈h∗ Rh ∆Vh λ
∑

h∗ :λ∈h∗ ∆Vh λ

. (10)

Defining a volume-weighted average as

〈Ca〉b =
∑

a:b∈a Ca ∆Va b
∑

a:b∈a ∆Va b

,

the Ricci one-form in the dual lattice becomes

Rλ = 〈Rh〉λ. (11)

This is an explicit expression of the Ric in the dual lattice as a weighted average of

curvatures meeting on the dual lattice one-form λ.
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In RC, it is customary for measures of curvature to be associated with elements in

the simplicial lattice. This more readily allows for evolution equations in terms of the

degrees of freedom, the edge lengths of the simplexes {ℓ}. For applications of the Ric,

such as for RF, this is particularly important since a straightforward weak evolution

equation for the edge lengths (synonomous with the components of metric) will require

an integration of the Ric over the d-volume associated with an edge, i.e. the integrated

Ricci one-form at a given ℓ. We thus seek to re-express the Ricci one-form on the

simplicial skeleton. Taking the dual of the above expression gives us a Ricci three-form

on the simplicial lattice. However, it is beneficial to write an explicit expression for

the Ricci one-form on simplicial edges. We can transform the above expression into a

edge-based expression in the simplicial skeleton via a lowering (raising) operator which

transforms r-forms in the dual (simplicial) lattice to r-forms in the simplicial (dual)

lattice (see Appendix B). We first rewrite the association of the Ric on a dual edge by

restricting the domain to that closest to a simplicial edge, ℓ. This is the result of the

projection of the dual edge Ric onto the domain of the edge, ℓ;

Rλ ∆Vλ ℓ = Rλ∆Vλ

∆Vλ ℓ

∆Vλ

=
∑

h∗:λ∈h∗

Rh∗ ∆Vh∗ λ ℓ . (12)

For d > 2 this newly projected volume can be decomposed as before, except now

we must restrict the hinge area to that which is closest to ℓ. Suitably rearranging the

terms in the sums gives

Rℓ∆Vℓ =
∑

λ∈ℓ∗

Rλ ∆Vλ ℓ (13)

=
∑

λ∈ℓ∗

∑

h∗: λ∈h∗

2ǫhAhℓ

A∗

hλ

A∗

h

(for d > 2)

=
∑

h: ℓ∈h

2ǫhAhℓ

A∗

h

∑

λ∈h∗

A∗

hλ

= 2 〈ǫh〉ℓ Ah (14)

where we have defined the edge-based area-weighted average as

〈Ch〉ℓ =

∑

h:ℓ∈hChAhℓ
∑

h:ℓ∈hAhℓ

.

It is key to note here that swapping the summations is allowed given that the Voronoi-

Delaunay decomposition of the volumes determines a tiling of the manifold without

overlap. This will generally be true for arbitrary triangulations with circumcentric duals

as long as volume orientation is also carried over in the calculation. Again, dividing by

the integral volume, we get an explicit expression for the Ric weighting on an edge of

the simplicial lattice;

Rℓ = d(d− 1)
〈ǫh〉ℓ
〈Ah∗〉ℓ

(for d > 2). (15)
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Figure 2. Volumes for the Ric on a Simplicial Hinge: Here we use the case of

d = 3 as a concrete example of the construction of the simplicial Ric from the dual

edge-based Ric. (Top) A simplicial edge ℓ is shown with all triangles t = λ∗ hinging on

ℓ. The notation of t = λ
∗ indicates that to each triangle containing ℓ, there is an edge λ

of the dual lattice orthogonal and dual to t. (Bottom-left) The 3-volume for a given λ is

depicted here. In general, only a portion of this volume will overlap with the 3-volume

associated with ℓ. To construct the Ric for λ, the integral volumes used must coincide,

so we take the restriction of ∆Vλ to ℓ, ∆Vλℓ. (Bottom-right) The 3-volume ∆Vℓ is

shown and we indicate the part of ∆Vℓ corresponding to ∆Vλℓ as the volume spanned

by the vertexes [ABDEO]. Since ℓ∗ = h∗, summing over all λ contained in h∗ carries

us around the loop orthogonal to ℓ. In the restriction of ∆Vλ to ℓ, the only contribution

with non-trivial restricted volume is h∗ = ℓ∗ for the given ℓ. Hence, substituting the

expression for Rλ into Eq. 13 and summing over all λ ∈ ℓ∗ = h∗, we obtain the Regge

curvature on an edge/hinge in d = 3. Hence we have Rℓ∆Vℓ = Rh∆Vh as expected.

