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ABSTRACT

We use three-dimensional hydrodynamical simulations to study the rapid in-

fall phase of the common envelope interaction of a red giant branch star of mass

equal to 0.88 M� and a companion star of mass ranging from 0.9 down to 0.1 M�.

We first compare the results obtained using two different numerical techniques

with different resolutions, and find overall very good agreement. We then com-

pare the outcomes of those simulations with observed systems thought to have

gone through a common envelope. The simulations fail to reproduce those sys-

tems in the sense that most of the envelope of the donor remains bound at the end

of the simulations and the final orbital separations between the donor’s remnant

and the companion, ranging from 26.8 down to 5.9 R�, are larger than the ones

observed. We suggest that this discrepancy vouches for recombination playing

an essential role in the ejection of the envelope and/or significant shrinkage of

the orbit happening in the subsequent phase.

Subject headings: binaries: close — binaries: general — hydrodynamics — meth-

ods: numerical — stars: evolution

1. Introduction

Around 60% of F and G stars are binaries, of which about 30% have separations smaller

than 30 AU and will interact during the primary’s evolution (Duquennoy & Mayor 1991).
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During the giant phases of the primary, companions closer than ∼ 5 AU enter a strong

interaction phase with the primary and, under certain circumstances, a common envelope

(CE) may form around the two stars. The secondary star spirals inside the envelope of

the primary and may also fill its own Roche lobe because it cannot accrete all the matter

coming from the donor star. This process is called a common envelope interaction and was

originally described by Paczynski (1976). For a general review of the topic see, e.g., Iben

& Livio (1993). There are two different processes leading to the onset of a CE phase: the

start of unstable mass transfer from the expanding primary to the secondary (Hjellming &

Webbink 1987; Hurley et al. 2002) and the development of a tidal instability that occurs if

there is not enough angular momentum in the orbit to maintain the primary’s envelope in

synchronization (Darwin 1879). The post-CE system will be either a compact binary system,

if there is enough energy to eject the primary’s envelope, or a merger, if not.

The CE interaction is an essential ingredient for any binary population synthesis study of

intermediate (e.g., Politano et al. 2010) or massive stars (e.g., Belczynski et al. 2008). Com-

pact binaries are believed to be formed through at least one CE phase. Among them are

symbiotic binaries, supersoft X-ray sources, cataclysmic variables and double white dwarfs,

which are all possible supernova Type Ia progenitors. As Meng et al. (2010) pointed out,

results deduced from population synthesis studies such as the Type Ia supernova birth rate

are highly dependent on the physics of the CE phase. Therefore, it is paramount to under-

stand more accurately the CE interaction in order to identify the formation channels of such

supernovae and to compare observations with predictive models. Moreover, many substellar

companions to evolved stars have recently been discovered with small orbital separation.

Maxted et al. (2006) found a brown dwarf orbiting a white dwarf with a 116 min period,

while Setiawan et al. (2010) discovered a system composed of a Jupiter-like object orbiting

an horizontal branch star with a 16.2 days period. We therefore know that substellar com-

panions can survive a CE interaction, but what is the minimum mass of the companion that

can eject the envelope? Is the ejected envelope entirely unbound or will some of it eventually

fall back and form a circumbinary disk? Were the substellar companions present before and

survived the CE or were they formed later on in such a disk (Perets 2010)? Those questions

remain unanswered.

Although the CE process was outlined more than 30 years ago, it is still far from

understood quantitatively. Numerical simulations suggest that the typical duration of the

entire CE phase is short — less than 103 years — which makes CE ejections unlikely to

be observed. However, one can use observations of post-CE binaries to better understand

CE evolution. With the use of stellar models, the initial configuration of such systems can

be approximately determined from the final configuration. Using either the α-formalism

(Webbink 1984, but see De Marco et al. 2011) or the γ-formalism (Nelemans et al. 2000)
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the relevant parameters can be constrained and the CE ejection efficiency can be predicted.

Using this approach, De Marco et al. (2011) suggested an anti-correlation between α, the

CE efficiency parameter, and the secondary to primary mass ratio.

The entire CE evolution can be divided into three different phases (Podsiadlowski 2001)

with different timescales, length scales and physics involved. These differences are the rea-

sons why reproducing the entire CE evolution of a given system accurately is challenging.

Therefore, one usually treats one phase after the other with different methods. In this paper,

we focus only on the rapid infall phase, which has a short timescale (∼ 1 − 10 years), and

in which the evolution is driven by drag forces. Several numerical hydrodynamic studies of

the CE interaction have been carried out in the past (for an exhaustive list, see Taam &

Sandquist 2000), including a series of ten papers starting with the two-dimensional calcu-

lation of the interaction of a 16 M� supergiant and a 1 M� neutron star (Bodenheimer &

Taam 1984), and most recently treating three-dimensional simulations of the CE interaction

between 3 or 5 M� giant stars and 0.4 or 0.6 M� main sequence (MS) companions (Sandquist

et al. 1998). The latter study has been extended first by Sandquist et al. (2000) to 1 M� and

2 M� red giant branch (RGB) stars with companion masses ranging from 0.1 to 0.45 M�,

then by De Marco et al. (2003) to a 1 M� asymptotic giant branch star with a 0.1 or 0.2 M�
companion. Ricker & Taam (2008) computed high resolution simulations of the CE phase

between a 1.05 M� RGB star and a 0.6 M� compact companion, and concluded that the

gravitational component of the drag dominates over the hydrodynamical component (also

see Taam & Ricker 2010; Ricker & Taam 2011).

A direct comparison of the results obtained using different numerical methods has how-

ever never been carried out. Although analytical/empirical work has included discussion

regarding observational data, there are only a couple of publications that connect simula-

tions and observations in a meaningful way (see e.g., Sandquist et al. 2000). Those are, as

we will explain in §2 and §4, key steps to better understand the implications of CE interac-

tions and the physical processes driving them. In this paper we therefore present numerical

simulations with two different algorithms of the CE interaction of a 0.88 M� RGB star with

a MS companion. Different companion masses from 0.1 M� to 0.9 M� are considered. The

simulations are carried out with both an Eulerian code (Enzo in uniform-grid mode, O’Shea

et al. (2004) and enzo.googlecode.com) and a Lagrangian code (SNSPH, Fryer et al. 2006),

and for different resolutions. We describe the numerical methods and the initial conditions

of our 15 simulations in §2 and §3. We describe and discuss the results in §4 and §5, and

finally conclude and summarize in §6.
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2. Description of codes

In this section we describe the numerical methods we use. We first compare the code

algorithms and explain why a code-to-code comparison is necessary. Then, we describe both

codes in detail and finally discuss different ways to compare resolution.

