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Abstract: Finite decomposition complexity (FDC) is a large scale property of a metric

space. It generalizes finite asymptotic dimension and applies to a wide class of groups. To
make the property quantitative, a countable ordinal "the complexity” can be defined for a
metric space with FDC. This paper proves that the subgroup ZZ of Thompson’s group F
belongs to D, exactly, where w is the smallest infinite ordinal number. And it shows that F
equipped with the word-metric with respect to the infinite generating set {zg, 1, Zn, -}
does not have finite decomposition complexity.
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0 Introduction

Inspired by the property of finite asymptotic dimension of Gromov | a geometric con-
cept of finite decomposition complexity is recently introduced by E.Guentner, R.Tessera and

G.Yu. Roughly speaking, a metric space has finite decomposition complexity when there is an
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algorithm to decompose the space into nice pieces in certain asymptotic way. It turned out
that many groups have finite decomposition complexity and these groups satisfy strong rigidity
properties including the stable Borel conjecture. In I, E.Guentner, R.Tessera and G.Yu show
that the class of groups with finite decomposition complexity includes all linear groups, sub-
groups of almost connected Lie groups, hyperbolic groups and elementary amenable groups and
is closed under extensions, free amalgamated products, HNN-extensions and inductive limits.
Thompson’s group F' was discovered by Richard Thompson in 1965, initially used to con-
struct finitely presented groups with unsolvable word problems. It is a long-standing open
problem to determine whether F' is amenable. Brin and Squier proved (P!, Corollary 4.9) that
F contains no free subgroups of rank greater than 1. Hence if F' is not amenable, then F
is a finitely-presented counterexample to von Neumann’s conjecture: a discrete group is not
amenable if and only if it contains a subgroup which is free of rank 2. It is known that F' is not
an elementary amenable group 1. So if F' is amenable, then F is a finitely-presented counterex-
ample to the conjecture that every discrete amenable group is an elementary amenable group.
Both conjectures are false for finitely-generated groups. The study of finite decomposition

complexity of F' is partially inspired by the question of amenability of F'.

1 Preliminaries

Recall that a collection of subspaces {Z;} of a metric space Z is r-disjoint if for all ¢ # j
we have d(Z;,Z;) > r. To express the idea that Z is the union of subspaces Z; and that the

collection of these subspaces is r-disjoint, we write

7 = |_| Z;.

r-disjoint

A family of metric spaces {Z;} is bounded if there is a uniform bound on the diameter of the
individual Z;:
sup diam(Z;) < oo.

Definition 1.1. Let X be a metric space. We say that the asymptotic dimension of X does
not exceed n and write asdimX < n if for every r > 0, the space X may be written as a union

of n + 1 subspaces, each of which may be further decomposed as a r-disjoint union:

X = UXi,Xi = |_| X;; and supdiam X;; < oo.

=0 r—disjoint bd

In the same spirit, we introduce our notion of finite decomposition complexity not for a
metric space, but rather for a countable family of metric spaces. Throughout this paper we

view a metric space as a singleton family.
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Definition 1.2. 2 A metric family X is 7-decomposable over a metric family ) if every X € X
admits a decomposition
X:X()UXl,Xi: I—I Xij7

r—disjoint
where each X;; € V. It is denoted by X 5.
Definition 1.3. [

(1) Let Dy be the collection of bounded families: Dy = {X : X is bounded }.

(2) Let o be an ordinal greater than 0, let D,, be the collection of metric families decomposable
over Uz, Dg:

D, ={X:Vr >0, 38 <a, 3Y € Ds, such that X = V}.

We have two immediate observations.
(i) For any 8 < a,Dg C D,,.
(ii) asdim X =1 if and only if X € D; exactly. i.e., X € D; and X€E€D.

Moreover, by 2, we have known that X has finite asymptotic dimension if and only if X belongs

to D,, for some n € N.

Definition 1.4. [ Let 4 be a collection of metric families. A metric family X is decomposable
over U if for every r > 0, there exists a metric family ) € U4 and an r-decomposition of X over
Y. The collection i is stable under decomposition if every metric family which decomposes over

1 actually belongs to 4l

Definition 1.5. 2 The collection D of metric families with finite decomposition complex-
ity is the minimal collection of metric families containing bounded families and stable under

decomposition. We abbreviate membership in D by saying that a metric family in D has FDC.

