
Vol. 48 (1988), No. 4, pp. 375 - 388 Joumol of ECOnOmks
Zahschrift fiir NotionaUikonoinie

© by Springer-Verlag 1988

The Optimal Intertemporal Decision on Industrial
Production and Harvesting a Renewable Natural

Resource

By

Wolfgang J. Strobele, Oldenburg, F.R.G.*

(Reeeived September 2, 1987: revised version received April 6. 1988)

I. The Problem

The standard approach in the theory of environmental eco-
nomics uses as analytical tool the concept of a damage function.
This connects the emissions caused by industrial production with a
welfare loss of the economy. In real life problems we observe that
the carrying capacity of nature for external disturbances is not
constant over time but changes due to varying ecological dynamics
resulting from the emissions of the industrial process. Therefore
the dimension of the environment as a renewable natural resource
deserves closer inspection. In such a framework we will expect
that the cost of emissions, measured as welfare loss, are not
constant over time.

1.1 Two Damage M e c h a n i s m s

The philosophy of the following paper is to look at nature" as
c regenerative natural resource. The damage done to "nature"" is
then described by a downward shift in the regeneration function

* This paper grew out of a researeh project financially supported by
the Deutsche Eorschung.sgemeinsehaft (DFd) in its program "Economies
of Natural Resourees"". This support is gratefully aeknowledged. I also
thank H. Waeker for helpful diseussions. 1 also thank two anonymous
referees for valuable eomments on an earlier draft.
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due to the waste emission of the industry. There are several
possible ways to model this shift:

- If one unit of waste causes a loss of a units of "nature"" then
waste emissions are formally equivalent to harvesting these a
units. The intertemporal aspects of harvesting a natural
resource are well known in the framework of a partial equi-
librium theory of natural resources. (Cf. for instance Siebert,
1983, or Dasgupta and Heal, 1979, Ĉ h. 5.) Therefore the job
would be to reconcile the aspect of optimal waste emission
(caused by the production of a good V) with the change in the
regeneration function (which causes a loss in the amount of
nature which can be harvested forever). A first model of this
type was developed by Siebert (1982). The simple proportion-
ality between the emissions and the shift in the regeneration
function downwards presupposes a type of damage mechanism
that is not the most common or at least not the only one: one
unit of emission behaves like a beetle fiying around and
looking for a tree that it can eat up.
Most emissions cause their damage by another mechanism:
they diffuse after leaving the factory and come down more or
less uniformly over the environment. It is not unreasonable to
assume that the damage caused to nature in terms of destroyed
("harvested"') units of the regenerative resource is then propor-
tionate to the stock of nature. If there are only ten trees on an
area where acid rain comes down, one might with good reasons
suspect only half of the damage measured in terms of trees lost
compared with a situation when there are twenty.

A second aspect to distinguish the effects of environmental
disruption may be derived from the relevant variables in the utility
function of the economy: one may measure the damage done to
"nature"" in foregone amounts of resource flows that can be
harvested, or in terms of a reduced .v/ocA: of the natural resource. In
the following paper it will be assumed that the economy does not
evaluate the stock of "nature as such"" but merely in terms of
resource fiows that can be harvested.

1.2 The M o d e l W i t h o u t I n d u s t r i a l E m i s s i o n s

In the following we will sketch the standard case of optimal
use of a regenerative natural resource in order to obtain a system
of reference. There is no industrial output changing the regener-
ation function of the resource. We assume there is only one good
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Ĥ  which can be harvested at constant unit cost g from nature.
Consumption of ti units yields a utility V{IV), where Vis a strictly
concave utility function with a positive first derivative for all

and

The user cost /i of harvesting IV units is derived from the
changed regenerative behaviour of nature. The stock of the
resource is Z. For a more differentiated discussion concerning
harvesting costs see Strobele (1987, Ch. 6).

The economy wishes to maximize

max \e ' ' - g- W\dt,

s. t.
= aZ-bZ'-W.

(1.1)

(1.2)

(1.2) is a standard regeneration function for "nature"", say "fish"".
As it is well known, there are two possibilities for a steady-state
solution:

a) The natural resource is not "scarce"" as given by nature.