2.1. Eulerian vs Lagrangian codes

Although they are meant to simulate similar astrophysical situations, high order Eule-

rian grid codes and Lagrangian smoothed-particle hydrodynamics (SPH) codes differ fun-

damentally, with each having advantages and disadvantages. Among other studies, Davies

et al. (1993), Frenk et al. (1999), Agertz et al. (2007), Tasker et al. (2008) and Heitsch

et al. (2011) aim at identifying these differences. On the one hand, high-order Eulerian grid

codes have a better wavenumber resolution than SPH codes for an equal number of cells and

particles and are more accurate at resolving the rarefied regions since, unlike SPH, the res-

olution does not depend on the density of the gas; Eulerian codes also better resolve shocks

(Tasker et al. 2008) compared to SPH codes; and finally, SPH noise dominates subsonic flows

and therefore makes it difficult for SPH codes to follow perturbations in flows with Mach

numbers under unity. On the other hand, SPH codes don’t diffuse material properties, and

inherently conserve mass, momentum and energy (Rosswog 2009). While the treatment of

boundary conditions can be challenging in grid-based codes when the flow expands beyond

the computational domain, SPH easily handles vacuum conditions. It is still unclear which

method is the most appropriate to simulate CE interactions. Therefore, we use both methods

and confront the results from both codes in order to draw conclusions about their physical

relevance.

2.2. Input physics

Both codes solve the fully compressible hydrodynamics equations with self-gravity in-

cluded. These equations can be written using an Eulerian formulation:

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p−∇Φ (2)
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∂u

∂t
+ v · ∇u = −1

ρ
∇ · (pv)− v · ∇Φ (3)

uint =
1

γ − 1

p

ρ
(4)

∆Φ = 4πGρ (5)

where ρ,v, p,Φ, u, uint, γ are the density, velocity, pressure, gravitational potential, specific

total energy, specific internal energy and adiabatic index of the gas, respectively. The total

energy is the sum of the internal energy, and the macroscopic kinetic energy:

u = uint + v2/2. (6)

Equations (1), (2) and (3) express mass continuity, conservation of momentum and conser-

vation of energy, respectively. Both codes evolve the internal energy rather than the total

energy. An ideal gas equation of state (Eq. 4) for a monoatomic gas (γ = 5/3) closes the

system composed by equations (1)-(3). Such an equation of state represents an adequate

approximation of the deep convective envelope of RGB stars (Hjellming & Webbink 1987)

although it ignores some physical processes such as radiation pressure and ionization. We

discuss this point in detail in §5.2.2. Finally, the gravitational potential is calculated using

the Poisson equation (Eq. 5).

2.3. The Enzo code

Enzo is a three-dimensional, adaptive mesh refinement hybrid (hydrodynamics + N-

body) grid-based code (Bryan et al. 1995; O’Shea et al. 2004) that we use in uniform-grid

mode only. It is primarily designed to simulate cosmological structure formation (Norman

et al. 2007). However, its numerous features make it useful for reproducing many different

astrophysical situations, including CE interactions.

The Euler equations (Eqs. 1–3) are solved using the van Leer (1977) second-order advec-

tion method also implemented in Zeus (Stone & Norman 1992). Although those equations

can also be solved in Enzo by a third-order piecewise parabolic method that better resolves

shocks and turbulence, our tests show that it slows down the computation by a factor 2.

As we will point out in §4, there are neither strong shocks nor important turbulence in our



– 6 –

simulations so we favor efficiency and use the van Leer solver. The Poisson equation is solved

using fast-Fourier transforms.

In the case of a CE interaction between a RGB star and a MS companion, the radius

of the secondary — typically 0.5 R� — is small compared to the primary’s radius (∼ 100

R�), so we can legitimately model the companion as a point mass particle. Furthermore, as

shown in Fig. 3, the primary’s core is also small (∼ 0.01 R�) and dense, so it can also be

modeled as a point mass.

Enzo usually models collisionless particles as a continuous mass field appropriate for

computing the gravitational potential in the case that each particle represents many actual

particles, such as in cosmological simulations with dark matter. In that case their mass is

deposited in the 8 nearest cells and added to the gas density of those cells to find the total

density for use in solving the Poisson equation (Eq. 5). In a simple two-body interaction

between 1 M� and 0.1 M� objects in a one year circular orbit without gas, this method does

not provide the accuracy required by our problem because of the spreading out of the mass

of the point source, leading to an inaccurate gravitational potential. Indeed, a 1 % error in

the orbit is reached after only 6 orbits. Consequently, we implemented, as a new type of

particle, point mass particles. These particles create a potential that is added analytically to

the gas potential calculated using the Poisson equation. Using an analytic potential yields

an accuracy of the orbit more than two orders of magnitude better than with the default

particles. The gravitational potential created by a point mass particle is smoothed according

to the prescription of Ruffert (1993), used in Sandquist et al. (1998):

ΦPM(r) =
−GMPM√

r2 + ε2δ2 exp [−r2/(εδ)2]
(7)

where MPM is the mass of the particle, r is the distance from the particle, δ is the size of a

cell and ε = 1.5. The point mass particles are advanced using a leapfrog algorithm. Time

stepping is determined by taking the minimum time step between the Courant conditions

for the gas, the particles and the acceleration field:

δtgas = min
cells

(
C1δ

cs + max(|vx|, |vy|, |vz|)

)
(8)

δtpart = min
particles

(
C2δ

max(|Vx|, |Vy|, |Vz|)

)
(9)
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δtaccel = min
cells

(√
δ

max(|gx|, |gy|, |gz|)

)
(10)

where C1 = 0.4 is the Courant factor, C2 = 0.4 is the particle Courant factor, cs is the sound

speed, v = (vx, vy, vz) is the velocity of the gas, V = (Vx, Vy, Vz) is the velocity of a particle

and g = (gx, gy, gz) is the acceleration field.

Finally, we remark that the current Enzo Poisson solver prevented us from using nested

or adaptive grids that would have allowed us to increase resolution locally. The inaccurate

treatment of boundary conditions within the refined grids prevented us from stabilizing the

RGB progenitor in a multi-grid initial setup. We are currently developing a new Poisson

solver that will allow us to use nested grids as well as adaptive mesh refinement and carry

out better-resolved simulations.