For the special case of d = 3, the Riemann tensor is proportional to the Ric, i.e.

all curvature content is encoded directly in the Ricci tensor. In Figure 2 we look at

the Ric on a simplicial edge in d = 3 and illustrate the volumes associated with the

construction.

We now turn to the special case of d = 2. The duality between λ and ℓ is such that

Rℓ∆Vℓ =
∑

λ∈ℓ∗

Rλ ∆Vλ ℓ

=
∑

λ

Rλ∆Vλδλ,ℓ∗ = Rλ∆Vλ. (16)

Again, the duality can be used to show Rℓ = Rλ. Using the expression for Rλ = 〈Rh=v〉λ
we have

Rℓ =

∑

h=v∋ℓ RhA
∗

hℓ
∑

h=v∋ℓ A
∗

hℓ

=

∑

h=v∋ℓ Rh
1
4
ℓ× ℓ∗

1
2
ℓ× ℓ∗

= R̄h|ℓ (17)
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where R̄h|ℓ is the arithmetic average of the curvature evaluated at the endpoints of ℓ.

We have used the normalization of Vol(h = v) = 1 in the first equality and the relation

Ahℓ =
1
4
ℓ× ℓ∗ = Ah′ℓ for both endpoints (hinges), h and h′, on ℓ in the second equality.

This is a discrete expression showing explicitly that the Ricci one-form is determined

solely by the scalar curvature (on vertexes) in 2-dimensions.

3.2. Derivation of the Ric from the RC Action Principle

These expressions can also be derived from the Regge action principle in a similar way to

the authors’ previous construction of the scalar curvature invariant in RC [26]. Since the

curvature is locally proportional to the sectional curvature, we obtain a simple relation

between the action using the curvature two-form and the canonical Einstein-Hilbert

action;

I =
1

κ

∑

h

(R,h∗) =
1

κ

∑

h

d(d− 1)Kh∆Vh =
2

κ

∑

h

ǫhAh = IRegge (18)

where h∗ is the two-form for the dual loop to a hinge and Kh = ǫh
A∗

h

is the sectional

curvature. The factor of d(d − 1) comes about from contracting the curvature two-

form with the dual polygon two-form which gives equal contributions from all non-zero

components. Using duality, we can also change the first expression to a hinge-based,

instead of a dual polygon, expression;

I =
1

κ

∑

h

(⋆R,h). (19)

Now tracing over directions orthogonal to edges and summing over the edges we get

I =
1

κ

∑

h

∑

ℓ∈h

(d− 1) (Rhℓ, ℓ) (20)

where Rhℓ is the Ric on hinge h directed along ℓ. Contracting the Ric with its associate

one-form gives an additional factor of d such that we obtain

I =
1

κ

∑

h

∑

ℓ∈h

d(d− 1)Kh ∆Vℓ h . (21)

To get the action in terms of the Ricci one-form we decompose the integral measures

and rearrange the summations;

I =
∑

h

d(d− 1)
ǫh

A∗

h

1
(
d

2

)

∑

ℓ∈h

A∗

hAhℓ

︸ ︷︷ ︸

∆Vℓ h

=
∑

h

∑

ℓ∈h

d(d− 1)
ǫh

A∗

h

1
(
d

2

)A∗

hAhℓ

=
∑

ℓ

∑

h: ℓ∈h

d(d− 1)
1
(
d

2

)
ǫh

A∗

h

A∗

hAhℓ

=
∑

ℓ

Rℓ∆Vℓ. (22)
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Using the equality of the individual terms in the sum over edges, we get an

expression for the curvature on an edge of the simplicial lattice;

Rℓ∆Vℓ =
∑

h: ℓ∈h

d(d− 1)
1
(
d

2

)
ǫh

A∗

h

A∗

hAhℓ. (23)

We have absorbed the combinatoric factor of d(d−1) into the definition of Rℓ as we will

do in general. This helps keep in mind that the expression for Rℓ is a scalar weight on

the edge element. Formally, these scalar weights are part of a integrated quantity and

are not necessarily assigned to a point on the lattice, but rather across the domain of

integration associated with the given element. Hence, the curvature forms used in RC

are to be understood as Rh∆Vh, Rℓ∆Vℓ, and Rv∆Vv for the Riemann, Ricci and scalar

curvature, respectively.