Proposition 1.1. (I, Theorem 2.3.2) A metric family X has finite decomposition complexity

if and only if there exists a countable ordinal o such that X € D,,.

Definition 1.6. Let G be a countable discrete group. A length functionl: G — R, on G
is a function satisfying: for all g, f € G,
(1) I(g) = 0 if and only if g is the identity element of G,
(2) Ulg™") = Ug),
(3) Ulgf) <U(g) +1(f)
A length function [ is called proper if for all C > 0,171([0,C]) C G is finite.
Let S be a generating set for a group G, for any g € G, define I(g) to be the length of the
shortest word representing g in elements of the generating set S. Then we say that [ is word-

length function for G with respect to S.

Definition 1.7. If f: X — Y is a map of metric spaces, it is said to be:

-3
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e bornologousif for all R > 0 there exists S > 0 such that d(z,z2) < R implies d(f(z1), f(z2)) <
S.

o cffectively properif for all R > 0 there exists S > 0 such that forallz € X, f~1(B(f(z), R)) C
B(z,S).

A coarse embedding is an effectively proper, bornologous map. Two maps f,g : X — Y are
close if {d(f(x),g(z)) : x € X} is a bounded set. If f : X — Y is a coarse embedding and
there exists a coarse embedding g : Y — X such that fog and go f are close to the identities
on X and Y respectively, then f is called a coarse equivalence.

Recall that a countable discrete group admits a proper length function [ and that any two

metrics defined from proper length functions by the formula
d(s,t) = (s~ 't)

are coarsely equivalent(in fact, the identity map is a coarse equivalence).(cf.[), Proposition
2.3.3) On the other hand, finite decomposition complexity is a coarsely invariant property of
metric spaces(m, Theorem 3.1.3). As a consequence, we say that a discrete group has finite
decomposition complexity if it is a metric space having finite decomposition complexity equipped

with a metric induced by a proper length function.

Example 1.1. Let G = @ Z(countable infinite direct sum),

Vg = (- ,g() ) h= (- h(n),-) € Gydi(g,h) =) | n ] g(n) = f(n) |.

nez

Note that d; is a proper left-invariant metric. It was proved that (G, d;) € D, (cf.?), Example

2.3.4 ), where w is the smallest infinite ordinal number. Moreover, for any o < w, (G, d;) €D,,.

2 Finite decomposition complexity of some groups

Let G and N be finitely generated groups and let 1o € G and 1y € N be their units. The
support of a function f: N — G is the set

supp(f) = {z € N|f(z) # 1}

The direct sum @ G of groups G (or restricted direct product) is the group of functions
N

Co(N,G) = {f : N — G with finite support}.
There is a natural action of N on Cy(N, G):

a(f)(z) = f(za™') foralla € N,z € N and f € Co(N, G).

_4-
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The semidirect product Co(N,G) x N is called restricted wreath product and is denoted as GI.N.
We recall that the product in G N is defined by the formula

(f,a)(g,b) = (fa(g),ab).
Let S and T be finite generating sets for G and N, respectively. Let 1 € Cy(N, G) denotes the
constant function taking value 1¢, and let % : N — G,v € N,b € G be the §-function, i.e.,
62 (v) = b and 6(x) = 1¢ for x # v.
Note that a(6%) = 6%, and hence (6%, 1x5) = (1,v)(&?

In0
Co(N,G) can be presented 63! - - - 6%

Vg

(f,1n) = (65, 1n) -+ (6%, 1) and (f,u) = (f,1n)(1, u).

The set S = {067, 1n), (1, t)[s € S,t € T} is a generating set for Gt N. We will use ab-
breviations f for (f,1x) and t for (1,t) for elements of the group G! N. So we denote

(f:t) = (f, 1n)(1,) by ft.

Lemma 2.1. () Proposition 2.4) Let x = (f,n) € H1Z, m = min{k € Z | f(k) # 1y},
M =max{k € Z | f(k) # 1u}, then the length of x satisfies:

1nx)(1,v71). Since every function f €

n iff=e.
o] = Z |f ()| + Lz(x). otherwise.
i€z

where e is the identity of@H, Lz (z) denotes the length of the shortest path starting from 0,
lez

ending at n and passing through m and M in the (canonical) Cayley graph of Z.