2.4. The SNSPH code

SNSPH (Fryer, Rockefeller, & Warren 2006) is a three-dimensional, parallel SPH code

using tree gravity. It uses a regular Monaghan cubic spline kernel (Monaghan 1992). For

the artificial viscosity we use the sum of a bulk viscosity and a von Neumann and Richtmyer

viscosity (Rosswog 2009). The particles are organized into a parallel hashed oct-tree as

described in Warren & Salmon (1993). The gravitational potential of a SPH particle, i, is

smoothed using the following formula:

Φi(xi = ri/hi) =



−Gmi/hi × (2
3
x3i − 3

10
x4i + 1

10
x5i − 1.4) if 0 ≤ x ≤ 1

−Gmi/ri ×
[
(4
3
x2i − x3i + 3

10
x4i − 1

30
x5i − 1.6)/hi + 1/15ri

]
if 1 ≤ x ≤ 2

−Gmi/ri otherwise
(11)

where hi, mi and ri are the smoothing length, the particle mass and the distance from the

particle, respectively. We compare both numerical potentials to the theoretical potential in

Fig. 1. For a given smoothing length, hi, the Monaghan (1992) potential used in our SNSPH

simulations is deeper than the Ruffert (1993) one used in our Enzo simulations. Also, the

Monaghan (1992) potential is exact at distances larger than 2hi whereas the Ruffert (1993)

potential only asymptotically tends to the exact potential.
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SNSPH uses the fast multipole method to calculate gravitational accelerations (Warren

& Salmon 1993). The SPH particles are also advanced using an leapfrog algorithm. Finally,

in order to keep the same overall spatial coverage, the smoothing length varies according to

the formula from Benz (1989):

hi(t)

hi(0)
=

(
ρi(0)

ρi(t)

)1/3

. (12)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Ruffert (1993)
Monaghan (1992)

Fig. 1.— Comparison between the different potentials in arbitrary units with hi = εδ = 1.

Plotted are the theoretical potential (solid line), the Ruffert (1993) potential used in Enzo

(dashed line) and the Monaghan (1992) one used in SNSPH (dash-cross line).

2.5. Resolution comparison

There is no ideal way to compare the resolution between SPH and uniform-grid codes.

However, a few criteria can give us a general idea of how to relate them.

As mentioned by Davies et al. (1993), a first global criterion would be to compare the

total number of SPH particles Npart with the total number of cells originally inside the

progenitor:

Ncells =
V1
VG
×Ntot ∼ 4.19×

(
R1

L

)3

Ntot, (13)
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where Ntot, V1, VG, R1 and L are the total number of cells, the volume of the primary,

the volume of the grid, the radius of the primary and the linear dimension of the grid,

respectively. As time goes by, the gas will however fill a larger fraction of the numerical grid

and thus increase the number of relevant cells, but not the real resolution of the simulation.

A more local criterion is to compare the size of an Enzo grid cell, δ, with the SPH

smoothing length, which varies in space and time. Indeed, if the companion does not sink

much into the primary’s envelope and does not modify the inner part of the smoothing

length distribution too much, then the resolution deep inside the progenitor does not matter.

Therefore, we compare the smoothing length distribution of the SPH model to the cell size

of the Eulerian grid. As shown in Fig. 2, the smoothing length at small radii does not vary,

so an Enzo run with a 1283 grid will be under-resolved compared to our canonical 500 000

(roughly 803) particle SPH run no matter how deep the companion penetrates while a run

with a 2563 grid would be equivalent to our SPH runs if the separation between the primary

core and the companion always exceeds 20 R�. This local criterion for the resolution is

not perfect either since it does not take into account the variation of the smoothing length

throughout the SPH simulation.

Fig. 2.— Resolution comparison between the SNSPH smoothing length field (dots) for a run

with 500 000 particles, and the Enzo size of a grid cell for the 1283 (dash line) and the 2563

(solid line) runs for the initial (left) and final (right) particle distributions.
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Again, comparing the resolution between uniform-grid and SPH codes is quite challeng-

ing and both methods have, in the situation we are interested in, strengths and weaknesses:

SPH will under-resolve the low-density outer parts of the envelope, where the smoothing

length dramatically increases, while it will be more accurate in the later phase of the evolu-

tion when the separation between the primary’s core and the secondary will typically sink

below a few cells. Therefore, comparing SPH and grid-based simulations is paramount in

order to state which one is more adapted to our problem, and the combination of both global

and local criteria is the best way to compare the resolutions of both methods.

3. The simulations

We perform 5 SNSPH and 12 Enzo simulations of CE interactions with a 0.88 M�
RGB primary that are summarized in Table 1. The SNSPH simulations are computed using

500 000 particles whose initial smoothing length follows the radial profile shown in Fig. 2.

The Enzo simulations are performed using either a 1283 or a 2563 grid. In both cases, the

linear size of the computational domain is L = 3× 1013 cm. We consider companion masses

of 0.9, 0.6, 0.3, 0.15 and 0.1 M�. Giant stars are slow rotators with rotational velocities of

the order of a few km s−1 (de Medeiros & Mayor 1999). Although it is expected that a close

companion will, through the action of tides and the transport of angular momentum in the

primary envelope, spin up the envelope during the pre-CE phase, the actual rotation of the

primary at the onset of the CE interaction is hard to quantify. Moreover, even if the primary

was uniformly rotating at 50 km s−1, its rotational energy would be

Erot =
1

2
rgM1R

2
1ω

2 ∼ 2.2× 1044 ergs (14)

where ω, rg, M1 and R1 are the angular velocity, the radius of gyration, the mass and

the radius of the primary, respectively. For RGB stars rg is typically about 0.1 (Taam &

Sandquist 2000). This rotational energy does not affect the energetics of the system since it

is more than two orders of magnitude smaller than the binding energy of the primary (see

below). Consequently, we assume that the primary is initially non-rotating. Finally, the

companion is at the start placed at the surface of the primary in a circular orbit. We thus

have three different simulations for each initial companion mass - one with SNSPH, and two

with Enzo on 1283 and 2563 grids. Additionally, we also run two Enzo simulations in order

to study the dependency of the final parameters on the initial conditions. We consider the

1283 Enzo simulation with a 0.3 M� companion (Enzo3) as the reference and run identical

simulations increasing, by 5 %, either the initial velocity of the companion (Enzo11) or

the initial separation (Enzo12). All the runs follow the evolution of the system for about
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1 000 days.

Npart or Ncells M2 (M�) A0 (R�) P0 (days) v0/vcirc Af (R�) Pf (days)

SPH1 500 000 0.9 83 66 1 26.8 13.5

SPH2 500 000 0.6 83 72 1 20.6 10.1

SPH3 500 000 0.3 83 81 1 11.3 5.5

SPH4 500 000 0.15 83 86 1 7.3 3.0

SPH5 500 000 0.1 83 88 1 6.1 2.2

Enzo1 1283 0.9 91 75 1 28.1 15.5

Enzo2 1283 0.6 91 83 1 20.0 11.0

Enzo3 1283 0.3 91 93 1 11.7 5.6

Enzo4 1283 0.15 91 99 1 8.6 3.4

Enzo5 1283 0.1 91 102 1 8.5 3.3

Enzo6 2563 0.9 85 68 1 25.5 13.2

Enzo7 2563 0.6 85 75 1 19.2 9.8

Enzo8 2563 0.3 85 84 1 11.2 5.4

Enzo9 2563 0.15 85 89 1 6.9 2.8

Enzo10 2563 0.1 85 92 1 5.7 2.1

Enzo11 1283 0.3 91 93 1.05 12.0 4.6

Enzo12 1283 0.3 95.5 99 1 12.2 5.0

Table 1: Main parameters for the different simulations. Reported are the number of particles

(Npart) or cells (Ncells), the companion mass, the initial orbital separation (A0), the initial

orbital period (P0), the ratio of the initial orbital velocity of the companion (v0) to the

velocity required for a circular orbit (vcirc) and the final orbital separation (Af ) taken at the

end of the rapid infall phase (§ 4.1).