The static maximisation of net utilities in each period without
assigning any positive shadow price to the resource stock is the
best solution, as long as there is resource "in abundance"" given by
nature. This case is shown in Fig. 1.1.

hig. 1.1. No natural scarcity of the resource
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b) Nature is a scarce asset.

If the harvesting cost parameter g is sufficiently low in relation
to the utility evaluation and/or the natural regeneration function,
we observe that the productivity of the resource stock should equal
the rate of time pref^erence in the steady-state. Simple calculations
show that this is fulfilled for:

a- 6

- S'

(1.3)

(1.4)

which obviously requires the unrestricted growth rate a to be
larger than the rate of time preference S. Otherwise no steady state
exists and an asymptotical extinction of the species would be
optimal in the long run. An extinction of the resource infinite time
would not be optimal: this result simply stems from the assumed
utility function with f^'(0)=oo, not from any cost considerations
(cf. Sinn, 1982; Smith, 1977).

f (Z)

V

Fig. 12. Natural scarcity of the resource
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2. Damage Mechanism I

2.1 T h e M o d e l

The economy has two goods: one good y(the industrial output,
call it "car") may be produced at constant unit production cost c.
Of course, this assumption is only made to simplify the analysis
and to isolate "cost due to environmental damage". The second
good H^(call it "fish") is harvested from "nature", i. e. it is taken
from a stock of a regenerative natural resource Z (stock of fish).
Harvesting one unit causes constant cost g. We assume an additive
separable utility function

Utility (y; IV) = U{Y)+ V{W) with:

y'HV)>0, r ' ( ^ fO<O and lim.K'(HO= oo.
H ^ (I

U'{Y)>0, U"{Y)<0 and lim t/'(K) = oo. (2.1)

Then the model is described by the following equations:
oo

max \e-'"-{U(Y)- c- Y+ V^V)- g- IV)- dt
0

subject to
Z = a Z - b Z - i V - a V . (2.2)

Obviously, the regeneration function (1.2) has been changed by the
last term Nvhich describes the "harvesting" of fish due to the use of
the industrial good: per unit y there are a units of fish destroyed.

The Hamiltonian of this problem becomes

H = e •' ' ( U i Y ) - c Y + V ( I V ) - g m +
+ f i - e •' ' - ( a Z - b - Z ' - W- a - Y), ( 2 . 3 )

' = 0 : t / ' ( n = c+ / / -«r , (2.4)
o Y

0: V'{W) = g^^i, (2.5)

ll + 6 - f i \ fi = ^ - ( S - a + 2 - h - Z ) . ( 2 . 6 )
o Z

(a) No scarcity of nature

As may be easily verified, there is now again the possibility that
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the optimal solution is given by

^ c.

(2.7)

(2.8)

(2.9)

This case implies that the natural resource is not scarce as
given by nature but can be treated like an ordinary good without
any limits imposed by a regeneration function. Of course, this
result depends on the fact that the net marginal utility (i. e.

Fig. 2.1. Production and harvesting without limits imposed by nature

marginal utility minus unit production cost) becomes negative for
sufficiently large Y and W. This is the traditional result of micro-
economics where all goods are producible without restrictions
imposed by nature. Figure 2.1 shows how the optimal trajectory
looks like: the optimal path cuts straight into the regeneration
"mountain" with constant {Y*, W*) given by (2.8) and (2.9).

(b) Scarcity of nature

Alternatively the case of jU>0 may be possible: if c is suffi-
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ciently low, the point Y* moves in direction of higher Y, i. e. where
the regeneration "mountain" is already very flat, so that W*
according to (2.9) is no longer sustainable. The same holds if g is
sufficiently low and If becomes "too large".

To simplify the exposition, this case is illustrated by assuming
the extreme case c = g = 0. As can be read from (2.8) the case
H = 0 can then not be optimal. The optimal path of {Y, W) is
sketched in Fig. 2.2.