Lemma 2.2. Let X be a metric space with a left-invariant metric and {X;}; be a sequence

of subspaces of X with the induced metric. If {X;}; € Dq,then {gX;}g: € Do, where gX; =

{ghlh € Xi}.

Proof. We will prove it by induction on a.. First when a = 0, we have sup, diam X, < oco. Since
the metric is left-invariant, diam gX; = diam X;. Then sup,; diam gX; = sup,; diam X; <
00. i.e., the result is true for « = 0. Now assume that for any 5 < «,if {X;}; € Dg, then {gX;},; €
Dgs. If {X;}i € D,, then for every r > 0, there exist 3 < a and Y € Dg,such that {X;} = V.
So we get a decomposition:
Xi=XoUXn,Xyj= || Xiju where {Xi;} € Dp.
r—disjoint
Then we have:
9X; = gXi0UgXi,9Xi5 = |_| 9Xijk-

r—disjoint

By assumption, {gX;r} € Dg. Hence, {gX;} € D,. O

_5-
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Theorem 2.1. Let H be a countable group and H™ = H X H x---x H. For every r €

m

N, there exist m € N and a metric family Y such that

(1) H1Z 5 Y,

(2) there is a coarse embedding from Y to {gH™}geqy -
In particular, Z1Z € D,,, and for any a < w,Z1Z €D,,.

Proof. For every r € N, i € Z, let A; = [2i(r +1),(20 + 1)(r + 1)]NZ and B; = [(2i + 1)(r +
1), (2i +2)(r + 1)] N Z, then we have a decomposition:

Z = AU B, where A = |_| A;and B = |_| B;.
r—disjoint r—disjoint
For every i € Z, choose a; € A;, b; € B; and choose n > 3r + 2. Let

Gua ={f €@PH| () =11, Yi>n+a;orj<-n+a}

IEZ

It is a subgroup of @ H and @ H admits a decomposition into cosets of G, q,, i.e.,
leZ l€Z

@H: U 9Gh.q,;-

lez geED H

Similarly, we can define G,,;, and obtain @ H= U 9G ;. Therefore, as a set, H1Z is

@12)- (Y@ ) u(U@r)

= U (an,amAi) U U (an-,bu Bl)

1€L,9e@ H 1€L,9e@ H
Next we will show that U (9Gn.a;r Ai) and U (9Gnp,, Bi) are r-disjoint unions.

1€Z,ge@ H 1€L,gE@ H

Assume that (g1,a) € (91Gn,a,, Ai), (92,0) € (92Gnya,, Aj) and (91Gra,, Ai) # (92Gnia, Aj).
We need to show that d((g1,a), (g2,a’)) > r.

o Case 1. If i # j, then d((g1,a),(92,0")) = [(a™ (97 'g2),a”'a)| > |a~"d'| = d(a,a’) >
d(A;, A)) > 7.

e Case 2. If i = j, since (g1Gna,, Ai) # (92Gn,a;, 45), we have g1Gr o, # 92Gna,, ie.,
gflggéGn’ai. By the definition of G, ,,, we have

Jj>n+a;orj<-—n+a;st gi(j) # g2(4)-

- 6-
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It follows that
3j >norj<—nst (a7 g1a:)(4) = 91 + @) # 920 + @) = (a; ' g20:) (j).-
By Lemma 2.1, we obtain that d(a; ' g1a;,a; 'g2a;) > 2n, which implies that d((g1, a), (g2,a’)) >

r.

In faCt7 if d((gl, (I), (927 a/)) S T, then

d(a; ' grai,a; ' g2a;) = d(g1ai, gaa;)
< d(g1ai, g1a) + d(g1a, g2a') + d(g2ai, g2a”)
d

(ai7 a’) + d(gla7 9201/) + d(a’i> a/)

<(r+l)+r+(r+1)=3r+2<n. Contradiction!

Therefore, U (9Gpa;, A;i) are r-disjoint unions. We can similarly show that U (9Gnp,, Bi)

i€Z,geP H i€Z,9e@ H
are r-disjoint unions. Let

G,={f¢€ @H\ f(j) =1g forevery j >norj < —n} = H>™
we define a map
p:(9Gna, Ai) — 9Gn
(g1,0) — a;'gra
where § = a; *ga,. It is easy to see p is well defined.
We claim that p is a coarse embedding.