As a primary, we use a one-dimensional model of a star with a MS mass of 1 M�. Using

the stellar evolution code EVOL (Herwig 2000), this progenitor was evolved to the RGB

phase until the core reached Mc = 0.392 M�. At that time, the radius of the star was 83 R�
and its total mass was M1 = 0.88 M� due to mass loss, which was treated using the Reimers

formalism with η = 0.5. We adapt this model by using the density and pressure profiles,

but computing the internal energy using Eq. 4. A sample of relevant profiles are plotted in

Fig. 3.

We now explain how this stellar model is modified in order to be compatible with

an input suitable for each of our codes. For the SNSPH simulations, the initial particle

configuration is a weighted Voronoi tesselation (WVT) similar to that described by Diehl &

Statler (2006). As we have explained in §2.1 one limitation of SPH codes is the large number

of particles required by dense regions such as the core of the primary. Since the time step
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Fig. 3.— Comparison between the EVOL stellar evolution model (blue), the SPH initial

model computed with 500 000 particles (black) and the Enzo initial models for a 1283 (green)

and a 2563 (purple) unigrid. The vertical line represents the core-envelope boundary accord-

ing to the criterion of De Marco et al. (2011).

induced by a particle i can be roughly estimated by hi/cs,i where cs,i is the local sound speed,

a small smoothing length will require a small time step resulting in a high computational cost.

Since the equation of state changes significantly around the helium core, we represent the

core by a particle with mass Mc. The associated smoothing length is hc = 0.1 R�. We add

SPH particles in the region around the core such that the density values and gradient profiles

connect smoothly at the core/envelope boundary (r = 2hc = 0.2 R�). In this way, we obtain

the profile shown in Fig. 3. Since the density profile has been changed, one must modify

the gravitational acceleration accordingly. Assuming hydrostatic equilibrium in spherical
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symmetry, we integrate the pressure gradient choosing the integration constant to match the

true profile outside the core (at r = 0.2 R�). The specific energy profile is computed using

Eq. 4. Finally, the acceleration of a SPH particle is due either to gravity or to gas pressure.

These two components are computed using the same particle mass for all particles except

the core and the companion, for which we distinguish between the gravitational and SPH

masses. The gravitational mass of the core is Mc and its SPH mass is set to balance the

gravitational acceleration of the envelope and prevent the star from collapsing. As for the

companion, we treat it as an N-body particle so its SPH mass is 0 M�.

For the Enzo simulations, the grid is initialized using the stellar model of the primary

with the addition of a PM particle that represents its core. We fill the computational domain

with a constant background density to prevent the star from expanding and set the ratio

between the background density and the minimum density of a cell that belongs to the

primary to 10−4. This setup is not initially numerically stable. The star tends to expand,

so we let the initial configuration evolve for a few dynamical times in the absence of the

companion, while damping the velocity field by a factor of 2 after each cycle. Finally, we

evolve this relaxed model normally for another few dynamical times to obtain a numerically

stable model. As a side effect of the relaxation to hydrostatic equilibrium, the Enzo models

are a little bit bigger — the lower the resolution, the larger the radius of the primary is —

thus the initial orbital separations between the models are slightly different (Table 1).

4. Results

In this section, we describe the results obtained from our 15 simulations. Since the

qualitative behavior is the same in all of them, we detail the 0.6 M� case (SPH2, Enzo2 and

Enzo7).

4.1. Description of the rapid infall phase

As explained in §3, the companion is placed at the surface of the primary. Thus, the

primary extends beyond its Roche lobe and unstable mass transfer starts immediately. The

companion, surrounded by stellar matter, exchanges momentum and energy with this gas

through drag. The orbital separation shrinks on a dynamical timescale and its evolution

for the 2563 Enzo simulations is shown in Fig. 4. Although the orbit is initially circular,

it quickly develops eccentricity due to the geometry of the gas ejection. In order to define

quantitatively the end of the rapid infall phase and the final orbital separation ad hoc, we
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consider the evolution of the orbital decay (Fig. 5). As expected, the orbital decay is initially

quite high (∼ 0.01 day−1), decreases as less gas is available for the companion to exchange

energy with, and eventually reaches a plateau. We decide to define the end of the rapid

infall phase to be at the start of this plateau, which occurs at about 280 days for the 0.6 M�
companion (Fig. 5). All the simulations show the same trend and the lighter the companion,

the deeper it falls and the longer it needs to reach its final orbital separation. The duration

of the rapid infall phase is 260, 280, 280, 300 and 340 days, for the 0.9, 0.6, 0.3, 0.15 and

0.1 M� companion, respectively.
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Fig. 4.— Separation between the primary core and the companion as a function of time for

the 2563 Enzo simulations. The companion masses are 0.9 (blue), 0.6 (green), 0.3 (red), 0.15

(cyan) and 0.1 (purple) M�.

As orbital energy is transferred to the envelope, the latter is ejected, initially in the

orbital plane; at later phases there is an almost equal distribution of matter into the polar

direction as well (Fig. 6). Overall, almost 90% of the envelope is ejected within an angle of

30◦ on each side of the equatorial plane. We compare the orbital velocity of the companion

(Fig. 7) with the local sound speed of the gas (Fig. 3, bottom left panel). The former does

not exceed 50 km s−1 while the highest sound speed encountered is about 60 km s−1. The

companion moves only slightly above or below the local sound speed. We therefore conclude

that the SPH noise could not significantly influence the solution. Also, since the motion of

the companion is not highly supersonic, the shocks are not strong and we can use Enzo with

the faster Zeus solver.



– 15 –

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

Time (days)

S
ep

ar
at

io
n 

(R
S

un
)

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

Time (days)

−
da

/d
t *

1/
a 

(d
ay

−
1 )

Fig. 5.— Evolution of the separation (top) and of the orbital decay (bottom) for Enzo7.

The orbital decay is computed using orbital separations averaged over each cycle (red dashed

line). The blue vertical line shows the time when we define the end of the rapid infall phase.

Unlike the SPH computational domain, the Enzo grid is spatially limited. Thus, the

evolution of the gas that leaves the grid cannot be followed. Therefore, we use the SPH2

simulation to study the global evolution of the angular momentum and the energy of the

system.

We compute the angular momentum using the center of mass of the SPH particles as

the center of reference. As shown in Fig. 8 for the 0.6 M� companion case, the total angular

momentum of the system is conserved to less than 1%. Since the ejection of the gas is

asymmetric, the center of reference is eventually located outside the orbit. Consequently,

studying the orbital components individually is irrelevant as the sign of each component

changes during a single orbit. Therefore, we study their sum Jorb instead. During the

first 50 days, angular momentum from the orbit almost equally spins up the envelope and

unbinds mass from the outer layers. Later on, no more additional mass gets unbound (see

§ 5.1.2) and the angular momentum lost from the orbit spins up the bound envelope only.