Fig. 2.2. Zero production and harvesting costs lead to natural scarcity

and

Along the optimal path we then must always have

U'{Y) = a • V (W) (2.10)

(2.11)

first steady state condition describing the plausible
requirement that the marginal productivity of the "asset" nature
should be identical with the rate of time preference in a steady
state is fulfilled by

a- S
Z * = - - - . (2.12)

2 • o
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Here, the steady state stock of natural resources Z* is independent
of the amount Y*, i. e. it does not matter how many cars the
economy produces: the long run optimum is always reached at the
same stock Z*. Of course, this is due to the fact that the flow of Y
causes a damage to the growth of fish independent of the .size of the
.stock Z. Without any stock effects between the two goods there is
no reason to get a steady state result different from (1.3). This is
also a characteristic of the model of Siebert (1982). The optimal
amount IV* harvested in the long run optimum does of course
depend on Y* as is given by (2.13):

a- - (S^ - 4 - b • a - Y*

4 b

f o r O < y * < cf - S-

4 a b
(2.13)

This condition is derived from the necessary condition Z = 0 in
(2.2) and (2.12). In Figs. 2.2 and 2.3 the steady-states must be
situated on the plane ABC. The steady state transformation curve
(2.13) is linear in (Y*. W*). Since the indifference curves are strictly
convex, existence and uniqueness of an optimal steady state
solution are ensured.

Fig. 2.3. Linear steady state transformation curve (damage function 1)

The dynamics of the system along an optimal path is very
simple: if we start at Z) = a/b, i. e. a virgin natural system in its
ecological equilibrium, there is "plenty of nature": from (2.6) one
immediately derives that jl is positive for Zf, = a/b. Eq. (2.11)
shows that the harvest Ji^must fall over time. Since also condition
(2.10) must be fulfilled on an optimal path we also know that then
y must fall over time. The advantage of a natural system still i"
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abundance with fish (compared to the steady state) leads to low
user costs ji. Starting in y, these user costs increase at a growth rate
a + d, which then decreases asymptotically to zero. In Fig. 2.2 the
changing shape of the regeneration function due to "pollution" at
different levels of Y is shown as well as the optimal trajectory
leading into the steady state (Z*. Y*. W*).

In case of c > 0 and e > 0 the optimal solutions may be a
synthesis of the cases (a) and (b).

2.2 The D a n g e r of Su d d e n O v e r e x p l o i t a t i o n Due to
" G o o d C u s t o m "

This analysis allows for an interesting interpretation: if the
economy takes the natural resource W from a stock Z, it might be
in the situation of Fig. 2.1 for many decades.' Relatively high costs
of industrial production and/or relatively high costs of harvesting
^ from nature prevent the economy from exploiting nature "too
intensive". The shadow price of nature correctly is zero, since it is
not scarce. But if due to technological progress in production or
harvesting technologies and/or growth of demand (for example
due to population growth of mankind) the conditions (2.8) and
(2.9) no longer reflect the optimum, a positive shadow price of
nature n is necessary. But as is well known, the optimal solution
with a positive shadow price of the natural resource is not ensured
'n a competitive equilibrium without property rights (cf. Levhari,
Michener and Mirman, 1981). Since the economy may have
become used to a seemingly well-functioning production scheme
(with fi = 0), there is the danger of a sudden break-down of the
natural system due to overexploitation: the regeneration
"mountain" is cut through without stop and the resource Z
extincts, even if this is not optimal. Of course, there is the chance
to adapt to the "true" scarcity of nature by looking at the changing
stock Z and implement some management scheme, but that
demands a clear understanding and a quick reaction of a
management authority.

3. Damage Type II

Now we analyse the second type of damage done to nature.
The utility functions are assumed to be the same as in section 2.
The only difference stems from a different treatment of the
damage caused to the regeneration function.
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Since the more interesting case is given when the natural
resource has positive user costs, we assume c = g = 0.

The model then becomes

subject to
Z=a-Z-b-Z'^-W-a-Y-Z. (3.2)

The growth of fish Z is diminished by the harvest W and the
emission a y connected with the production of cars. But now this
emission does not work as an absolute constant "harvest" as in
section 2, but merely changes the growth rate of fish, i. e. there is a
stock effect upon Z. As above we assume the unrestricted growth
parameter a> S.