In fact, for any Ry > 0, Ry > 0, there exist S; = Ry +2(r + 1), 52 = Ro + 2(r + 1) such
that

(1) if d((g1,a), (g2,a")) < Ry, then

d(p((g1,a)), p((g2,a"))) = d(a; ‘grai, a; 'gea;) < d(as,a)+d(gia, goa')+d(a;,a’) < Ri+2(r+1) = S;.

(2) Conversely, if d(p((g1,a)), p((g2,a"))) < Rs, then

d((g1,a), (92,a")) < d(gra, gra;) + d(g1a:, g2a;) + d(g2a', g2a;) < Ry +2(r 4+ 1) = S,.

Hence, we can get a coarse embedding from the metric family Y to {gG,};. To complete
the proof, we only need to take m = 2n 4+ 1. In particular, when H = 7Z, by Lemma 2.2,
{972} ye@z € Drn- Hence, for every r > 0, there exist m € N and ) € D,, such that ZZ S,
Therefore, Z{Z € D,,. On the other hand, since for any oo < w, P Z €D,, and P Z is a subgroup
of Z17Z, we have Z 7 €D,,. O
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3 Decomposition complexity and Thompson’s group F

We present a brief introduction to Thompson’s group F' and refer the interested readers
to I8 and ! for more detailed discussions. Thompson’s group F has been studied for several
decades. It can be described as the group of piecewise-linear homeomorphisms of the unit
interval, all of whose derivatives are integer powers of 2 and with a finite number of break
points which are all dyadic rational numbers. It can also be described as the group with the

following infinite presentation:
(Lo, X1y s Tpy | Ty = TpTpyr Yk < n)

From this presentation, we may see x, 11 = ;2,20 for n > 1, thus F is finitely generated
by {xo, z1}. However, it is still useful to consider the infinite generating set {xg, 1, -+ , &y, - }.
We define a caret to be a vertex of the tree together with two downward oriented edges,
which we refer to as the left and right edges of the caret. Every caret has the form of the rooted

tree in Figure 1.

N\

Kl 1: A caret

Elements of F' can be viewed as pairs of finite binary rooted trees, each with the same
number of carets, called tree diagrams. A binary forest is a sequence (Ty,T1,---) of finite
binary trees. A binary forest is bounded if only finitely many of the trees T; are nontrivial.
Forest diagram, which represents an element of F as a pair of bounded binary forests is another
useful diagram representation for F'. A forest diagram (or a tree diagram) is reduced if it does

not have any opposing pairs of carets.

L] L] A . . . /\ L]

v N \</ N
2: An example of an unreduced and a reduced forest diagrams representing the same element
in F'

Lemma 3.1. ( 6, Proposition 2.2.4 ) Every element of Thompson’s group F has a unique

reduced forest diagram.
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It is easy to translate between tree diagrams and forest diagrams 6. Given a tree diagram,

we simply remove the right stalk of each tree to get the corresponding forest diagram, see Figure
3

AN o
AV

3: A tree diagram be translated into a forest diagram

Recall that a metric space is proper if every closed ball is compact.

The action of the generators {xg, 1, - Z,, -} on forest diagrams is particularly nice:

Lemma 3.2. (%1, Proposition 2.3.1 and Proposition 2.3.4) Let | be a forest diagram for some
f €F, then

(1) a forest diagram for x,f can be obtained by attaching a caret to the roots of trees n and
(n+ 1) in the top forest of §.

(2) a forest diagram for x ;' f can be obtained by “dropping a megative caret” at position n. If
tree n is nontrivial, the negative caret cancels with the top caret of this tree. If the tree n
is trivial, the negative caret "fall through” to the bottom forest, attaching to the specified
leaf.

Remark 3.1. Note that the forest diagram given for x,,f may not be reduced, even if we started
with a reduced forest diagram f. In particular, the caret that was created could oppose a caret in

the bottom forest. In this case, left-multiplication by x,, effectively “cancels” the bottom caret.

Example 3.2. Let f € F has the reduced forest diagram in Figure 4, then xof,z;f have

reduced forest diagrams in Figure 5 and z;' f, 27 ' f have reduced forest diagrams in Figure 6.