Since the unbound mass is located at large distances from the primary’s core, there is no
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more exchange of angular momentum between the unbound mass and the rest of the system.

After∼ 150 days, there is no more angular momentum exchange in the system. The primary’s

core and the companion — which are the main contributors to the calculation of the centre of

mass — switch positions twice per orbit, which leads to small periodic motions of the center

of mass. These periodic displacements are the causes for the small angular momentum

fluctuations of the orbital components and the bound mass occurring after 100 days.

We plot the various energy components in Fig. 9. We start by explaining the different

components of potential, thermal and kinetic energies represent and how they are computed.

Among numerous other attributes, each particle i possesses a specific gravitational potential

energy φi, a specific thermal energy ui and a specific macroscopic kinetic energy ki. By

definition,

φi =
∑

j particles, j 6=i

−G
Mgrav

j

rij
(15)

where G is the gravitational constant, Mgrav
j is the gravitational mass of particle j and rij

is the distance between particles i and j. We compute these different components using the

gravitational mass of the particle for the gravitational potential energy and the macroscopic

kinetic energy, and the SPH mass for the thermal energy (see §3):

Φi = Mgrav
i φi (16)

Ki = Mgrav
i ki (17)

Ui = M sph
i ui (18)

where M sph
i is the SPH mass of particle i used to compute its acceleration due to pressure.

We recall that both masses are identical for all particles except the primary’s core and the

secondary. Thus, the total gravitational potential energy of the system is

Φtot =
1

2

∑
i particles

Φi (19)

Finally, we subtract the contribution of the secondary from the total potential energy

in order to calculate the binding energy of the envelope:

Φenv = Φtot −Mgrav
2 φ2 (20)
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where the subscript “2” stands for the secondary.

During the first 200 days when most of the in-spiral happens, the total internal energy of

the system decreases by more than a factor of two: the envelope expands and therefore cools.

The energy released is transferred mostly into macroscopic kinetic energy of the gas: the

envelope is lifted up, accelerated and the outermost part of the envelope becomes unbound in

the first 50 days. At later times, more energy is transferred from the orbit to the envelope but

no more material becomes unbound. One can easily note in Fig. 9 how the variations of the

orbital energy of the core-secondary system and of the total energy of the envelope balance

each other. The total energy of the envelope remains negative throughout the simulation.

We follow the evolution of the unbound particles and determine their initial position in the

envelope. Fig. 10 shows the cumulative mass of the particles that will eventually get unbound

as a function of their initial distance from the core. It confirms that the unbound mass was

initially located in the outer part of the envelope and that almost all gas located initially

closer than 40 R� from the primary’s core remains bound at the end of the simulations.

4.2. Code comparison

The fact that a code solves the equations in an accurate and precise way in a particular

situation does not necessary mean it will do so in another regime. Thus, a direct comparison

of simulations of the CE interaction using two different numerical methods is a good solution

for testing the ability of the two methods to model this problem. One can see in Fig. 11 and

Table 1 that for each binary system, the final separations in the Enzo simulations are very

close to those obtained with the equivalent SNSPH simulations. We may then compare the

mass evolution of the material in the volume defined by the Enzo grid, the matter within the

initial volume of the primary, and within the current separation. For the 0.6 M� companion

(Fig. 12), both the mass within the Enzo grid and the mass within the initial volume of the

progenitor agree well between the Enzo and the SNSPH runs. For the mass within the orbit

we notice a difference of ∼ 10−2 M� between the Enzo and the SNSPH runs. This difference

is large compared with the mass of a SPH particle (∼ 10−6 M�) and is due to how accurately

accretion of the gas by the core and the companion is resolved by the two codes. We have

plotted, in Fig. 13, density profiles at different times along the line joining the primary core

and the secondary, for the three simulations with the 0.9 M� companion. Accretion onto

the secondary is better resolved in the SPH simulations in which the maximum density of

the matter accreted by the companion is about 10−3 g cm−3. This maximum value depends

on the resolution of the runs. In the single-grid Enzo runs, accretion is poorly resolved due

to the low number of cells resolving the local region around each particle. Although mass
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is still accreted around the particles, it eventually becomes dispersed. For the SPH runs,

around 60 particles interact within a smoothing length so the accretion zone is well resolved.

On the other hand, the cell width of the Enzo 2563 runs is about 1.6 R� so the accretion

zone cannot be resolved although it is still better than for the Enzo 1283 simulations as can

be seen from comparing the different density profiles at 50 days (Fig. 13). However, the

accurate simulation of accretion onto the secondary is not crucial for the global evolution of

the system: as we mentioned earlier, the evolution is not driven by accretion but by drag

forces. Although the density of the matter accreted by the companion differs by up to 3

orders of magnitudes between the two methods, the accreted mass is negligible compared

with the companion mass and the final orbital separations are very similar.

Ricker & Taam (2008) used the FLASH code (Fryxell et al. 2000) to study the CE

evolution of a binary system consisting of a 1.05 M� RGB star having a 0.36 M� core and a

0.6 M� companion. Their implementation is somewhat different from ours since they treat

the red giant core and the companion as spherical clouds of particles. In spite of those

differences, their progenitor is almost identical to ours and they find a final separation of 20

R� which falls within the range of the results given by our simulations SPH2, Enzo2 and

Enzo7. Moreover, one can see in Fig. 7 that for the 0.6 M� companion, the velocity of the

companion stays below 50 km s−1 and therefore, the gas flows are subsonic except in the

outer layers. This conclusion was also reached by Ricker & Taam (2008).

4.3. The impact of initial conditions

In order to determine the sensitivity of the final state of the system to the initial param-

eters, we start with the Enzo3 simulation and increase by 5% either the initial velocity of

the secondary (Enzo11) or the initial separation between the two particles (Enzo12), which

correspond to initial eccentricities of 0.10 (Enzo11) and 0.05 (Enzo12). The evolution of the

separation for those three simulations is compared in Fig. 14. For Enzo11 and Enzo12, the

ratio of the initial velocity of the companion to the velocity required for a circular orbit is

higher than one (v0/vcirc > 1), so the separation must first increase. The larger the orbital

separation, the more delayed the rapid infall phase is and the later the system reaches its

final separation. The final separations for Enzo3, Enzo11 and Enzo12 are 11.7, 12.0 and

12.2 R�, respectively, and the final eccentricities are 0.09, 0.17 and 0.18, respectively. As

expected, the companion that moves outwards the farthest initially, sinks into the envelope

with a higher orbital decay velocity. Therefore, it attains a more eccentric orbit and com-

pletes fewer revolutions around the primary core (Fig. 14). However, the standard deviation

of the final separation between the three simulations (σ ∼ 0.2 R�) is more than 10 times
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smaller than the width of a cell. Consequently, we conclude that the final results are quite

insensitive to the initial conditions at the level tested.