The standard Hamiltonian yields

/ / = e" ' •(t/(y)-t- VHV)) +

+ fl e " ' { a - Z - b - Z ' - W- a - Y - Z ) . ( 3 . 3 )

The canonical equations of this dynamic optimization problem
(3.1) and (3.2) are given by:

-a Z, (3.4)

5Z^~ •

6H

~3Y^

5H
0: V {W) i, (3.5)

e"' = - / i - l - < ) • / / : il^fi-{8-a-ir2-b-Z+aY). (3.6)
bZ

The canonical equations (3.4) —(3.6) show that for this case of
damage mechanism we do not have /i = 0 on an optimal path.

Let us first look at possible steady states. Obviously, in the very
long run the economy reaches a situation where the welfare gain of
one additional car is offset by a welfare loss measured in terms of
marginal utility of reduced sustainable yields of fish caused by the
industrial emissions and production Y* and harvest W* are
constant. This steady-state is obtained by setting Z = 0 in (3.2) and
/i = 0 in (3.6):

z*(y*) = ^ = ^ - ^ ^ ^ , o < y * < ^ (3.7)
2 - 6 a
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4- b a
(3.8)

The stock Z * allowing for a steady-state is now a linear function
of the steady-state production of the industrial good Y*. The

endpoints of this straight line (3.7), namely Z*
a- 8

2 b
for y* = 0

a — 8
and Z* = 0 for Y* = describe the bounded set of possible

a
solutions for a steady-state (y*, Z*). Different from our analysis in
section 2, we obtain here that the steady-state stock Z* depends
upon the steady-state amount of industrial production Y*. Of
course this complicates the analysis a little bit.

The equation (3.8) is the steady-state transformation curve
^* (y*). One easily derives

dW*

dY*

(or y*-a) ^
. < (J ,

2ft

(3.9)

a-
dY*-

0. (3.10)

The steady-state transformation curve is monotonically falling
but it is strictly convex, which means that the transformation block
in the steady-state is not a convex set.

F i g . y . \ . C o n v e x s t e a d y s t a t e t r a n s f o r m a t i o n c u r v e ( d a m a g e f u n c t i o n I I )
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Whether there still can be ensured uniqueness and existence of
a steady-state equilibrium, depends on the curvature of the trans-
formation curve in relation to the indifference curves implied by
the utility function. By analysing the static optimisation problem

max U(Y*)+ (3.1)

s. t. condition (3.8)

we observe that the bordered Hessian det(/y*) is strictly positive,
where

H* =
0

-2a(a-aY)
- 4 ft

-2a(a-aY) - 4 ft
U"{Y)-2-aY 0

0 V"(\V)
(3.12)

Of course, this can be derived only on the basis of our special
separable utility function and the quadratic transformation curve
(3.8), which leads to elimination of "disturbing" terms. Therefore
we can be sure that a steady-state equilibrium exists.

In order to analyse the dynamics leading lo this steady-stale we
obtain from (3.6) for Z) = a/b:

fl=8+a+aY>0. (3.13)

Hg. 1.2 Optimal path for the control variahles (K W). Damage Type II
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Again, we observe an increasing shadow price of the natural
resource.

The optimal path is strictly monotonically falling in (y HO and
asymptotically approaching the steady-state solution. Therefore
the optimal path looks like the one in the {Y. HO-plane set up verti-
cally in the right part of Fig. 3.2: since the natural resource is rela-
tively abundant in the first periods the economy can afford to
harvest more than ff* and produce more of ythan Y*.

4. Conclusions

The hitherto very popular concept of a static damage function
in environmental economics cannot deal with the very interesting
aspects of the dynamic changes of "scarcity" of nature as a life
support system. The economic theory of natural resources and
environmental economics may get a deeper theoretical and
conceptual integration if one looks at nature as a dynamic regener-
ative natural resource. The models above clarify some basic ques-
tions connected with such an attempt. The benefits of this inte-
grative approach may give us a better understanding of the
economic rationale which may be behind advertisements like

Come and pollute us": the comparative advantage of a country
still relatively "clean" necessarily diminishes over time. So the next
step of the analysis may be to look at the dynamics of industrial
investments (in face of an expected "clean" environment)
compared with the dynamics of nature whose regeneration
function is shifted over time as a consequence of emissions.
Another interesting question for further research may refer to the
adaptive mechanisms by which the economy learns the "true"
scarcity in case of different constellations of damage and/or cost
parameters.
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