AN .
hVd

4: The reduced tree diagram for f
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AN AN
N TN

5: The reduced tree diagrams for xq f, x1 f

xilf xif

6: The reduced tree diagrams for z; ' f, z7 ' f

Let S be a rooted binary tree, the right side of S is the maximal path of right edges in S
which begins at the root of S. Define the exponents of S as follows: let Iy, --- , I,, be the leaves
of S in order. For every integer k with 0 < k < n, let a; be the length of the maximal path of
left edges in .S which begins at [}, and which does not reach the right side of S. Then ay is the

k" exponent of S.

Example 3.3. The right side of the rooted binary tree S in Figure 7 is highlighted. Its leaves

are labeled 0,---,5 in order and the exponents of S in order are 2,1,0,0,0,0.

K 7: An rooted binary tree

Lemma 3.3. (B, Normal Form) Let f be a non-trivial element of F with the reduced tree

diagram (R,S). Let ag,--- ,a, be the exponents of R and by, -- ,b, be the exponents of S.

- 10 -
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Then f can be expressed uniquely in the form: f = z(x -z z-bn ... 20" such that

(1) exactly one of a, and b, is nonzero,

(2) for every integer i with 0 <i < mn, if a; >0 and b; > 0, then either a;41 > 0 or b1 > 0.

ap a1 bo

. _ a —b,
In this case, we say f = x°x]t - alrx O -

-xo 0 4s the normal form for f.

Lemma 3.4. (I) Let G be a group with the generating set S, and let | : G — N be a function.
Then 1 is the word-length function for G with respect to S if and only if:

(1) l(e) =0, where e is the identity of G.
(2) | l(sg)—1l(g) | <1 forallge G and s € S.
(3) For g € G\ {e}, there exists s € SUS™" such that I(sg) < l(g).

Recall that a metric space has bounded geometry if for every r > 0, there exists an N = N(r)

such that every ball of radius r contains at most N points.
Lemma 3.5. ([4]) Let X be a discrete metric space, the following are equivalent:
(1) For every R > 0,¢ > 0, there exist £ : X — [;(X); +and S > 0 such that

(a) [I€(x) = &)l < € whenever d(z,y) < R.
(b) supp&(z) € B(z,S) (= {y € X|d(x,y) < S})for every z € X.

(2) For every R > 0,e > 0, there exist a cover U = {U,},c; of X and a partition of unity
{®i}ier subordinate to U and S > 0 such that

(©) 2ier |9i(x) — di(y)| < € whenever d(z,y) < R.
(d) diam(U;) < S for every i € I.

Recall that we say a metric space X is exact if X satisfies the property in (2) .
Remark 3.2. (1) IfY C X and X is an exact metric space, then'Y is an exact metric space.

(2) If there is a coarse embedding f : X —Y and Y is an exact metric space, then X is an
exact metric space. Therefore, if f: X — Y is a coarse equivalence, then X is an exact

metric space if and only if Y is an exact metric space.

By the equivalence in Lemma 3.5 and use the same proof of Nowak in the Theorem 5.1 in

81, one can obtain the following proposition.

Proposition 3.1. (1¥) Let I be a finite group, d,, is I*-metric for I'", Ap = |_| I is a metric

n=1
space with a metric d such that

- 11 -
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e d restricted to I'" is d,,,

o d(I",I™+1) > +1,

3

e if n < m, then we have d(T'",I'"™) = d(T* T**1). Then (Xr,d) is not an exact metric

>
Il

n
space.

Corollary 3.1. Let G = @Z(countable infinite direct sum), let dy be the I*-metric for @Z,
n>0 n>0
i.e.,
Vg =(---,g(n),---)h= (- ,h(n),---) € G,da(g,h) =Y |g(n) — f(n)].

nez

Then (EB Z,ds) is not an exact metric space.
n>0

Proof. Note that Zy can be embedded isometrically into Z as metric spaces. Then define a map