4.4. Gravitational vs Hydrodynamic drag

The drag exerted on the companion has two components: gravitational and hydrody-

namical. The former is due to gravitational forces from matter flowing past the companion

and colliding with its wake (Bondi & Hoyle 1944; Iben & Livio 1993), while the latter is

due to ram pressure forces on the companion. The hydrodynamical contribution can be

estimated as:

Fhydro ∼ ρv2
2 × πR2

2 (21)

where R2 is the radius of the secondary, v2 is the relative velocity between the secondary

and the envelope, and we have taken the coefficient of drag to be unity for simplicity. In a

similar manner, the gravitational drag is approximated by (Iben & Livio 1993):

Fgrav ∼ ρv2
2 × πR2

A (22)

where the accretion radius RA is defined as:

RA =
2GM2

v2
2 + c2s

(23)

where cs is the sound speed of the medium. Choosing |v| = 2cs = 80 km s−1 with an 0.6 M�
companion yields RA ∼ 30 R�. Assuming R2 ∼ 1 R�, we conclude that the hydrodynamical

drag is of the order of almost 1 000 times smaller than the gravitational drag, thus negligible.

This conclusion is also confirmed by the outcomes of our simulations. Indeed, the

primary’s core and the companion are treated as point masses and are not pressure sources,

except for the primary’s core in the SNSPH simulations. Instead of being caused by the finite

size of the particles, hydrodynamical drag in the models is thus due to the matter accreted

around them. We pointed out earlier that the accuracy with which accretion was treated

was different between the two different models because of the different finest resolutions and

softenings used: accretion is poorly modeled in the Enzo simulations whereas in the SNSPH

simulations, the companion builds up a sphere of accreted matter about a few R� wide

around itself (Fig. 13). This should lead to differences in the magnitude of hydrodynamic
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drag forces. Nevertheless, the consistency of the results suggests that the hydrodynamic

drag is unimportant in the evolution of the system, confirming the results of Ricker & Taam

(2008).

5. Discussion

5.1. Comparison of simulations and observations

We now compare the numerical results with a sample of 61 observed post-CE systems

listed in Zorotovic et al. (2010) and De Marco et al. (2011).

5.1.1. Final separations

For a given companion mass (or alternatively mass ratio q) we obtain 3 values for the

final separation Af , one for each simulation carried out with that companion mass (Table 1

and Fig. 15). One can distinguish between these values at high q (q ≥ 0.34), which correspond

to “heavy” companions (M2 ≥ 0.3 M�), and the ones at low q (q < 0.34) corresponding to

“light” companions (M2 < 0.3 M�). At high q, the values of Af are very similar and the

standard deviation is more than 20 times smaller than the average value of Af . At low

q, the companion sinks deeper and as a consequence, the resolution used in the 1283 Enzo

simulations is not sufficient. However, as one increases the resolution to 2563 cells, the final

separations converge to the solutions given by the SNSPH simulations.

Fig. 16 shows the distribution of orbital separations reached by the 61 post-CE systems.

For all these systems, there has been no substantial orbital shrinkage due to phenomena

such as magnetic braking or radiation of gravitational waves (see discussion in Schreiber &

Gänsicke 2003). Although they cover a significant range in secondary masses, going from a

1.1 M� MS star down to a 0.05 M� brown dwarf, all of them have separations smaller than

11 R�. Furthermore, 87% of those systems have separations smaller than 4 R�, which is

smaller than any value obtained in our simulations. This is even more obviously shown in

Fig. 17, where the final separations for simulations presented here and in the literature are

compared to the orbital separations of the observed post-CE systems. Although a couple

of observed systems have q ≥ 0.5, one clearly sees that the simulations with M2 = 0.9 and

0.6 M� leave the companion far out. Systems with lower mass companions (M2 ≤ 0.3 M�)

have by and large lower orbital separations than in our simulations. Simulations of Sandquist

et al. (1998) and Ricker & Taam (2008) shown in Fig. 17 give results consistent with ours.

All these numerical simulations suggest that the separations between the secondary and the
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primary’s remnant at the end of the simulated rapid infall phase are too large to explain

the orbital separation of the currently observed post-CE systems. This suggests that further

evolution of the orbital separation must occur during the phase immediately following the

rapid infall phase. We discuss this point further in §5.2.

5.1.2. The state of the envelope at the end of the simulations

As shown on Table 2, most of the primary’s envelope remains bound in all of our

simulations. We study the situation in detail for our canonical model with the 0.6 M�
companion here. The evolution of the mass for different components is plotted in Fig. 18. It

first confirms that some envelope mass is unbound only during the first 50 days, after which

neither angular momentum (Fig. 8) nor kinetic energy (Fig. 9) are exchanged between the

unbound mass and the rest of the system. It also shows that more than 85 % of the mass

remains bound at the end of the simulation. This outcome, already pointed out by Sandquist

et al. (1998), is quite intriguing, since the post-CE binaries observed must have succeeded

in ejecting their envelope. After about 400 days, most of the envelope mass in our models

has been moved to a larger radius (∼ 100 R�, see bottom panel in Fig. 19), well outside the

orbit of the primary core and the companion but remaining bound.

M2 (M�) Mbound (M�)a

SPH1 0.9 0.44

SPH2 0.6 0.44

SPH3 0.3 0.45

SPH4 0.15 0.46

SPH5 0.1 0.48

Table 2: Amount of the envelope mass still bound at the end of the SNSPH simulations.

aAt the start of the simulations, Mbound equals the total envelope mass Me ≡M1 −Mc = 0.49 M�

We now investigate how bound the final system is. We consider the center of mass

of the system composed by the secondary and the mass within the current orbit as the

center of our frame of reference. Then, we partition the domain into concentric shells with

identical thickness, calculate the average radial velocity of each shell and compare it to the

escape velocity at that location. Fig. 19 shows the escape velocity and the average radial

velocity of the shells. The radial velocity is always positive and is similar to the space

velocity at radii larger than 600 R�, as expected for envelope ejection. At radii smaller than
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300 R�, the radial velocity is much smaller than the space velocity, suggesting that orbital

motions dominate at those radii. All the mass within 103 R� is bound, which corresponds

to more than 85% of the envelope mass. The remaining mass is found at radii between 103

and 6 × 103R�, where the radial velocities are typically between 25 and 75 km s−1. Those

particles were initially in the outer parts of the giant star, and were the first to encounter the

secondary. At that time of the in-spiral, the shock was slightly supersonic (V2 ∼ 35 km s−1

and cs ∼ 20 km s−1). This regime of evolution is thus different from later phases when

the secondary sinks deeper into the primary’s envelope, where its velocity does not really

increase (Fig. 7) but the sound speed of the medium does (Fig. 3).