We can raise the simplicial Ricci one-form to obtain the dual Ricci one-form. To

do so, we first restrict the integrative domain to the volume closest to the dual edge;

Rℓ ∆Vℓ λ =
∑

h: ℓ∈h

d(d− 1)
(
d

2

)
ǫh

A∗

h

A∗

hλAhℓ. (24)

We define the raising (lowering) operation applied to the simplicial Ric by summing

over all integrated Rℓ for which λ ∈ ℓ∗. The restriction of the domain above is necessary

to ensure that lowering (raising) this expression gives a quantity integrated over the

appropriate d-volume. Doing so we obtain

Rλ∆Vλ =
∑

ℓ: λ∈ℓ∗

Rℓ ∆Vℓ λ

=
∑

ℓ: l∈ℓ∗

d(d− 1)
(
d

2

)

∑

h: ℓ∈h

ǫh

A∗

h

A∗

hλAhℓ

=
∑

h: λ∈h∗

d(d− 1)
(
d

2

)

∑

ℓ∈h

ǫh

A∗

h

A∗

hλAhℓ

=
∑

h: λ∈h∗

d(d− 1)
(
d

2

)
ǫh

A∗

h

A∗

hλAh

=
∑

h: λ∈h∗

2
ǫh

A∗

h

A∗

hλAh. (25)

Comparing with Eq. (9) shows exact agreement. The independence of the local

and global derivations shown here are indicative of the decomposition of the lattice

into elements with compact support. Therefore, the global derivation in terms of the

action becomes just an additional sum over the local terms defined over the domains

of compact, local support. This highlights the reason that RC as a weak variational

principle reduces to locally simple characterizations of the manifold geometry.

4. The Canonical Einstein Tensor

In previous work, the Cartan moment-of-rotation trivector view was used to derive

the embedding of the Einstein tensor in RC [25, 28]. Here we present an alternative
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derivation using the more familiar definition of the Einstein tensor;

Gµν = Rµν −
1

2
gµνR (26)

which can be rewritten as an Einstein one-form

Ga ≡ Gµνe
ν
a = Ra −

1

2
eaR. (27)

Using the simplicial Ric and the previously derived scalar curvature [26], we have all

the necessary tools to provide a direct reconstruction of the Einstein tensor on an edge.

The isomorphism between forms on the dual and forms on the simplicial lattice

allows us the freedom to define curvature forms on either lattice. However, we should

start off on a sound geometric footing by following the projection of the continuum

object onto the lattice structure. Eq. (26) identifies the quantitative construction of

the Einstein tensor, but does not indicate the geometric character of the Einstein one-

form. However, it is known that the Einstein tensor is the double-dual of the Riemann

curvature tensor [29];

G
j
i = (∗R∗) jm

im =
1

4
ǫmnilR

mn
abǫ

ablj . (28)

The Hodge duals transform the two-form components on the dual lattice to forms on

the simplicial lattice. The trace over the second and third indices reduce the two-form

to a one-form. Hence, the Einstein tensor is a one-form on edges of the simplicial lattice.

Equivalently, in 4-d the Einstein one-form is the dual of the moment of rotation 3-form

projected on the 3-volume dual to an edge [25, 28]. We take the natural embedding

for the Einstein one-form in RC to be on the simplicial 1-skeleton. One could easily

construct a dual lattice Einstein one-form, though we see no particular benefit.

We must also be careful in how we introduce the vertex-based scalar curvature, Rv,

in the edge-based representation. This is most directly accomplished by projecting the

integrated scalar curvature at a vertex onto the d-volume associated with an edge;

eaR −→ Rv∆Vvℓ (29)

This contributes non-trivially only when the vertex v is a vertex of ℓ. Moreover, since

the scalar curvature is decomposed into volumes associated with the hinges meeting

at v, this projection introduces a Kronecker delta into each term. This results from

projecting the vertex-based volume associated with a hinge ∆Vhv onto a given edge.