@ |_| 7y — @Z as follows: for every natural number n > 1, if 2 = (z(1),z(2),--- ,z(n)) €

n=1 n>0

73, then define p(x) € @Z, let

n>0

2 2
o(x)(k) = ¢ =Dnt2) k=0,

0 otherwise

T (]{7 _ n2—n> n’-n 41 S k S n’+n

Then we have

()0(22):(0722509"')5 (P(Z§> - (230922722705"')3 (P(Zg):(57050707223225Z2707'")7

Define a metric d for |_| Z3 by

n=1

d(z,y) = da(p(x),0(y)), Ya,ye ||z

n=1

Then it is easy to check that
e d restricted to ZY is d,,, which is [*-metric for Z7,

o d(Zy,Zy) =n+1,

3

e if n < m, then we have d(Zy,7Z5") = d(Zs5, Z5T).
k

n

- 12 -
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(oo}
By Proposition 3.1, (|_| Zy,d) is not an exact metric space. By the definition of the metric d,

n=1
we have -
P (|_| Zgad) - (@ZadZ)
n=1 n>0
is an isometric map. Therefore, (@ Z,dy) is not an exact metric space. O

n>0

In the following, we would also use:
Lemma 3.6. ([2], Theorem 4.3) A metric space having finite decomposition complexity is exact.

Theorem 3.1. Let F' be Thompson group, A = {xo,x1," - Xy, -} be the generating set for F
described above. For any f € F, let

an . —b —bo

_ ,.a0,.a1 ~bn .
f=agtxt - apra, Lo

be the normal form for f. Define

l(f):ZWk |+Z|bk B
k=0 k=0

let d be the metric induced by I, then
(1) 1 is the word-length function for F with respect to A.
(2) (F,d) €D, i.e. the metric space (F,d) does not have finite decomposition complexity.
Note that here (F,d) is a metric space without bounded geometry.

Proof. First we are going to prove that [ is the word-length function for F' with respect to A.

R

By Lemma 3.3, we can see [(f) is equal to the sum of exponents of Sl which is the reduced
1

tree diagram for f. By the translation between tree diagrams and forest diagrams, it is easy to

see [(f) is equal to the number of carets in the reduced forest diagram for f. Clearly, [(1r) = 0.

By the property of the action of z,, in Lemma 3.2, we have
Hxnf) =1(f) £ 1, for every n > 0.
By Lemma 3.4, it suffices to show that
for f € F\ {1p}, there exists s € AU A™" such that I(sf) < I(f).

Indeed, let

- 13-
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R,

be the normal form and let < ) be the reduced forest diagram for f. By Lemma 3.2, if R,

2
is non-trivial, assume that the m'" tree is non-trivial, then

Uz, f)=Uf) =1 <IUf)
Otherwise, since Rj is trivial, a,, = 0, then b,, # 0, By Remark 4.1, we have

Wanf) =10f) =1 <I(f).
Now we will show (F,d) does not have finite decomposition complexity. For any k& > 0, let

_2,-1 -1
by = TRy 1Ty

Note that
Vi # j, tit; = t;t;.
Therefore {t)}r>0 generates @Z with an isomorphism ¢ — e, = (0,0,---,1,0,---). By the

n>0
reduced forest diagram of ¢}'(n € N,n > 0) in Figure 8,

I(ty) =2(n+1).

E"s
$
v
Q//<\
L
[ ] [] TR " w
0 1 k
[ ] [ ] ’1
/

8: The reduced forest diagram for ¢}

-1
Ifn<0,t} = (tL"‘) , then
1) = 16" = 2(1 m |+ 1)

Therefore,
Vk>0,n€Zand n#0, I(t;)=2(n|+1).

Note that if n =0, I(t2) = (1) = 0.

_14 -
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It follows that

Vo = (@(0),2(1), ),y = (y(0),y(1),---) e Pz, dlwy) = > 2( a(n) —y(n) |+1).

n>0 n>0,a(n)#y(n)

Let dy be the [*-metric for @ Z and id : (@ Z,d) — (@ Z,ds) be the identity map, it is easy
n>0 n>0 n>0
to see that

d2<x7y) < d(x»y) < 4d2(l‘,y).

Therefore, the identity map is a coarse equivalence. By Corollary 3.1, (@ Z,ds) is not an
n>0
exact metric space. Hence, the subspace (@ Z,d) of (F,d) is not an exact metric space. Then
n>0
(F,d) is not an exact metric space. By Lemma 3.6, the metric space (F,d) does not have finite

decomposition complexity. O
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