We can measure how much extra energy would be required to unbind the envelope at

each radius, using the definition

Eextra =
∑
i

1

2
Mi (ve,i − vr,i)2 (24)

where ve,i and vr,i are the escape velocity at the location of the i-th shell and its average

radial velocity, respectively. One finds Eextra ∼ 8.4 × 1045 ergs which represents just over

10% of the initial binding energy of the primary envelope. Thus, a relatively small additional

input of energy could be sufficient to completely unbind the remaining envelope material.

We have compared here the final separations deduced from observations and those de-

termined from the simulations. We have purposefully stayed away from calculating the

ejection efficiency α (Webbink 1984; De Marco et al. 2011). Indeed, we question what the

relevance of calculating α is when the envelope has not yet been fully ejected, true both in

the Sandquist et al. (1998) and our simulations. We therefore defer for the moment the task

of calculating α from simulation — a long term goal of this project — until the simulations

are more advanced.

In conclusion, the hydrodynamic simulations do not reproduce the post-CE systems in

the sense that the system is left at too large separations and the envelope is not unbound

at the end of the rapid infall phase. This means that either physical processes that are not

accounted for in the simulations are responsible for the envelope ejection, or the envelope

ejection and a significant reduction of the orbit actually happens during the later subsequent

slow in-spiral phase. We discuss both possibilities in the following section.
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5.2. Reproducing the observations

In this section we first study and quantify physical processes that are not taken into

account in our hydrodynamic simulations and that might be responsible for ejecting the

envelope. Then, we focus on the subsequent slow in-spiral phase and investigate whether

the envelope can be ejected and the separation significantly reduced during this subsequent

phase.

5.2.1. Rotation of the primary

The envelope of the progenitor is initially non-rotating and although the calculation done

in §3 shows that, regardless of the initial rotation velocity of the envelope, its rotational

energy is negligible in comparison with its binding energy, we suspected at first that the

absence of rotation might be the reason for most of the envelope to remain bound. However,

Sandquist et al. (1998) carried out two identical simulations where they modified the initial

rotation state of the primary from a giant star in synchronization with the orbit to a non-

rotating one (their simulations 1 and 2). In both cases, the evolution of the bound mass

and the final orbital parameters are similar. It thus does not seem that changing the initial

rotation of the primary leads to a different CE outcome.

5.2.2. Physics not included in the simulations

The hydrodynamics codes use an ideal gas equation of state (§2.1) which, by definition,

does not include variable abundances and the different ionization layers of the envelope. Han

et al. (1995) suggested that recombination might play a role in CE interactions. As the outer

parts of the envelope expand and cool, ions recombine with electrons, releasing energy that

could aid in unbinding the envelope. Although it is unclear how efficient this process is and

how much of the initial recombination budget can be used, one can calculate an upper limit

on how much energy can be injected into the envelope by recombination.

According to our stellar evolution model, the hydrogen fraction within the convective

envelope of our RGB star is X ∼ 0.68. The mass of the envelope is Me = 0.49 M� and

each proton recombining with an electron produces an energy E0 = 13.6 eV. We also have to

calculate how much of the envelope is ionized. Therefore, we calculate the partition functions

Z for hydrogen. The hydrogen ion has no degeneracy so Z2 = 1. The partition function for

the hydrogen atom at temperature T is
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Z1 =
∞∑
n=1

2n2 exp
E0(1/n

2 − 1)

kT
(25)

where k = 8.6173×10−5 eV.K−1 is the Boltzmann constant. We truncate the sum in Eq. 25

at the first integer nmax such that the distance at which the electron orbits the proton for this

quantum number is larger than lmax = 10−6 cm, i.e. a0n
2
max > lmax where a0 = 5.2918×109 cm

is the Bohr radius (Miranda 2001). We then use the Saha formula to calculate the ratio of

ionized to neutral hydrogen (Carroll & Ostlie 1996):

N2/N1 =
2Z2

neZ1

(
2πmekT

h2

)3/2

exp (−E0/kT ) (26)

where ne is the number density of free electrons and me is the electron mass. We find

that 91% of the envelope is ionized. Consequently, the recombination of the whole ionized

envelope would produce an extra energy

Erecomb = 0.91×XMe
NA

MH

× 13.6 eV (27)

where NA is the Avogadro number and MH the atomic mass of hydrogen. One finds Erecomb ∼
1.18 × 1046 ergs, which is slightly higher than the extra energy Eextra required to eject the

envelope in our canonical model (§5.1.2). Thus, we conclude that recombination in the

envelope could substantially aid in unbinding it.

Another source of energy could be radiation pressure. For low- and intermediate-mass

giants in hydrostatic equilibrium, radiation pressure (Prad ≡ aT 4/3, where a is the radiation

constant) is negligible compared to gas pressure (Eq. 4): for our primary, Prad/Pgas . 0.01

except in a small zone (0.1 R�≤ r ≤ 10 R�), where Prad/Pgas . 0.1. However, the deep

in-spiral of the companion within the primary’s envelope will induce local shock heating.

The increase of temperature is proportional to the square of the Mach number (Tarbell et al.

1999), so even if the companion is orbiting at twice the local sound speed, the radiation

pressure to gas pressure after the shock becomes:

(
Prad

Pgas

)after

∝
(
Prad

Pgas

)before

(M2)3 = 6.4 (28)

Therefore, including radiation pressure in the equation of state will increase the total pressure

locally and might reduce the energy required to eject the envelope. However, it is possible
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that this effect is globally small, since this extra heating source is probably very localized

around the companion.

5.2.3. The post-rapid-infall phase

At the end of the rapid infall phase, the orbit is stable until the end of the simulations

(a few more years). Consequently, there is no further hydrodynamical coupling between the

extended envelope and the surviving binary. We now investigate whether the envelope is

likely to be ejected during this slower in-spiral phase.

Although the resolution of the simulations prevents us from quantifying how much

envelope will be left around the core of the primary, one can still describe qualitatively what

the evolution of the primary’s remnant will be. Fig. 18 shows that less than 10−2 M� is left

around the primary’s core, so the primary will depart the giant branch (Bloecker 1995, but

see also the discussion in De Marco et al. 2011). Then two scenarios might occur depending

on how long the partially ejected envelope will take to fall back.

If the star is given enough time to transit to the blue due to hydrogen burning at the

base of the envelope before the lifted envelope falls back, the star will readjust on its thermal

timescale of the remaining envelope, and eventually end its life as a Helium white dwarf.

This transition will last ∼ 103 years during which the star will have a luminosity between

300 and 1 000 L� (Iben & Tutukov 1993, their Fig. 1), which is consistent with the more

recent work of Driebe et al. (1998) (their Fig. 1). If we assume the remnant to have a

luminosity Lc ∼ 500 L�, we can compare the gravitational acceleration of a gas particle

with the radiation acceleration defined by

arad =
Lc

4πr2
κ

c
(29)

where r is the distance between the gas particle and the core, κ = 0.4 cm2 g−1 is the opacity

for Thompson scattering for hydrogen, and c is the speed of light. We still find the radiation

acceleration to be overall almost two orders of magnitude smaller than the gravitational

acceleration.