Hence, only those hinges meeting at ℓ contribute to the edge-restricted scalar curvature;

Rv ∆Vv ℓ = d(d− 1)
∑

h: v, ℓ∈h

ǫh

A∗

h

1
(
d

2

)AhℓvA
∗

h

= 2
∑

h: v, ℓ∈h

ǫhAhℓv (30)

where Ahℓv is the area of the hinge h restricted to both the edge ℓ and the vertex v – both

ℓ and v are assumed to be on h otherwise Ahℓv = 0.
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Using this representation of the scalar curvature and the simplicial Ricci one-form

defined above, we are in position to explicitly define the canonical form of the Einstein

tensor;

Gℓ∆Vℓ = Rℓ∆Vℓ −
1

2

∑

v∈ℓ

Rv ∆Vv ℓ

= 2
∑

h: ℓ∈h

(ǫhAhℓ)−
∑

v∈ℓ

∑

h: ℓ∈h

ǫhAhℓv

= 2
∑

h: ℓ∈h

(ǫhAhℓ)−
∑

h: ℓ∈h

ǫhAhℓ

=
∑

h: ℓ∈h

ǫhAhℓ. (31)

In d = 4 this becomes

Gℓ

1

4
ℓ · ℓ∗
︸ ︷︷ ︸

∆Vℓ

=
∑

h: ℓ∈h

ǫhAhℓ

=
∑

h: ℓ∈h

ǫh
1

2
ℓ · 1

2
ℓ cot (θhℓ)

︸ ︷︷ ︸

Ahℓv

Gℓℓ
∗ =

∑

h: ℓ∈h

ǫhℓ cot (θhℓ) (32)

where θhℓ is the angle on the hinge h opposite ℓ. Staying in d = 4 we can check this

result with the result obtained from varying the Regge action. In the continuum the

integrated Einstein tensor is obtained from the variational principle;
∫ √−g Gαβ d4x = κ

δIgeom

δgαβ
(33)

where κ = 16πGc−4 and Igeom is the Einstein-Hilbert action.

In RC, with action given by 2
κ

∑

h ǫhAh, this becomes

Gℓℓ
∗ = κ

δIRegge

δℓ
. (34)

Regge showed that the variation of the deficit angle ǫh in the Regge action does

not contribute to the final equations of motion. Only variation of the hinge volume

contributes. Using this result we obtain the standard Regge equations for an edge;

δIRegge

δℓ
= 2

1

κ

∑

h: ℓ∈h

ǫh
1

2
ℓ cot (θℓh)

=
1

κ

∑

h: ℓ∈h

ǫhℓ cot (θℓh). (35)

The integrated Einstein tensor from the variational principle is thus found to match the

result obtained from the Regge version of the canonical Einstein tensor definition;

Gℓℓℓ
∗ =

∑

h: ℓ∈h

ǫhℓ cot (θℓh). (36)
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This agrees with the results from the moment of rotation three-form derivations [25, 28].

The factor of 2 that explicitly appears in Eq. (36) that cancels the 1
2
factor in the moment

arm is due to combinatoric factors coming from the symmetry in the moment of rotation,

i.e.

dP ∧R = R ∧ dP.

In particular, the integrated moment of rotation assigned to an edge is not dependent

on the ordering of the wedge product of the moment arm with the curvature and gives

rise to this numerical factor.

It is particularly instructive to confirm this result by way of Eq. (28). Since the

first dual acts on the space of values, we only need note that one component survives

while the second component of the bivector contributes to the trace. Acting on the two-

form components is the fundamental volume form, ǫablj , which acts as a given 4-volume.

Choosing a given component of Gi is akin to choosing an edge ℓ on the simplicial lattice.

Since Rh = Rh∗ takes non-zero components only in the directions orthogonal to hinges,

the trace is the sum over directions orthogonal to ℓ and h∗;

(
Gj, ℓj

)
=

1

2

∑

h:ℓ∈h

Rh∗∆Vh∗ℓ

=
1

2

∑

h:ℓ∈h

d(d− 1)
ǫh

Ah∗

1
(
d

2

)AhℓAh∗

Gℓ∆Vℓ =
1

4

∑

h:ℓ∈h

ǫhℓ
2 cot (θℓh) (37)

where we have used Ahℓ = 1
2
ℓ2 cot (θℓh). Doing the usual trick of decomposing the

volume on the LHS and dividing by ℓ, we have

Gℓℓ
∗ =

∑

h:ℓ∈h

ǫhℓ cot (θℓh) (38)

as before. In general, the Einstein tensor in arbitrary dimension is given by;

Gℓℓ
∗ =

d

ℓ

∑

h

ǫhAhℓ (39)

in agreement with Eq. (31). We thus have multiple methodologies for deriving the

Einstein tensor, and we have shown that the Einstein tensor is the sum of restricted

areas of hinges times their associated deficit angles.