If on the contrary, the envelope falls back before the primary’s remnant had crossed the

Hertzsprung-Russell diagram, a circumbinary disk will form (Kashi & Soker 2011). They

refer to the numerical work done by Artymowicz et al. (1991), which suggests that in such a

configuration, the binary separation will decrease due to Lindblad resonances — mainly —

as well as viscous tides. Although this mechanism has the advantage of explaining how the
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orbital separation will diminish during the subsequent phase, the ability of radiation to eject

the gas will even be reduced in comparison with the previous situation, so it is not clear how

the latter will eventually be unbound.

In conclusion, radiation acceleration alone does not seem to be responsible for unbinding

the remaining gas, regardless of the time the partially ejected envelope will remain suspended

for.

6. Summary and Future Work

In this work we have carried out three-dimensional hydrodynamic simulations of the

CE interaction between a 0.88 M� RGB star and companions with mass ranging from 0.1

to 0.9 M�. We have used both an Eulerian grid code (Enzo) and a Lagrangian SPH code

(SNSPH) with various resolutions. They both have advantages and disadvantages and can

be used for different purposes: while one might rather use SPH to study the accretion

around the secondary, even a uniform grid code is more suitable in resolving the low-density

extended envelope. Of course, adaptive mesh refinement combines the advantages of both

of these methods at the cost of increased code complexity.

We first compared the outcomes of those simulations with each other. We found that

the results are very similar for companion masses M2 & 0.3 M�. We thus conclude that in

this regime, the resolutions used are sufficient to study the global evolution of the system

during the rapid infall phase of the interaction, which is driven mainly by gravitational drag.

For lower companion masses (M2 . 0.3 M�) that penetrate deeper in the giant’s envelope,

the 1283 Enzo runs are under-resolved but the Enzo results converge to the solutions from

the SNSPH simulations.

We then compared the outcomes of our simulations with observed post-CE systems. The

final separations are found to be systematically higher than those deduced from observations,

as is the case for the past simulations by Sandquist et al. (1998), De Marco et al. (2003)

and Ricker & Taam (2008). Moreover, mass is only unbound during the early stages of

the interaction (∼ 50 days for the 0.6 M� companion) and most of the envelope remains

bound at the end of the simulations, as was the case for the earlier simulations of Sandquist

et al. (1998). We investigated whether there might be additional processes that were not

accounted for in the simulations. We found that recombination can contribute significantly,

but stellar rotation and radiation pressure play only marginal roles. Finally, we wondered

whether the bound envelope is a result of imprecise simulations or a real physical feature. If

the latter, then one would have to follow the subsequent evolution of the system to determine
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the actual outcome of the CE. Fall back disks may form and even have an impact on the

inner binary (Artymowicz et al. 1991, Kashi & Soker 2011).

After the submission of this paper, Ricker and Taam made their paper Ricker & Taam

(2011) available. This paper continues the work introduced in Ricker & Taam (2008). In

their simulation, only about 25 % of the primary’s envelope is unbound. Although this value

is slightly higher than ours, it is in agreement with our work in the sense that most of the

envelope remains bound. They also claim that the ejection occurs mostly in the orbital

plane, as it is the case in our simulations. However, the extended envelope at the end of

their simulation is rotating much faster than it is expanding which is in contradiction with

our results (§ 5.1.2) but might be due to the fact that their primary is initially rotating.
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Fig. 6.— Density slices in the orbital plane (left) and in the perpendicular plane (right) at

0, 50, 85 and 130 days (from top to bottom) for the Enzo7 simulation. The scale used for

the velocity vector field is the same on each frame and is such that the velocity shown on

the top panel equals the initial orbital velocity of the primary (∼ 23 km s−1).
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Fig. 7.— Evolution of the companion velocity for the Enzo7 simulation.
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Fig. 8.— Evolution of the z-component of the total angular momentum (Jtot), the angular

momentum of the core and the companion (Jorb), the angular momentum of the bound mass

(Jbound) and the angular momentum of the unbound mass (Junbound) for the SPH2 simulation.
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Fig. 9.— Energy components for the SPH2 simulations. Plotted are the total energy (Etot),

the total gravitational potential energy Φtot, the internal energy of the system (Utot), the

gravitational potential energy of the envelope (Φenv), the gravitational potential energy from

the core-companion interaction (Φc2), the kinetic energy of the core and the companion

(Kc2), the kinetic energy of the bound mass (Kb), the kinetic energy of the unbound mass

(Ku), the orbital energy of the core-companion system (Ec2) and the total energy of the

envelope (Eenv ≡ Φenv +Utot +Kb). The beat frequency seen on Kc2 and Φc2 are due to the

non-synchronization between the orbital period and the data dumping frequency.
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Fig. 10.— Initial distribution within the envelope of the mass that will eventually get

unbound for SPH2.
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Fig. 11.— Separation between the core of the primary and the 0.6 M� companion as a

function of time for the SPH2 (left), Enzo2 (middle) and Enzo7 (right) simulations. Again,

the beat frequency seen in the SPH simulation is due to the non-synchronization between

the orbital period and the dumping frequency.
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Fig. 12.— Each panel shows the mass within the equivalent Enzo grid (plain), the inital

volume of the primary (dash) and the orbit (cross-solid) as a function of time for the SPH2

(left), Enzo2 (middle) and Enzo7 (right) simulations.
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Fig. 13.— Density profiles along the line joining the core and the 0.6 M� companion at

0 (dotted line), 50 (dash-cross line), 100 (dash-dot line), 300 (dashed line) and 500 (solid

line) days for SPH2 (top), Enzo2 (middle) and Enzo7 (bottom). The vertical lines show the

position of the companion.
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Fig. 14.— Left: separation between the core of the primary and the companion as a func-

tion of time for the Enzo3 (solid blue), Enzo11 (dashed red) and Enzo12 (dash-dot green)

simulations. Right: a detail of the comparison from the left panel at ∼ 340 days.
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Fig. 15.— Final separations as a function of the mass ratio q for the SNSPH (black cross),

Enzo 1283 (blue circle) and Enzo 2563 (red triangle) simulations.
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Fig. 16.— Distribution of post-CE systems as a function of their observed orbital separation

from Zorotovic et al. (2010) and De Marco et al. (2011).
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Fig. 17.— Comparison between the orbital separations of observed post-CE systems (black

dot) and the final separations reached at the end of the simulations (red circle), as well as the

ones by Sandquist et al. (1998) (green circles) and by Ricker & Taam (2008) (blue triangle).
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Fig. 18.— Evolution of the total mass (solid line), the bound mass (dashed line), the mass

within the volume of the Enzo grid (dotted line), the mass within the initial volume of the

primary (dash-cross line) and the mass within the orbital separation (dash-dot line) for the

SPH2 simulation.
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Fig. 19.— Top: Comparison between the escape velocity (dashed line) and the radial velocity

(black dots) of the final system for the SPH2 simulation. Bottom: Mass enclosed as a function

of radius.
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