5. Conclusion

We have presented here the first geometric discretization of the Ric in RC in arbitrary

dimension. The tracing of the Riemann tensor over loops of parallel transport produces

a one-form in the dual lattice. Moreover, we are able to use the isomorphism between

forms on the dual with forms on the simplicial lattice to construct a simplicial

counterpart to the dual lattice Ricci one-form. Both formulations provide explicit

meaning to the simplicial analog of the trace of the Riemann tensor as an edge-based
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“weighted average” of curvature. In the dual representation the Ric is a volume-

weighted average while in the simplicial representation it becomes a ratio of area-

weighted averages.

The Ric defined as one-form in the simplicial or dual lattices is one step towards

accurately embedding the machinery of RF into the piecewise-flat discretization of RC.

By representing the Ric, and eventually RF, in the RC framework, we expect to be able

to use RF on geometries of arbitrary topology in arbitrary dimension. In particular,

the 3-dimensional Ric carries the full information about the curvature of the manifold

and can be used for manifold comparison using techniques developed by Perelman

[2, 3, 4, 30]. Ongoing future work will develop the RF equations and apply them to

discrete manifolds in higher dimension.

The definition of a Ric in arbitrary dimension has further allowed us to provide a

third and independent derivation of the Einstein tensor in RC. By using our simplicial

Ricci one-form and the recent definition of the vertex-based scalar curvature, we are able

to write an explicit expression for the trace-reversed Ric in terms of restricted volumes

in the simplicial lattice. This shows further the utility of the inherent Voronoi-Delaunay

duality and the associated hybrid cells as natural volumes in RC.
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Appendix A. Integral Volumes in Regge Calculus

The canonical volumes of RC are the simplicial blocks of the lattice. These domains

define the locally flat subspaces of the geometry. The simplicial blocks also supply

the lattice with an intrinsice definition of local tangent spaces on which we explicitly

define vectors, tensors, and differential forms. It is useful to decompose these simplicial

domains to fit with the character of the geometric objects we construct. Since all

embeddings of geometric variables are essentially integrated quantities, as opposed to

the point-based representation in the continuum, we wish the integral volumes to reflect

the nature of the object itself. Here we provide a short review of the methods for

constructing integral volumes used in this manuscript.
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We begin by defining the simplicial volume via the inner-product of forms. The

volume of a simplicial cell is given by the inner product of the simplicial d-form with

itself;

(
s(d), s(d)

)
=

∫

s(d) ∧ ∗s(d)

=
1
(
d

d

)
∣
∣s(d)

∣
∣ ·
∣
∣∗s(d)

∣
∣ =

∣
∣s(d)

∣
∣ (A.1)

where we use the usual notation, |·|, to indicate the norm. Since ∗s(d) is a vertex of the

dual lattice, i.e. the circumcenter of s(d), it contributes only a scalar constant to the

integral. To ensure that the integral yields the appropriate d-volume, we choose assign

to any vertex a volume with unit normalization. Likewise, a polytope σ(d) dual to a

vertex v in the simplicial lattice is given by

(
∗σ(d), ∗σ(d)

)
=

1
(
d

0

)
∣
∣∗σ(d)

∣
∣ ·
∣
∣σ(d)

∣
∣ =

∣
∣σ(d)

∣
∣ (A.2)

where again we have
∣
∣∗σ(d)

∣
∣ = |v| = 1. Explicitly, this volume is constructed by building

local domains interior to each simplex in the star of the vertex v dual to σ(d). Using

the Voronoi construction, this volume localized on a simplex is the set points in polysd

closest to v than any other vertex in the simplex. This portion of the simplex will be

called the restriction of the simplex to v, ∆Vs(d) v =
∣
∣s(d)

∣
∣
v
. Summing over each simplex

in the star of v, St(v), gives the complete dual volume.

|∗v| =
∑

s(d)∈St(v)

∣
∣s(d)

∣
∣
v
. (A.3)

We can construct arbitrary volumes that are hybrid Delaunay-Voronoi cells through

inner-products of the simplicial (dual) r-forms with themselves;

(
s(r), s(r)

)
=

∫

s(r) ∧ ∗s(r)

=
1
(
d

r

)

∣
∣s(r)

∣
∣ |∗sr| . (A.4)

The factorization given by the last equatlity is a direct result of the inherent

orthogonality between the Voronoi and Delaunay lattices. This canonical factorization

is one of many factorizations. One may also decompose the volume associated with a

given simplicial or dual element into volumes determined by m-forms (m < r) contained

in a given s(r) or n-forms (n > r) in St(s(r));

∆Vs(r) =
∑

s(
)
m∈s(r)

1
(
d

m

)
∣
∣s(m)

∣
∣
∣
∣∗s(m)

∣
∣
s(r)

(for r > m) (A.5)

∆Vs(r) =
∑

s(n)∈St(s(r))

1
(
d

n

)
∣
∣s(n)

∣
∣
s(r)

∣
∣∗s(n)

∣
∣ (for r < n). (A.6)

Here, the Voronoi-Delaunay duality is again particularly useful as it allows us to

construct the restricted volume via restriction of only a subspace of a given volume.
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The restriction is applied to the subspace such that the restriction makes sense, i.e. the

restriction of s(m) to s(r) (r > m) trivially yields the norm
∣
∣s(m)

∣
∣. Such restrictions are

explicitly used in the definition of the vertex-based scalar curvature which require vertex

d-volumes to be decomposed using the vertex-restriction of the hinge area [26]

Appendix B. Operations on Discrete Forms

In the lattice we endow the geometry with two distinct spaces of differential forms,

(1) the simplicial skeleton as the representation of the homology and (2) the dual

skeleton as the representation of the cohomology. The representation of differential

forms on a simplicial complex is based on the ideas of Whitney [18] and has been used

in computational electromagnetism [19, 20, 21] and computational geometry [12, 13].

The purpose of such a representation is to not just discretize tensor and differential

form fields by representing their components point-wise on some discrete set of points,

but to embed the full geometric character of a field in the discretization. In this way,

one hopes to preserve the general geometric properties and symmetries of the field in

the discretization. In this appendix we review some useful isomorphisms between the

spaces of forms in the simplicial and dual lattices.

The first and most straightforward isomorphism is the Hodge dual. The Hodge

dual maps an element of Λ(r) (Λ∗ (r)) to Λ∗ (d−r) (Λ(d−r)). This is defined by mapping

the scalar weighting to a given simplicial (dual) element of the skeleton to its geometric

dual, i.e.

αs(r) −→ α
∗s(r). (B.1)

This is done via formal mapping [23]

1

|s(r)|
〈
α, s(r)

〉
=

1

| ∗ s(r)|
〈
∗α, ∗s(r)

〉
(B.2)

where 〈α,Ω〉 =
∫

Ω
α. Since differential forms in RC are represented as scalar weights

on elements of the lattice, this isomorphism is a simple mapping of the weight from an

element on one lattice to its dual element.

We also can construct the raising (lowering) operations in the lattice. In the

continuum, this operation is carried out via the metric or its inverse applied to

components of the form. In the lattice, we must construct a way of identifing a scalar

weighting to an r-form of the simplicial (dual) lattice using the weights of the r-forms

in the dual (simplicial) lattice. We define the isomorphism taking dual r-forms to a

simplicial r-form as

αs(r)∆Vs(r) =







∑

σ()r: s(r)∈∗σ() r

ασ(r) ∆Vσ(r) s(r) , if 2r ≤ d

∑

σ(r): ∗σ(r)∈s(r)

ασ(r) ∆Vσ(r) s(r) , if 2r > d

(B.3)
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Using the orthogonal decomposition and restriction of volumes defined in Appendix

Appendix A, the volumes on the RHS are given by

∆Vσ(r) s(r) =







1

(d
r
)

∣
∣σ(r)

∣
∣
∣
∣∗σ(r)

∣
∣
s(r)

, if 2r ≤ d

1

(d
r
)

∣
∣∗σ(r)

∣
∣
∣
∣σ(r)

∣
∣
s(r)

, if 2r > d

(B.4)

One can define a similar isomorphism from the simplicial lattice to the dual lattice by

taking the sum over elements of the simplicial skeleton. It is important here that we

incorporate the restriction of the integral domain into the defintion to ensure that if we

apply the inverse isomorphism that we reobtain the initial r-form. This can be easily

checked.
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